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ABSTRACT

This report delves into a preliminary structural analysis of a rocket motor section using
the Euler-Bernoulli beam method under simplified conditions. A casing made of eight
laminated layers of carbon epoxy is scrutinized under loading from thrust vectoring and
the axial and transverse displacements of this casing are calculated. The maximum
stresses in each layer are deduced and are found to have a high chance of survival under
the preset conditions and offer a more lightweight model than a typical aluminum
casing. It was concluded that the carbon epoxy casing provides a solid structural housing
for the rocket under the specified assumptions, but a more in-depth analysis must be
done in order to approve the design for flight.



INTRODUCTION

As in the previous project, a rocket’s structure is analyzed during equilibrium. This
report delves into a slightly more in-depth analysis of the rocket while undergoing thrust
vectoring at a maximum gimbal deflection angle. Thrust vectoring makes the rocket
more versatile and allows for additional control during flight. This thrust vectoring
induces transverse loads and bending moments in addition to the initial axial loading.
The motor is analyzed by assuming it is one homogenous segment, thrust is a point-force,
dynamic effects and buckling are neglected, the weight of the motor is a distributed
transverse load, and the loss of weight due to fuel is neglected. The solid propellant,
HTPB, is aged 12 days and the roller, wall, and ground are rigid bodies. The rocket casing
that is under scrutiny is made of eight layers of equal thickness of AS4/3501-6
carbon/epoxy. This material, also known as black aluminum, surrounds the inner
diameter of the rocket which holds the solid propellant and is manufactured with a
[0,£45,90] symmetric configuration.
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Figure 1: Simplified Model for the Rocket Motor

The structural analysis of this motor uses a 3D Euler-Bernoulli beam theory with the
assumption that the rocket is a long, thin beam in equilibrium. The first step is to find the
different boundary conditions for the beam which will be used to find the axial and
transverse loads. Next, the fundamentals of composite mechanics will be used to
calculate the reduced stiffness matrix which will determine the axial and transverse
displacements. The maximum tensile and compressive stresses in each layer will then be
calculated and defined as critical point locations, or locations where the beam is most
likely to fail. Taking these critical point values and the safety and fitting factors, each
layer will be determined to either fail or survive the applied loads and moments.



METHODS

The deliverables requested are as follows:

e Maximum deflection angle, 6,

e Boundary conditions required to obtain axial and transverse displacement
distributions of the beam centerline,

e Axial displacement, u,, and transverse displacement, u,,

e Moment about x, along the length of the beam,

e Axial position where stress in the layers is maximum,

e Axial stress distribution, ¢,, along X, in X,X, plane,

e Evaluation of a possible casing failure given the safety and fitting factors.

First, a force balance for x, direction and moment about the centroid of the motor can be
written, in order to obtain the maximum deflection angle of the thrust:

Force balance:
Sh =t

T+sind+F,—-—wL=20

Moment balance:

M, = -1 mo + F =0
T * & — * —
(o] Si 2 5 2

F, = Tsinf

Plugging this result back into the force balance will yield:



wl,
8 = si -1 (—)
Sin oT

Next, the boundary conditions must be set, in order to solve the differential equations
that yields the displacement distributions in axial and transverse directions.

Boundary conditions required to obtain the axial displacement are:

For x =0, the external force, the thrust vector, is equal to the internal force, N;:
—N;(0) = TcosB

For x,=L, the motor is fixed due to the roller support on the right, meaning there would
be no displacement in the axial direction:

uy (L) =0

Now, the internal force can be solved by integrating the following relation:

dN,
dx,

1

which yields:

N1=—P1.7C+Cl

As there is no load distribution in the axial direction, P, is equal to zero. C, can be
obtained by using the boundary condition defined above:

N, = —Tcos6

The axial displacement distribution is:



du; Ny

dx; S

After integration and applying the displacement boundary condition, the axial
displacement distribution is obtained:

Tcos6
S

Uy (x1) = (L —x)

Boundary conditions required to obtain the transverse displacement are:

For x,=0, the bending moment vanishes due to the free end:

& d*u,(0) _
5 T

M5(0) =

Also, the internal force at x,=0, the shear force, is equal to the external transverse thrust
vector:

dM;(0) d
dx, dx,

d?u
HE ZD = Tsin@

33
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For x =L, the vertical equilibrium of forces at the location of the spring force yields:
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d“u,
Hss dx?
1

