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Abstract
A fundamental numerical model at the powder particle scale based on the material point method (MPM) is developed
for selective laser sintering (SLS). In order to describe the thermo-mechanical phenomena, a laser heat source model with a
Gaussian energy distribution and the Perzyna viscoplastic model with a return mapping algorithm are employed. The principal
process conditions, such as the laser power and radius, and the scanning speed are systematically varied. Based on the obtained
temperature distribution generated by laser irradiation under these conditions, elastic–viscoplastic stresses were calculated to
evaluate the deformation of powder particle pairs under the driving force of surface tension via a simple two-dimensional test
case. The developed MPM model can capture minute changes of the deformation behavior and the temperature distribution
history during melting and consolidation at the particle scale. Melting and consolidation of particle pairs during SLS are basic
nature in determining the final product quality. The model can help to evaluate variations in the fusion of microscopic areas,
melted by a laser, resulting from variations in the process conditions.

Keywords Material point method · Particle-scale modeling · Additive manufacturing · Viscoelasto-plastic model

1 Introduction

Selective laser sintering (SLS) and selective laser melting
(SLM) are laser fusion additive manufacturing (AM) pro-
cesses that have attracted attention in recent years due to the
ability to achieve high design flexibility to create unprece-
dented components. These processes are layer-by-layer pro-
cesses, in which the laser selectively melts the powder layer
in accordance with two-dimensional (2D) slice data gen-
erated from three-dimensional (3D) computer-aided design
models. Accurate melting of the predetermined microscopic
region at the powder particle scale will create high-quality
AMparts. To control themelting in suchmicroscopic regions,
the optimal powder characteristics and process input param-
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eters need to be determined, which requires expensive and
time-consuming trial-and-error experimental approaches.An
attractive alternative to answering this challenge is through
a numerical modeling approach. Numerical models can help
manufacturers achieve a better prediction on the behavior of
a powder melting process to control a microscopic region
and determine powder specification and process parameters.
Several works have been done to model the metallic powder
melting process in mesh-based numerical approach such as
Eulerian finite-element [20], finite-volume [35] and finite-
difference methods [4]. While these mesh-based numerical
methods are capable of producing high-fidelity solutions
and have been adapted to laser fusion additive manufactur-
ing, the process causes an evolution of the free surface and
large deformations, which are difficult to represent with the
aforementioned methods. Meshfree methods are proposed to
model such intrinsic topological requirements for laser fusion
additive manufacturing process. Ganeriwala and Zohdi [17]
developed a discrete-element method framework to simu-
late a single laser track on SLS process. Wessels et al. [34]
modeled a thermo-mechanical phase change to evaluate pow-
der melting and consolidation using optical transportation
meshfree method. Russell et al. [26] simulated melt pool
dynamics on the powder scale by smoothed particle hydrody-
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namics (SPH) approach. Fürstenau et al. [16] have presented
an efficient parallelization using SPH on graphics process-
ing unit (GPU) for the large-scale realistic 3D melt track
of SLM process. Laser fusion additive manufacturing is not
restricted to metallic powders, however, as it also applies to
polymeric powders [21,22]. Thus, the numerical simulations
have been developed to predict for SLS process. Balemans et
al. [6] model the laser sintering of a pair polymeric powder
in 2D to study the sintering behavior in mesh-based numeri-
cal approach, while Bierwisch et al. [8] developed melt track
simulations on powder scale using meshfree SPH approach.

