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Abstract 

Dynamic stability is an important parameter for defining the overall stability of an aircraft. In this 

experiment, a prototype of the Learjet C-21 was tested at sea level to analyze the longitudinal 

dynamic stability of the aircraft. The data obtained was used to evaluate certain dynamic stability 

characteristics such as model characteristics, time responses, reduced order analysis, and handling 

qualities investigation. After evaluation, these parameters proved this aircraft to be dynamically 

stable where the unit step or unit impulse input applied to the aircraft results in a dampened 

oscillation response of the aircraft. These results indicate that the transient motion of the aircraft 

leads to a stable steady state output. 

 

 

 

 

 

 

 

 

 

 



2 
 

Introduction 

  Dynamic stability is an important aspect of the aircraft design process as it is essential for 

the control and maneuverability of the aircraft. Aircraft dynamic stability is the transient motion 

that is included in the process of recovering from perturbed conditions. The system is said to be 

dynamically stable when the oscillation of aircraft motion dampens out over time, where the 

system is dynamically unstable when the oscillation gets worse over time. Another case is that the 

aircraft has neutral dynamic stability when the aircraft has oscillations that never dampen out. 

The prerequisite for dynamic stability is the static stability of the system. Static stability 

determines the aircraft response to the perturbations to the trimmed condition of the aircraft, which 

the aircraft is said to have positive static stability when the aircraft returns to the trimmed 

condition, while it is said to have negative static stability when the aircraft diverges from its initial 

equilibrium position. Although all dynamically stable systems are statically stable, not all statically 

stable systems are dynamically stable. Therefore, in this experiment, the Learjet C-21 aircraft is 

assumed to be statically stable in order to analyze its dynamic stability. As there are different types 

of static stability including longitudinal, lateral, and directional static stability, the same principle 

applies to dynamic stability. 

In order to understand the procedures undertaken, some mathematical concepts might be 

useful in order to perform the dynamic stability analysis. As the aircraft response can be modeled 

as a second order system, the important parameters are the time constant, natural frequency, 

damping ratio, and damped frequency. Time constant (t) is defined as the lag associated with the 

observed rise to the steady-state value, as it is important for evaluating the aircraft response 

properties. When the time constant is smaller, it means that the aircraft responds faster to the input 

provided. The natural frequency (ωn) represents the system frequency which it would oscillate in 
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the absence of damping. It should be noted that this is not the frequency which the system 

oscillates, but it is the highest frequency that is capable of oscillating. The actual oscillation 

frequency of the system is called the damped frequency (ωd). The damping ratio of the system (ξ) 

is the indication of the system’s stability. This value is between -1 and 1 for underdamped systems 

whereas it is between 0 and 1 for stable systems. These values can be used to represent the roots 

of the time response of the aircraft where: 

𝑃 = 𝑎 + 𝑏𝑖	, 𝑎 = 	−𝜉𝜔,	, 𝑏 = 	𝜔,-1 − 𝜉/ 

The roots, a and b, can be represented on the real and imaginary plane which one can see 

the damping and oscillation of the time response: 

Figure 1. Time response of a second-order system for different roots.[1] 
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This chart is useful to determine the dynamic stability and damped frequency of the system 

as a negative a value indicates a dynamically stable system whereas a positive a value means that 

the system is unstable. When a is equal to zero, the system oscillates indefinitely. 

Transfer functions are used to determine the aircraft response by implementing Laplace 

transform in the process. Transfer function is the ratio of the Laplace transformation of the output 

to the Laplace transformation of the input. The input and output can be any aircraft response 

parameter such as roll angle response, aileron deflection angle, etc. An important parameter 

obtained from the transfer function is the characteristic equation, which is the denominator of the 

transfer function. The roots of this characteristic equation define the dynamic characteristic of the 

system such as the time constant (first-order), damping ratio and the natural frequency of the 

(second-order) aircraft response. 

To analyze the longitudinal dynamic stability, the longitudinal linearized equations of 

motion in Laplace form are used. These equations are converted into transfer functions where one 

can find the characteristic equations. Different transfer functions in this set have the same 

characteristic equation for the dynamic characteristics of the aircraft. For longitudinal dynamic 

stability, the aircraft is said to have two dynamic modes which are called short period mode and 

phugoid mode. These are different characteristic equations that show the respective dynamic 

characteristics of the mode. These two modes vary where the short period mode has a greater 

damping ratio and natural frequency than the phugoid mode.  

The longitudinal linearized equations of motion can be approximated to two degrees of 

freedom where the time response of u is almost constant. This allows the equations to be reduced 

where it is easier to find the roots of the characteristic equation, which the process is called 

Reduced Order Analysis. 
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After obtaining the parameters required to analyze the dynamic stability of the aircraft, one 

can assess the handling qualities of the aircraft. This can be done using the dynamic stability 

guidelines that are set as a military specification called MIL-F-8785C. This specification is no 

longer required for military aircraft, but it is a good indication of an aircraft’s handling and flying 

qualities. These guidelines include the aircraft class, flight category, and the flying quality levels, 

which the MIL-F-8785C Flying Quality Levels can be seen below: 

 
Figure 2. MIL-F-8785C Flying Quality Levels.[1] 
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Results 

 After the initial test of the prototype at the sea level, following parameters were measured: 

Table 1. Aircraft parameters and stability derivatives. 