Y ‘ —ku,(L) =0

In addition, the following conditions applies due to the roller support on the right end of
the motor:



du,(L) =)
dx;,

Using these four boundary conditions, the transverse displacement can be solved by
integrating the following expression 4 times:

d? ’ | d%u,
33

2
dx;

] = p,(xy)

2
dx;
First integration results in:

d d?u,

—|H,, ———| =P L
dx1[ 33 dxf‘ 2X1 + (4

which can be solved by using the force boundary condition at the left end of the motor:

d HE a1l = P,x; + Tsin®
Bey| BT

Now, the spring force boundary condition at the right end of the motor can be used to
obtain a displacement boundary condition:

2

c, “‘2] gy

4
dx?

d

dx;

Using the last two relations, a BC at x,=L for u,:

P.l. T'sinf
u, (L) = ; -+ r

This boundary condition will be used later in order to obtain the final form of the



transverse displacement distribution.

Next, the third order differential equation is integrated and the moment boundary
condition at at left end of the motor is applied:

2
. du,

— B D -
33— = Poxi + Tsinf * x4
dx;i

This expression is then integrated again and another boundary condition is applied:

du P,x3 Tsin®
2 _ zc1+ ~ xi2+ ; dug(L)=0
Then,
du P Tsin®
== — (2] = ) + (3] — [9)

Finally, this expression is integrated once more and the previously obtained boundary
condition for u,(L) is used:

4 3 3 3
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In order to numerically calculate the axial and transverse displacement distributions,
axial stiffness (S) and bending stiffness (H,;) need to be calculated. Because the casing is
made of multiple layers that have different orientations, these values need to be
calculated using the lamination plate theory. These steps can be found in the notes about
bending stiffness of a laminated beam (La Saponara, 1-4)

First, the reduced stiffness matrix, Q, is calculated:



[ Ey vy Eqy ]
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The values for the Young Modulus and Poisson’s ratio for different directions are
obtained from the table with composite material properties, which is included below:

Table 1. Composite properties for AS4/epoxy. From: Swanson, S.R. Introduction to Design and Analysis with
Advanced Composite Materials. 1997.Herakovich, C.T. Mechanics of Fibrous Composites. 1997.

Material AS4/Epoxy
E,, [GPa] 148.24

E,, [GPa] 10.07

Vi, 0.30

G,, [GPa] 4.58

Then, the Qbar is calculated:

O-T"Q0-RT-R"
where T and R matrices are as follows:

[ cos’ B sin® B 2sinffcosf ]
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The Qbar found is then inverted to obtain Sbar, whose element in the first row and first
column is the reciprocal of the Young’s Modulus of the laminate layer:
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This process is reiterated for each laminate layer to obtain the Young’s Modulus values.

Next, axial stiffness can be found by the following formula:

8
=f EdA:ZEi*Ai
2 i=1

where the area defined is the individual areas of the layers and E is the Young’s Modulus
of individual layers.

Bending stiffness of the laminate can be calculated by using the relation:

f 2"1';';+1

ffEr d4 = EffE(rsmB) rdrd@

i=1 0 7

After evaluating this integral, the following relation is found and used in the bending
stiffness calculation:

33 - 642 E (Dl‘l'l Df)

After calculating the displacement distributions, the moment along the length of the
motor is calculated with the following relation:

2

d=u,
ME(xlj H33 R 2

= PyxZ + Tsinf * x;



The critical location in X, in terms of maximum axial stresses in the layers can be found
by finding the location of the maximum bending moment. The axial stress due to the
axial load does not vary along the length, so the critical location is only dependent on the
moment.

At the critical axial location, X, , the axial stress along X, in the cross-section can be found

by summing up the axial stresses due to bending and axial loading:

cr >’

Ototal = Obending + Ogxial

Axial stress was calculated through the following relation:

Ny

Taxial = E *—

This calculation was performed for the laminate layers and the propellant with each
respective Young’s Modulus value.