The material point method (MPM) combines Lagrangian
material points with Eulerian Cartesian grids proposed by
Sulsky et al. [30]. The continuum domain is represented
with a set of material points, and all state variables and
the kinematic variables are stored at material points (Fig. 1).
Material points flow through a fixed background grid within
each time step during the simulation. The stored data are
mapped onto the background grid using interpolation func-
tions and updated with the governing equations. Then, the
data are remapped to the material points from the back-
ground grid. MPM has been used in the solid mechanics
field because of its advantages. The MPM can handle large
deformations, and it makes use of various constitutive laws
with ease since Lagrangian particles allow easy implemen-
tation of constitutive models [7,31]. Thus, the MPM may be
a good way to analyze the interaction during a phase change
(e.g., solid to liquid, and vice versa). Indeed, there have been
reports of extending this method to fluid mechanics with
solid–liquid interactions. Stomakhin et al. [29] introduced an
MPM framework with an elasto-plastic constitutive relation
to simulate melting and solidification in animations. Yang
et al. [36] presented solid–fluid (water) interactions prob-
lemsusingMPMwith aflux-based algorithm.However, there
is no report that MPM has been applied to the laser fusion
AM processes. Although computational efficiency is a criti-
cal issue for MPM to simulate problems such as large-scale
laser fusion AM processes, the MPM offers the potential for
a massively parallelized approach presented by Dong and
Grabe [12] andWang et al. [33]. Once the basic framework of
MPM for laser fusion AM is established, it will be a promis-
ing application to predict large-scale laser fusionAMprocess
by the parallelization approach.

In this study, we focus on SLS process and constructed
a framework for solving thermo-mechanical phenomena
to consider laser melting behavior of the powder scale
using MPM. Since the diameter of feed powder particles is
micrometer size in laser melting processes, the influence of
surface–volume ratio is large.Thus, it is necessary to consider
the surface tension in the laser melting process. In contrast,
due to high molecular weight there is no evaporation in the
case of polymeric powder fusion, unlike in the case of metal-
lic powder fusion, and thus, the evaporation does not take

Fig. 1 Lagrangian material points overlaid over an Eulerian grid

into account to this work. Typical polymers used in SLS
process are semicrystalline polymer such as polyamide 6
(PA6) and polyamide 12 (PA12), e.g., the crystallinity of
PA12 is about 25% in SLS parts [23]. The feed materials
are pre-heated to nearly crystallized temperature, Tc, in the
deposited state. Then, the feed materials are heated by laser
irradiation above the melting point, Tm , to be consolidated
[25]. Below glass transition temperature, Tg , the semicrys-
talline polymers exhibit viscoplastic behavior under large
deformation, while they exhibit viscoelastic behavior with
small strain [3,19]. Above Tg , it has been reported to have
both viscoelastic and viscoplastic behaviors depending on
the ratio of crystallinity [1,13]. As described above, SLS
process starts near Tc and the temperature rapidly increases
above Tm in the process. A constitutive model is thus con-
sidered viscoelasto-plastic deformation since semicrystalline
polymer with low crystallinity is assumed to be viscoplastic
material during laser melting process. Therefore, the pro-
posed framework implements the surface tension effect and
viscoelasto-plastic model. Details of the surface tension and
constitutive models will be presented in Sect. 2.

2 Background theory

The primary purpose of presenting this section here is to
introduce the governing equations and formulations used for
mechanical and thermal fields coupled with a surface tension
and a viscoelasto-plastic model in this study. We employed
generalized interpolation material point (GIMP) method [7]
with continuum surface tension (CSF) model [9] for sur-
face tension and Perznya model [24] for viscoelasto-plastic
model, which will be described in Sects. 2.3 and 2.5, respec-
tively. The interested reader about basics and formulation
of MPM is referred to Sulsky et al. [30], Bardenhagen and
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Kober [7] and Chen and Brannon [10] for a more detailed
description of the standard MPM and GIMP.

2.1 Governing equations

The governing equations for fully coupled, transient thermo-
mechanical problems in this study consist of three con-
servation laws and a viscoplastic constitutive relation. The
conservation of mass, conservation of momentum and con-
servation of energy are written as follows, respectively,

ρ̇ + ρ∇ · v = 0 (1)

ρv̇ = ∇ · σ + ρb (2)

ρcṪ = −∇ · q + ρslaser + ρls ξ̇s (3)

whereρ is the density, v is the velocity,σ is theCauchy stress,
b is the body force per unit mass, c is the heat capacity, q is
the heat flux, slaser is the source term for the laser heating,
ls is the latent heat and ξs is volume fraction of solid. The
superposed dot is the time derivative. The Fourier law of heat
conduction, q = −k∇T , is employed. Thus, Eq. (3) can be
rewritten as

ρcṪ = ∇ · (k∇T ) + ρslaser + ρls ξ̇s (4)

where k is the thermal conductivity. slaser and ξs , which are
related to the thermal field, will be described in Sect. 2.4.

