GEARBOX

Design Requirements

- Where is comp? Tucson AZ
 - \circ Sandy, flat
- Main Goals:
 - Rock Crawl
 - Endurance Race

Gear Ratio Calculations (High)

 $F_{DRIVING} = F_{DRAG} + F_{RR}$

$$F_{DRIVING} = (\frac{1}{2})^* \rho^* A_{frontal}^* C_D^* (V_{max})^2 + C_{RR}^* W_{car}$$

$$\mathsf{P}_{\mathsf{DRIVING}} = (\frac{1}{2})^* \rho^* \mathsf{A}_{\mathsf{frontal}} ^* \mathsf{C}_{\mathsf{D}} ^* (\mathsf{V}_{\mathsf{max}})^3 + \mathsf{C}_{\mathsf{RR}} ^* \mathsf{W}_{\mathsf{car}} ^* \mathsf{V}_{\mathsf{max}}$$

 $V_{max} = ?$

Gear Ratio Calculations(High)			Constants	Values(subject to	
				13 47	
			J/	rho-air(slug/ft^3)	0.00234
	For $ax^3+bx^2+cx+d = 0$			Cd	1.28
	(Hi-Gear)			Crr	0.06
				P_max(lb-ft/s)	3891.5624
	а	0.020172672		W_car(lbs)	593
	b	0		DRIVETRAIN SPECS	
	с	35.58		Horsepower	10
	d	-3891.5624		Engine Torque (Ib-ft)	14
Use an equation solver for the para V_max(mph)		ameters above		Gearbox Input Shaft	
		32.54		Torque(lb-ft)	54.6
				CVT Ratio(Low)	3.9
GR	$= (N *2\pi *R *36)$	00) / (60*5280*0	R *V)	CVT Efficiency	0.8
gearbo	x (Tengine Thire Co		CVT(high) max	Max RPM	3800
				R_tire	0.83
	High Gear			Drivetrain efficiency	
	Ratio(Total)	6.95		n_belt	0.8
CVT High Ratio		0.91		n_gear	0.97
	Gearbox High Ratio 7.63			n_axle	0.94
	(To achieve V_max)				0.71

Gear Ratio Calculations (Low)

$$F_{DRIVING} = F_{RR} + W^* sin(45^\circ)$$

 $F_{DRIVING} = C_{RR}^*W^*\cos(45^\circ) + W^*\sin(45^\circ)$

 $\boldsymbol{\tau}_{out} = \boldsymbol{F}_{DRIVING} * \boldsymbol{R}_{tire}$

$$GR_{gearbox} = \tau_{out} / (\tau_{engine} * GR_{CVT(low)} * n_{drivetrain})$$

	degrees	radians
Slope Angle	45	0.7854
F_driving		444.47
T_out		370.39
Gearbox Low Ratio	>	9.59
(To start going forward on incline)		

Gear Ratio Summary

 10:1 is ideal for being able to roll forward on 45° incline and still have a moderate top speed for long straights.

Gear Ratio (Gearbox)	10
Top speed (mph)	24.85
Max torque (lb - ft)	546

Gear Specs

Forward Gear	-Grade 1 Flame Hardened Steel W/Hb=400		
Gear	<u># of teeth</u>	<u>Pitch</u>	
1	24 1.5		16
2	80 5		16
3	32 2		16
4	96 6		16
1-2 Ratio	3.333333333		
3-4 Ratio	3		
Forward Final	10		

		Gear	Pinion
		GEAR 2	GEAR 1
# of Teeth	N	80	24
Tooth Bending Factor of Safety	Sf	4.17	1.43
Wear Factor of Safety	Sh	4.40	1.54

		Gear	Pinion	
		GEAR 4	GEAR 3	
# of Teeth	N	96	32	
Tooth Bending Factor of Safety	Sf	4.74	1.79	
Wear Factor of Safety	Sh	5.08	1.96	

Shaft Analysis (Calculations)

Through analysis of shear and torsional loads applied on each shaft, we were able to determine the dimensions necessary to meet our required outputs without high risk mechanical failure.