Bending stress was calculated using the following, which was also reiterated for each
layer, at the outer radius, in order to capture the maximum stress in each layer:

D

2 i MB,max
Opending = —E » c
33

After plotting the total axial stress on the cross-section at the critical location, the
maximum stress values were adjusted according to the given safety and fitting factors in
the following manner:

FOSZSf*ff

By comparing the adjusted stress values to the given tensile and compressive strengths in
axial and transverse directions, the casing was evaluated for a possible failure. The
strength values used are tabulated below:

10



Table 2. Propellant parameters. From: Swanson, S.R. Introduction to Design and Analysis with Advanced
Composite Materials. 1997, Herakovich, C.T. Mechanics of Fibrous Composites. 1997.

Material AS4/Epoxy
Axial Tensile Strength [MPa] 2137.37
Transverse Tensile Strength [MPa] 53.43
Axial Compressive Strength [MPa] -1268.64
Transverse Compressive Strength [MPa] -168.23

In addition, the following rocket and motor properties were used in order to numerically
analyze the structure:

Table 3. Rocket and motor parameters. From: La Saponara, Valeria. EAE 135 - Aerospace Structures, Project 2
Handout. 19 February 2020.

Outer diameter: 3.71 m Casing thickness: 120 mm

Length: 46 m Thrust: 1578 tf

Single layer thickness: | of casing thickness | Motor weight: 1.825 * 10° N/m

Spring constant: 10° kN/m HTPB propellant density: 1750 kg/m>

HTPB propellant elastic modulus: 4.86 MPa

Using this methodology, the deliverables were calculated and presented in the following
section.

1



RESULTS

The maximum deflection angle (6 ) calculated is:

0 = 15.74°

Next, in order to calculate the numerical values of the displacement distributions, the
Young’s Modulus values for each layer was obtained through classical laminate plate

theory:

Table 4. Layer Young’s Modulus values.

Layer Orientation Young Modulus (E) [GPa]
0° 148.24
45° 14.23
-45° 14.23
90° 10.07

Axial and transverse displacement distributions obtained through the relations
calculated in the previous section are plotted along the length of the rocket:
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After calculating the displacement distributions, the moment distribution along
rocket is additionally calculated and plotted:
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Figure 2: Axial and transverse displacement distribution along the rocket.
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Moment M, along the Rocket
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Figure 3: Moment (M,) distribution along the rocket.

The critical axial location, x,, where the axial stresses are the maximum along the
cross-section of the motor is at the point where the moment is maximum. The axial stress
due to the axial load is constant along the length of the motor, therefore, does not have

an effect on the location of the critical axial location. Thus, X, is calculated to be at:

X = 23.02m

At this critical x, location, the axial stresses due to bending and axial loading were
calculated along the radius of the motor and presented below:
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Figure 4: Stress distribution in the cross-section at x,,.

The sections on the graph where the laminate are can be zoomed in, in order to closely
analyze the effect of the loading on the casing structure:
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Figure 5: Stress distribution in the cross-section at the lower laminate section at x,
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Figure 6: Stress distribution in the cross-section at the upper laminate section at x,,.
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The maximum stresses with their adjusted values are presented along with the

corresponding yield strengths for each layer of the casing for failure evaluation:

Table 5. Maximum stress values for different layers of the composite casing.

Material | Orientation | Maximum Maximum Yield Strength Risk of
Stress, 0., | Stress by FOS, of AS4, 0 Failure
[MPa] 0 aow [IMPa] [MPa]

Top -157.69 -226.68 -1268.64 No

Layer 1

(0°) Bottom 95.2 136.84 2137.37 No
Top -15.24 -21.91 -168.23 No

Layer 2

(45°) Bottom 9.04 12.99 53.43 No
Top -15.34 -22.05 -168.23 No

Layer 3

(-45°) Bottom 8.94 12.85 53.43 No
Top -10.92 -15.70 -168.23 No

Layer 4

(90°) Bottom 6.25 8.98 53.43 No
Top -10.99 -15.80 -168.23 No

Layer 5

(90°) Bottom 6.18 8.88 53.43 No
Top -15.64 -22.49 -168.23 No

Layer 6

(-45°) Bottom 8.63 12.41 53.43 No
Top -15.74 -22.63 -168.23 No

Layer 7

(45°) Bottom 8.53 12.26 53.43 No
Top -165.06 -237.27 -1268.64 No

Layer 8

(0°) Bottom 87.83 126.25 2137.37 No

1




DISCUSSIONS

The maximum deflection angle, 6, is caused by the thrust vectoring of the rocket and is
considered the angle that results in static equilibrium, which is the set-up that the rest of
the report builds off of. This maximum deflection angle is found to be 15.74° and is a
function of the thrust, weight, and length of the rocket.