2.2 Discretization for momentum equation

In the standard MPM framework, the weak form of the
momentum equation is used with a test function w as fol-
lows:
∫

�

ρw · v̇ d� = −
∫

�

ρ∇w · σ s d� +
∫

�

ρw · b d�

+
∫
S
w · t̄ dS (5)

where σ s is the specific Cauchy stress tensor (σ s = σ/ρ)
and t̄ is the applied traction on the boundary S. The following
approximation is introduced for density

ρ(x, t) =
n p∑
p=1

Mpδ(x − x p) (6)

where δ(x) is the dirac delta function with dimension of the
inverse of volume, x p is the position ofmaterial point particle
and n p and Mp are the total number of material point parti-
cles used and the particle mass, respectively. Using Eq. (6),
the following discrete form for the governing equation is
obtained

∑
p

Mpw · v̇ = −
∑
p

Mp∇w · σ s +
∑
p

Mpw · b

+
∫
S
w · t̄ dS. (7)

Accordingly, the test function and its gradient are approxi-
mated as

w =
∑
i

wi Ni (x) (8)

∇w =
∑
i

wi∇Ni (x) (9)

where i is the node index. Substituting Eqs. (8) and (9) into
Eq. (7) and using interpolation function Ni , the discrete gov-
erning equation for the conservation of momentum can be
written as

mi ai = f exti + f inti + f suri (10)

where f inti and f exti are the internal and external load vectors,
respectively, which are given by

f inti = −
n p∑
p=1

Vpσ p · ∇Ni (11)

f exti =
n p∑
p=1

MpbNi +
∫
S
t̄Ni dS, (12)

and f suri is the surface tension force. The formulation of
f suri will be presented in Sect. 2.3. For Ni (x), we use the
uniform GIMP (uGIMP) interpolation function presented in
[7,28]. For time integrator, the explicit time stepping scheme
is applied

ani = vn+1
i − vni

Δt
. (13)

Here, the velocity and position vector of material points are
updated based on the time evolution scheme given as follows:

vn+1
p = vnp + Δt

∑ Ni (xnp) f
n
i

mn
i

(14)

xn+1
p = xnp + Δt

∑ Ni (xnp)(mv)n+1
i

mn
i

. (15)

Thereafter, the deformation gradient is updated using the
relation Ḟ = LF,

Ḟ p = Fn+1
p − Fn

p

Δt
= Ln+1

p Fn
p (16)
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where Ln+1
p = ∇vn+1

p = ∑ ∇Ni (x p)v
n+1
i is the spatial

velocity gradient. The deformation gradient at the next step
is obtained as follows:

Fn+1
p = (I + Ln+1

p Δt)Fn
p (17)

and the volume of each particle is updated by using the deter-
minant of the deformation tensor

V n+1
p = det Fn+1

p V 0
p (18)

where V 0
p is the initial particle volume and V n+1

p is the cur-
rent particle volume. The stress analysis is described with a
elastic–viscoplastic constitutive model in Sect. 2.5.