Output Shaft Loads:

Load	Force Experienced (lb)
Gear 4	2324.164
Bearing 5	-1067.4756
Bearing 6	-1256.68

Input Shaft Loads:

Load	Force Experienced (Ib)
Gear 1	-929.66
сут	174.72
Bearing 1	167.76
Bearing 2	587.18

Counter Shaft Loads:

Load	Force Experienced (Ib)
Gear 2	929.66
Gear 3	-2324.164
Bearing 3	116.04
Bearing 4	1278.45

Shaft Analysis (cont.)

$$\sigma_{shear} = \frac{F}{A} = \frac{4V_{shear}}{\pi d^2}$$
 $\sigma_{bending} = \frac{Mr}{I} = \frac{Md}{2I}$

Shaft Dimensions

	Input Shaft	Counter Shaft	Output Shaft
Length (in)	10.312	4.12	12.25
Min. Diameter (in)	0.75	1.25	1.75
Torsional Force (Ib-in)	1352.449	4648.328	6972.49
Max Torsional Stress (Psi)	16327.03	14545.14	6625.887

*Material Chosen for all Shafts: 4140 Normalized Steel

Factor of Safety and Equivalent Stress

FOS = (Yield Strength)/(von Mises Stress)

$$\sigma_1 = \sigma_{\text{avg}} + \operatorname{sqrt}(\mathsf{T}^2 + \frac{1}{2}*(\sigma_x - \sigma_y)^2)$$

$$\sigma_2 = \sigma_{\text{avg}} - \operatorname{sqrt}(\mathsf{T}^2 + \frac{1}{2}*(\sigma_x - \sigma_y)^2)$$

Principal Plane Stress Equation:

 $\sigma_{\rm vm} = \operatorname{sqrt}(\sigma_1^2 + \sigma_1 \sigma_2 + \sigma_2^2)$

(4140 Normalized Steel Tensile Strength = 95000 psi)

	Input	Counter	Output
Min. Factor of Safety	2.07	3.63	7.94

Shaft Life

	Input Shaft	Counter Shaft	Output Shaft
N (# of cycles)	19,421,626.19	26,885,549.84	1.84676E+19

Figure 6-10

An *S-N* diagram plotted from the results of completely reversed axial fatigue tests. Material: UNS G41300 steel, normalized; $S_{ut} = 116$ kpsi; maximum $S_{ut} = 125$ kpsi. (*Data from NACA Tech. Note 3866, December 1966.*)

(N > 10⁷ implies infinite life for steel)

Bearings

Determine minimum Basic Load Rating of bearings based off of Desired Life. Choose bearings given dimensions of shafts and Load Rating from Bearing spec sheet.

$$C = F^*L^{1/a}$$
 $L = (H)(60 min/hr)(V)$

C: Basic Load Rating (Load which 90% of bearings from given population will survive 1,000,000 revolutions

F: Radial Load on Bearings

L: Desired Life (Millions of revolutions)

a: 3 (ball bearings) or 10/3 (Roller Bearings)

L: Desired Life (Millions of revolutions)

H: Desired number of hours

V: RPM of Bearing [Dependant on Shaft RPM]

*Shaft RPM dictated by gear reduction

Input Shaft Bearings

- Ball Bearings (minimal axial load)
- Inner Diameter: ³/₄ inches
- Minimum Load Capacity Rating : 1170 lbs
- Catalog Load Capacity Rating: 2950 lbs

Bearing Number	Boundary dimensions(Inches)			
TBBS	a	в	с	
1638	3/4	2	9/16	

a

Countershaft Bearings

- Ball Bearings (no axial load)
- Inner Diameter: 1-1/4 inches
- Minimum Load Capacity Rating : 1788 lbs
- Catalog Load Capacity Rating: 3850 lbs

Bearing Number	Boundary dimensions(Inches)			
TBBS	a	в	с	
1654	1-1/4	2-1/2	5/8	

Output Shaft Bearings

- Tapered Roller Bearings [worst case scenario]
- Inner Diameter: 1-³/₄ inches
- Minimum Radial Load Capacity:
 - 1222 lbs radial, minimal due to axle (axial)
- Catalog Radial Load Capacity Rating:
 - 4850 lbs (radial), 2800 lbs (axial)

CONE/CUP NO	CONE I.D.	A	В
25580/25520	1-3/4"	3.26	0.937

Future Testing

- Validation of maximum speed and maximum torque