For a laminated beam with a cylindrical cross-section, the centroidal bending stiffness,
H%,, is calculated to be 1.0203 x 10"~V -m? and the axial stiffness, S, is calculated to be
6.3194 x 10'°N which will be used to find u, and «, , respectively. The axial and transverse
displacements are plotted in Figure 2 against the length of the rocket. The transverse
displacement is found to be much larger than the axial displacement along the beam,
reaching a maximum of 0.3 meters at x = 0 and a minimum of -0.04 meters at x= L. The
distribution of the bending moment is also shown in Figure 3 and indicates that the
maximum bending moment is located at 23.02 meters, also known as the critical axial
position. Because the axial stress due to axial loading is constant along the beam, only
the bending moment affects the critical axial position.

It

can be seen that the propellant does not undergo a significant amount of axial stress

Figure 4 plots the total axial stress against x, at the location of maximum stress, x_,,;..; -
compared to the laminated layers. Figure 4 also shows that the top of the rocket will be
in compression and the bottom will be in tension, indicated by the negative and positive
stress values, respectively. The plot is slightly asymmetric which is due to the constant
axial loading that is added to both the compression and tension values, creating a slight
offset. Figures 5 and 6 show the laminated layers of the rocket casing in response to the
applied loads from the thrust vectoring. It is seen that the 0° laminated layer can
withstand the largest amount of stress, while the 90° layers can withstand the least.

The culmination of this report is summarized in Table 5. Each layer’s maximum
calculated stress for both tension and compression is reported and compared with their
maximum yield stress values to determine failure in the beam. As seen in the table,
every layer survives the applied loads in both compression and tension with a large
margin of safety. The layers in compression undergo a larger overall stress load, with the
maximum stress at the outer layers and the minimum stress at the axis of symmetry.
Thus reinforcing the importance of having the 0° laminated layers on the outermost
section of the beam to withstand the highest stress values. The composite structure of
this rocket casing will easily survive equilibrium flight during the stated conditions, but
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will also be significantly lighter than an aluminum casing. Before approving such a
casing design, further analysis must be done for all types of flight and without the
generalizing assumptions that were made in this report, however, this report has proved
that the rocket will survive under the specified conditions.

CONCLUSIONS

This report has successfully analyzed a rocket’s structural integrity while undergoing
thrust vectoring using the 3D Euler-Bernoulli beam theory under simplifying conditions.
By finding the axial and transverse displacements, the stresses in each layer of the rocket
casing were calculated and analyzed at the x,location of maximum axial stress. The
composite rocket casing was found to survive the flight condition with a large margin of
safety, however, a more in-depth study should be completed before this casing design is
approved for flight.
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APPENDICES

Appendix A. MATLAB Code

%% Project 2
$Emre Mengi and Zachary Price

cle; clear agll: close all; % housekeeping
f$Part 1

W 1.825 * 10"5; 3N/m

L = 46; Imeters

T = 1578 * §,.805 * 10*3; %Newtons

theta = asin( (W*L)/ (2*T)):

theta_deg = 180 * theta £ pi;

%% Part 2

t c = 0.12; %casing thickness [m]

t_layer = t_c / 8; %single layer thickness

E p=4.86 * 10 *6; %propellant elastic modulus in Pa
k = 10"8; %spring constant in N/m

D o= 3.71; %fouter diameter [m]

g = 9.805; %gravitational acceleration [m/s"2]

d p = 1750; %HTPE propellant density [kg/m"3]

d o= 0.055 * 1/2.205 * ([39.37)"3; %casing density [kg/m"3]
Ap=pife * (Do - 2% _c)"2;

BAc=pife * (0D o*2 - (Do - 2% c)*2):

P2 =041 =g *r{dp*pift* {0 o 2% c}2 +do *pift * (D o2 - (Do 2% -cy*2))s
N 1l=-1%*T* cos(theta):