2.3 Formulation of surface tension

In order to describe the surface tension f suri , we mainly fol-
low the methodology presented in Chen et al. [11] except the
curvature. The curvature is computed using the level set func-
tion as in [37]. The surface tension force can be calculated as

f suri = Vcγ
surκi

∇mi

[mi ]
mi

< mi >
(19)

where Vc is the cell volume of background grid, γ sur is the
surface tension coefficient, κi is the curvature, [mi ] is the
density difference at the interface and < mi > is the average
density of the interface. ∇mi , the gradient of grid mass, is
calculated by

∇mi =
∑
i ′

∇Ni ′(xi )mi ′ (20)

where
∑

i ′ is a summation over the neighboring nodes of xi .
For the curvature, the level set function is computed using
following equation:

φ(x) = min
p

(‖x − x p‖ − rp) (21)

where x p is the particle position and rp is the particle radius.
Then, φ(x) = 0 indicates the interface. We use the nine
signed distances evaluated at a grid node and its neighbor
nodes given by

φn = φ(xn) (22)

where xn ∈ {x|x is the grid node } i and its neighbor node
positions to solve least-squares problem to determine coeffi-
cients a0, a1, . . . , a5 of a local quadratic polynomial function
φ̃i (x, y) around the grid node i written by

φ̃i (x, y) = a0 + a1x + a2y + a3x
2 + a4y

2 + a5xy. (23)

Now, the first- and second-order derivatives of φ̃i are readily
computed. The curvature is obtained as follows:

κ i = ∇ · ∇φ̃i

|∇φ̃i |

∣∣∣∣∣
(x,y)=(xi ,yi )

= φ̃i,xx φ̃
2
i,y − 2φ̃i,x φ̃i,y φ̃i,xy + φ̃i,yy φ̃

2
i,x

(φ̃2
i,x + φ̃2

i,y)
3/2

∣∣∣∣∣
(x,y)=(xi ,yi )

(24)

where φ̃i,x = ∂φ̃i
∂x , φ̃i,y = ∂φ̃i

∂ y , φ̃i,xx = ∂2φ̃i
∂x2

, φ̃i,yy = ∂2φ̃i
∂ y2

,

and φ̃i,xy = ∂2φ̃i
∂x∂ y .

2.4 Thermal field and phase transition

In laser fusionAMprocess, phase transition has a crucial role
in the overall process and the quality of the fabricated parts.
In order to compute the temperature evolution, theweak form
of the energy equation is used. Laser irradiation and latent
heat are considered as heat sourcemodels and a heat flux-free
condition is imposed at the natural boundary condition. The
resulting equation is given as

∫
�

ρw · cṪ d� =
∫

�

ρ∇w · (k∇T ) d� +
∫

�

ρw · slaser d�

+
∫

�

ρw · ls ξ̇s d�. (25)

Then, the following discrete form for the governing equation
is obtained using Eq. (6),

∑
p

Mpw · cpṪ =
∑
p

Mp∇w · k∇T +
∑
p

Mpw · slaser

+
∑
p

Mpw · ls ξ̇s . (26)

As the interpolation function Ni and its gradient ∇Ni can
be applied in the same manner as in Sect. 2.2, the MPM for-
mulation for balance of energy is obtained as follows:

ci Ṫi = Qint
i + Qext

i (27)

where

ci =
n p∑
p=1

MpcpNi (x p) (28)

and

Qint
i =

∑
p

Vp(k∇T ) · ∇Ni (29)
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Qext
i =

∑
p

MpslaserNi +
∑
p

Mpls ξ̇s Ni . (30)

The thermal effects of the laser on the powder are com-
puted using a laser heat source model with a Gaussian energy
distribution [14]. The laser energy density in two dimensions
is given by

slaser = 2AP

πr02ηl
exp

(
−2

(xl − xp)2

r20

)
· 0.6 exp

(
yl − yp

ηl

)

(31)

where A is the absorption coefficient, P is the input power,
r0 is the radius of laser spot, ηl is the penetration depth of
laser and xl and yl are the laser positions. Again, xp and yp
are the positions of material points.

In a system going through a phase transition via heat trans-
fer, the total enthalpy H is represented by a sum of sensible
heat h and latent heat ΔH ,

H = h + ΔH . (32)

The latent heat is absorbed during melting process and
released during crystallization process between Tc and Tm .
We assume that the latent heat of fusion is equal to the latent
heat of crystallization. The latent heat is given asΔH = lsξs .

To identify the volume fraction of solid phase ξs , a linear
function is introduced [32],

ξs = 1 − (T − Tc)

(Tm − Tc)
(33)

where Tc and Tm are the crystallization and melting tem-
perature of polymeric materials, respectively. The volume
fractions of the solid and liquid phases satisfy ξl + ξs = 1.
The specific heat cp during the transition is interpolated using
the fraction of phase as cp = ξscps + ξl cpl .

2.5 Constitutive equation

A elasto-viscoplastic constitutivemodel is necessary in order
to describe the behavior of melting and solidification in
polymeric SLS process. As described in Sect. 1, polymeric
powders are rapidly heated above Tm from around Tc and
resolidification occurs due to the heat conduction, convec-
tion and radiation after the laser irradiation. The deformation
with phase transition on the series of the process is irre-
versible. The physically based constitutive models have been
proposed for viscoplastic behavior, e.g., [5]. On the other
hand, the phenomenological-based constitutive models have
been developed and sometimes provide an easier modeling
approach. Perznya’s phenomenological formulationwas sup-
ported by the thermodynamics of irreversible processes [24]

and can be used to model the rate-dependent behavior of
polymers, e.g., [2]. In our model, thus the Perzyna viscoplas-
tic model incorporating a return mapping algorithm [27] is
employed as a constitutive model.

The Eulerian infinitesimal strain rate ε̇ is given by the
spatial gradient of the deformation rate u̇ as

ε̇ = {grad u̇ + (grad u̇)T }/2. (34)

In order to describe the total strain rate of thermo-mechanical
phenomena with phase change, the total strain rate ε̇ is given
by the sum of the elastic and plastic strain rates ε̇e and ε̇ pl ,
as well as the thermal strain rate ε̇th and the transformation
strain rate ε̇m representing dilatation caused by phase change.
This concept was introduced by Inoue and Wang [18].

ε̇ = ε̇e + ε̇ pl + ε̇th + ε̇m . (35)

The thermal strain rate ε̇th is given by

ε̇th = αṪ 1 (36)

and the transformation strain rate ε̇m due to solidification
yields

ε̇m = βξ̇s1 (37)

where α and β denote the coefficients of thermal expansion
and of dilatation due to solidification, respectively.

Thereafter, we compute an elastic trial stress and test
for plastic loading. Trial stresses σ trial and trial deviatoric
stresses strial are given by

σ trial
n+1 = pn+1 1 + strialn+1 (38)

strialn+1 = 2μ(εn+1 − ε
pl
n − εthn − εmn )

− 1

3
tr(εn+1 − ε

pl
n − εthn − εmn )1 (39)

where the pressure is given by pn+1 = λ tr[εn+1]. We then
plug trial deviatoric stress in the yield function given by

f trialn+1 := ‖strialn+1‖ −
√
2

3
[σY + Hα

pl
n ] (40)

where σY is the yielding stress, H is the hardening coefficient
and α pl is the equivalent plastic strain. When f trial is a non-
negative, a plastic step starts and the consistency parameter
Δγ is obtained in the following equation:

Δγ = f trialn+1/2μ

τ/Δt + 1 + H/3μ
where

τ := η

2μ
(the relaxation time) (41)
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Fig. 2 Schematic illustration of the model in this study

where η is the viscosity. The variables λ andμ are the Lame’s
constants. Afterward, ε pl , α pl , s and σ are updated in plastic
step as follows, respectively.

ε
pl
n+1 = ε

pl
n + Δγ ntrial with ntrial = strial

‖strial‖ (42)

α
pl
n+1 = α

pl
n +

√
2

3
Δγ (43)

σ n+1 = pn+1 1 + sn+1 (44)

sn+1 = 2μ dev[εn+1 − ε
pl
n+1 − εthn+1 − εmn+1]. (45)

Finally, σ is substituted for the stress in Eq. (11) to obtain
internal force f inti in MPM framework.