E 11 = {21.5*10"6) *&B95; %Pa

E 22 = {1.46*10"6)*€895; %Pa

nu 12 = 0.3;

G 12 = (0.81 * 10"6) * &BY5; IPa

nu 21 = (E_ 22 / E_11) * nu 12;

% finding E
0= [E_11/{1-pu 12*pm 21}, E 11*om 21/({l-nu 12*pu 21}, 0;E 22*nu 12/(1-nu 12*nu 21}, E 22/(1-nu 12*pu 21), 0:0, 0, G _12]:
E=1[100;010;00 2]:
% calculating T
% 0 degrees
beta 0 = 0;
T 0 = [(cosd(beta_0))"2 (sind(beta_0))"2 2*sind(beta_0) *cosd (beta_0);
(sind(beta_0))"2 (cosd(beta 0))}"2 -2*sind(beta_0) *cosd(beta_0);
-1*sind(beta 0)*cosd(beta 0) sind(beta 0)*cosd(beta 0) ((cosd({beta_0))"2)-((sind(beta_0))"2)1;:
Q0b=inv(T 0)*Q*R*T_O*inv(R):
5 0b=inv(Q 0 b);
E0=1/5 0 b{l,1);
% 90 degrees
beta_ 90 = 80;
T %0 = [(cosd(beta_9%0))"2 (sind(beta_90))"2 2*sind(beta_ 90)*cosd(beta_ %50);
(sind(beta_ 90))"2 (cosd(beta_9%0))"2 -2*%*sind(beta_ 90) *cosd(beta_%0);
—1*zind(beta_ 90) *cosd(beta_9%0) sind(beta_90)*cosd(beta_9%0) ((cosd(beta_B80))"2)-((sind(beta_%0))"2)1;:
Q %0 b = inv(T_9%0)*Q*R*T_%90*inv (R);
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5 90 b = inv(Q_90_b):
E 80 = 1/5 90 b{l1,1):
% 45 degrees
beta_ 45 = 45;
T 45 = [(cosd(beta_43))"2 (sind(beta 45))"2 2*sind(beta_45)*cosd(beta 45);
(sind(beta_435))"2 (cosdibeta 45))"2 -2%*sind(beta_45) *cosd(beta 45);
—l*szind(beta_45) *cosd(beta_45) sind(beta_45) *cosd(beta_45) ((cosdlketa_45))"2)-((sind(beta_45))"2)]:
Q 45 b = inv(T_45) *Q*R*T_45%inv (R):
S 45 b = inv(Q 45 b):
E 45 = 1/5_45 b(l,1);
% -4%5 degrees
beta_mﬂs = —-45;
T m45 = [(cosd(beta md45))}"2 (sind(beta m45))"2 2*sind(beta_m4S5) *cosd(beta_m45) 2
(sind(beta_m45))} "2 (cosd(beta m45))"2 -2Z*zind(beta_m4S) *cosd(beta_m45);
—l*zind(beta_m45) *cosd(beta_m45) sind(beta m45) *cosd(beta _mé45) ((cosd(bsta m45))"2)-((sind(beta_m45))"2)];
Q m45 b = inv(T_m45) *Q*R*T_m45*inv (R) ;
5 m45 b = inv(Q me5 b):
E m45 = 1/5 m45 b(l,1);:

E lam = [E O,E 45,E m45,E %,E %0,E m45,E 45,E 0]; %youngs moduli for the casing sections
% calculating 5

B 0o =pi/¢ * ((Do - 0% c)*2 - (Do - 1/4%C_c)~2):

B 45 o =pif4 * ((D o - 1/4*t c)*2 - (D o - 2/4%t _c)}"2);
L ma5 o = pif4 * ((D o - 2/4%t c)*2 - (D o - 3/4%t c)"2);
3 90 o=pif4 * ((D o - 3/4%t c)*2 - (D o - 4/4%t_c)"2);
B 90 i =pif4 * ((D o - 4/4%t c)*2 - (D o - 5/4%t _c)"2);
D ma5 i = pif4 * ((D o - 5/4%*t c)*2 - (D o - &/4%t c)"2);
B 45 i = pif4 * ((D_o - &/2*t_c)*2 - (D_o - T/4*t_c)}"2);
2 0i=pi/e * ((D o - T/4*t_c)~2 - (D o - 8/4%t_c)~2);