3 Results and discussion

In order to validate the proposed method, a simple numerical
test case is examined in this section. First, the simulation
conditions such as initial set up, laser conditions andmaterial
parameters are introduced. Following this, the consolidation
behavior of powders duringSLSprocess is investigated under
systematic laser conditions.

3.1 Simulation conditions andmaterial data

The geometry for the test case is illustrated in Fig. 2. The geo-
metrical setup consists of two powder particles with 40µm in
diameter. The top surface of the material and both side walls
are insulated, and the bottom temperature is kept at a constant
temperature for preheating. The gradient of grid mass, ∇mi

which is required for surface tension is obtained by using the
neighboring nodes as shown in Eq. (20). Since the powder
touches the wall and bottom at the initial geometry, an extra
cell is added to left and right walls and the bottom to con-
sider the accurate surface tension. These cells are only used
for calculating the surface tension. Polyamide 12 is consid-
ered for the test case simulations since it is usedmost often in
SLS process. Two types of spatial discretization are prepared

Table 1 Spatial discretization

Grid space (µm) Nodes Material points

Fine 2 1163 2578

Coarse 4 322 632

Table 2 Laser conditions

Laser parameter Notation Value

Laser power P 5, 15, 25W

Laser radius r0 30, 50, 70µm

Laser velocity vlaser 0 or 4m/s

Absorptivity A 0.85%

Penetration depth ηl 100µm

as shown in Table1. The grid spacing is 2µm or 4µm, and
four material points are set per one cell.

The laser power and radius are systematically varied
to evaluate melting behavior of particle pairs as shown in
Table2. The laser scanning condition is also applied. The
material parameters used in the simulations are shown in
Table3. The viscosity η of PA12 has been taken from Zhao
et al. [38]. The viscosity that depends on the temperature is
modeled using the experimental values. We use the experi-
mental surface tension coefficient γ sur obtained by Zhao et
al. [38]. Young’smodulus in the liquid phase has been chosen
from the general crystalline polymer values [15]. In the solid
phase, the modulus is a function of temperature. The starting
temperature in the SLS is just below Tc; thus, the modulus of
the solid phase has been chosen an order of magnitude larger
than that of liquid phase.

For the calculation of the time step size, the restriction is
considered for the standard advective CFL condition,

Δtc ≤ h

√
ρ

E
(46)

and for the surface tension [9],

Δtsurf ≤
√

ρh3

γ surf (47)

and for the thermal field

ΔtT ≤ h2ρc

4k
(48)

where h is the grid spacing. In case of a fine discretization
(Table1), the sufficiently small time step of Δt = 5 × 10−8

s is used.
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Table 3 Material parameters Thermo-mechanical parameter Notation Value

Heat conductivity km 0.24W/m ◦C
kc 0.28W/m ◦C

Specific heat cm 2700J/kg ◦C
cc 2700J/kg ◦C

Latent heat ls 50kJ/kg

Melting temperature Tm 175◦C
Crystallization temperature Tc 146◦C
Density ρ 1020kg/m3

Thermal expansion coefficient α 15 × 10−5/K (T ≤ Tc)

5 × 10−5/K (T ≥ Tm)

Dilatation of solidification β 1.5%

Poisson’s ratio ν 0.42

Young’s modulus E 1 × 105 Pa (T ≤ Tc)

1 × 104 Pa (T ≥ Tm)

Viscosity η 1,30,219 × exp(−0.02 × T )Pas

Surface tension coefficient γ sur 36.3 × 10−3 N/m

Yield stress σ y 1 × 105 Pa (T ≤ Tc)

1 × 104 Pa (T ≥ Tm)

Hardening coefficient H 1 × 105 Pa (T ≤ Tc)

0 Pa (T ≥ Tm)

Baseplate temperature TB 140◦C

Fig. 3 Evolution of temperature and deformation as a function of laser power; a–d laser power is 5W, e–h laser power is 25W

3.2 Particle fusion analysis

Figure3 shows the comparison of laser power on the evo-
lution of temperature and deformation of powder particles
using the fine spatial discretization. There is no notable
change in the deformation of the particles at the laser power
of 5W. In contrast, neck growth occurs and particles are con-
solidated at the laser power of 25W. In order to evaluate

the consolidation behavior, the neck length was measured
using the level set function φ used for tracking the interface
as shown in Fig. 4. The neck length is defined as a contact
line L , starting from the neck length of 8µm, as shown
in Fig. 4a. When a coarse spatial discretization (Table1) is
applied, the contact line is hardly changed regardless of laser
power, radius. Accordingly, the fine spatial discretization
was adopted in the analysis. Figure5 summarizes the con-
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Fig. 4 Evaluation for consolidation using level set function φ; a initial state, b P = 5W, time = 1 ms, c P = 25W, time = 1 ms

Fig. 5 Contact line and
maximum temperature as a
function of laser power. a
Contact line of particle pair at
the 1ms. b Maximum
temperatures during the process.
The laser power is 15W

Fig. 6 Evolution of temperature and deformation as a function of laser radius; a–d laser radius is 30μm; e–h laser radius is 70μm. The laser power
is 15W

tact line and maximum temperature as a function of laser
power. When the laser power is small, the contact line does
not change, while when the laser power is sufficiently large,
the neck grows and the powders are consolidated. From the
result of the overall temperature distribution (Fig. 3) and the
maximum temperature (Fig. 5b), laser power of certain level
or more is required for consolidation under the driving force
of surface tension. This idea can be further understood by
the following results of the influence of the laser radius.

Figure6 shows the comparison of laser radius on the evo-
lution of temperature and deformation of powder particles,
and Fig. 8a, b summarizes the contact line and maximum
temperature as a function of laser radius. The laser with large
radius heats up the whole particle pairs, and the neck grows
with the maximum temperature well above the Tm . Reduc-
ing the laser radius causes the maximum temperature to rise,
resulting in neck growth. Figure7 shows the consolidation
evolution with moving laser at a laser power of 15W and a
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Fig. 7 Consolidation evolution with moving laser at a laser power of 15W and a laser radius of 50μm. Scanning speed is 4m/s. The laser starts at
the left edge and ends at the right edge of the powder pairs

Fig. 8 Contact line and
maximum temperature as a
function of laser radius and
with/without moving laser. a, c
Contact line of particle pair at
the 1ms. b, dMaximum
temperatures during the process.
The laser power is 15W

laser radius of 50µm. The temperature gradient is reduced
because of laser scanning. The temperature increase becomes
line asymmetric with respect to the contact line of particles at
the initial state. As a result, the powders slide slightly to the
left because the effect of surface tension is asymmetric. The
consolidation proceeds in the laser scanning condition than
in non-scanning condition. The scanning reduces the overall
temperature gradient and maximum temperature in spite of
the longer irradiation time (Figs. 7, 8c, d).

Different melting and consolidation behavior due to the
laser conditions are confirmed in the constructed model.
Melting and consolidation of two particles during SLS
are basic nature in determining the final product quality.
Incomplete consolidation (e.g., Fig. 3a–d) results in poor
mechanical properties; thus, the screening methods using the
numerical model are effective. The model can help to screen

the laser conditions in the consolidation of two particles,
melted by a laser.

4 Conclusions

In summary, a novel MPM framework for SLS process
is developed using continuum surface force model and
Perznya-type viscoelasto-plastic model associated with a
thermal field and phase transitions. Lasermelting phenomena
are introduced, and the consolidation of material is observed
at the powder particle scale. The model can help to evalu-
ate the different consolidation behaviors of particles due to
variations in laser conditions and provide the guideline to
control them. The proposed MPM model in our work uses
the explicit scheme for time integrator whose time step size
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must satisfy CFL condition for stability. An implicit formu-
lation could be used to address the stability issue in future
work.AlthoughMPMhas high computational cost, like other
particle-based methods, the proposed MPM framework has
a potential to perform a sophisticated melting and consolida-
tion simulation of SLS at industrial scales by using a GPU
parallel computing.
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