A lam = [A 0 o;A 45 o;A m45 0;R 90 osA 90 i;A m45 i:R 45 i;A 0 i]:; %areas of the casing sections

%% calculating ul

5 lam = E lam * A lam;

x 1 = linspace (0,L, 1000} ;

ul x = (T .* cos(theta) «f 5 lam) .* (L - = 1};
figure (1)
plot(x 1, ul x)
ylabel('u 1 / u
title('Displacement u 1l/u 2 along the Rocket')

xlabel('x 1 [m]'

[ S5

[m] "'}

grid on
hold on

%% H33 Calculations

D lam = Z*linspace(l.735, 1.855, 9);

sum t = 0;

for i=l:length(E_lam)
sum = E lam({i)* (D lam{i+l)"4-D lam(i)"4):
sum t = sum t + sum;

end

h33 = sum t * pi / 64:
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%% calomlating n2

u2z x = (P_2 ./ (24 .* h33)).*x 1.4 + (T .* sin(theta) ./ (6 .* h33)).*x 1.3 + ...
(-1.* P2 ./ (6 .* h33) .* L.»3 - (T .* sin(theta) .* L2 ./ (2 .* h33))).*x 1 +
(B2 .%* L."4 / (8 .* h33)} + (T .* sin(theta} .* L.*3 ./ (3 .* h33}) + ((F.2 .* L ./ k) + (T

plot(x 1, u2 x)
legend('u 1','u 2')
hold off

%% calculating M3

m3 x =P 2 o 2 X x 1.72 + T .* sin(theta} .* x 1:
figure(2)

plot{x 1, m3 x)

xlabel('zx 1 [m]')

ylabel ('M 3 [Hm]'}

title ('Moment M 3 along the Rocket')

grid on

%% critical x1 position (5)

[m3 max, i] = max(m3 x);
x cr=x 1{i):

%% axial stress distribution (6)

% propellant axial stress dus to axial load
eps 1 = -1 * T * cos(theta) / S lam:
sig p ax = eps_1 * E p;

% bending stress

dummy 3 = D lam(l) ./ 2 .* m3 max ./ h33:
sig p bend = -1 .* E p .* dummy 3;

gig p u = sig p ax + sig p bend;
sig p 1 = sig p ax - sig p bend;

%axial stress due to axial load
|for i=l:length(E lam)

sig ax(i) = eps 1 .* E lam(i);
‘end

%bending stress

dummy 1 = D lam(2:8) ./ 2 .* m3 max ./ h33;
sig bend u = -1 .* E lam .* dummy 1;

X 2 u=0D lam(2:9)/2;

gig t u = sig bkend u + =sig_ax;

figure (3}

hold on

stairs(sig t u, x 2 u,'b'"}

stairs(sig t 1, x 2 1, 'b')

plot([sig p w, sig p u, sig t u(l}], [0,D lam(l)/2,x 2 u(l}l, 'kB")
plot([sig p 1, =ig p 1, sig t 1(8)}], [0,-D lam(l)/2,x 2 1(8)]1, 'k"}
xlabel('\sigma {axial} [Pa]')

vlabel('x 2 [m]'})

title{'Stress Distribution in the Cross-section at x_icr;t:cal}'}

grid omn
hold off
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.* sin(theta)

k)



figure (4)

hold on

stairs(sig t u, x 2 u,'k")
stairs(sig t 1, = 2 1, 'b'"}
viim([1.74 2])

x1lim({[-2*10"8 0])
xlabelt'hsigma_{axial} [Pa]')
ylabel({'zx 2 [m]")

title ('Top Stress Distribution in the Cross-section at x_{critical}')
grid on

hold off

figure (5)

hold on

stairs(sig t u, X 2 u,'k")
stairs(sig t 1, x 2 1, 'B")
yliim([-2 -1.74]})

X1im ([0 inf])

xlabel ('\sigma {axial} ([Fa]')
ylabel('x 2 [m]"})
title('Bottom Stress Distribution in the Cross-section at x {criticall')
grid on

hold off

%% =section 7

adj_sig u = sig t u .* 1.25 .* 1.15;
adj sig 1 = sig t 1 .* 1.25 .* 1.15;
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