 

Using this data, longitudinal linearized equations of motion can be written in the following form: 

 
Figure 3. Longitudinal linearized EOM in matrix form.[1] 

 

where u(s)/δe(s), α(s)/ δe(s), θ(s)/ δe(s), are the transfer functions of the EOMs. This set of equations 

can be solved using a computer program such as MATLAB. The solutions are as follows: 
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u(s)/δe(s): 

 

α(s)/ δe(s): 

 

θ(s)/ δe(s): 

 

These transfer function now can be used to analyze the dynamic stability of the aircraft, including 

model characteristics, time responses, reduced order analysis, and handling qualities investigation. 
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Discussion 

Model Characteristics 

All three transfer functions found in the results indicate the same characteristic equations, which 

are: 

𝐶1 = (𝑠/ + 0.03449𝑠 + 0.05567) and  𝐶/ = (𝑠/ + 1.752𝑠 + 2.447) 

From the characteristic equations, one can determine the different natural frequencies and damping 

ratios of the system: 

𝜔,> = 0.2359 

𝜉1 = 0.0731 

𝜔,? = 1.5642 

𝜉/ = 0.5600 

Also, the roots of these equations provide useful information about the dynamic modes of the 

aircraft, which are calculated: 

𝑟1 = −0.0172 ± 0.2353𝑖 

𝑟/ = −0.8760 ± 1.2959𝑖 

The roots are in the real-imaginary plane where both real and imaginary parts are nonzero. The 

real part is negative meaning that this system appears to be dynamically stable. In addition, the 

nonzero imaginary part indicates that the aircraft response has oscillations. 
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The aircraft response has two longitudinal dynamic modes as it can be seen by the two 

characteristic equations the transfer function has. Each characteristic equation points out to a 

different mode that were discussed earlier, short period mode and phugoid mode. The short period 

mode has a higher natural frequency so the characteristic equation 1 (C1) can be identified as the 

short period mode while the characteristic equation 2 (C2) can be identified as the phugoid mode. 

So, the natural frequency and damping ratio of the short period mode is as follows: 

𝜔,CD = 1.5642 

𝜉EF = 0.5600 

Similarly, the natural frequency and damping ratio of the phugoid mode is as follows: 

𝜔,DG = 0.2359 

𝜉FH = 0.0731 

Time Responses 

The time responses for u, α, and θ can be plotted using the built-in MATLAB functions step() and 

impulse() and the previously obtained transfer functions. This way the aircraft response to unit 

impulse and unit step inputs can be seen. 
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The time response for u is as follows: 

 
Figure 4. Time response for u. 

 

The time response for α is as follows: 

 
Figure 4. Time response for α. 
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The time response for θ is as follows: 

 

Figure 5. Time response for θ. 

 

Looking at the six figures above, it appears that the aircraft response to unit step and unit impulse 

inputs is stable, as the oscillation dampens out over time. 

Reduced Order Analysis 

The longitudinal linearized EOMs can be reduced to two-degrees-of-freedom by approximating 

the short period response in u to be nearly constant. This way, the characteristic equation of the 

transfer function reduces to the following form: 
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This transfer function is calculated for the Learjet aircraft, which then found out to be the equation 

below: 

𝐶IJ = (𝑠/ + 1.728𝑠 + 2.436) 

Then, the roots of the above characteristic equation for the reduced order analysis are found: 

𝑟IJ = −0.8638 ± 1.2998𝑖 

In addition to the roots of the characteristic equation, one can also calculate the natural frequency 

and the damping ratio of the short period: 

𝜔,KL = 1.5607 

𝜉IJ = 0.5535 

Looking at these values, it can be said that the reduced order approximation is accurate. Using the 

reduced order analysis, the error in the natural frequency of the short period is 0.22% while the 

error in the damping ratio of the short period is 1.16%. The time responses for unit impulse input 

can be modeled using the two different sets of natural frequency and damping ratio values: 
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Figure 6. Time response for unit impulse input for short period, using the standard analysis and the reduced order 
analysis. 

 

Handling Qualities Investigation 

Based on the calculated values of the damping ratios for short period mode (𝜉EF) and phugoid 

mode (𝜉FH), the aircraft handling qualities can be assessed for different flight conditions. In this 

report, the flight condition Category B is evaluated.  

Table 2. (a) Short period damping ratio (𝜉EF) limits for Category B Flight Phases. (b) Phugoid damping ratio (𝜉FH) 
requirements. 

                                          
(a)                                                                                                  (b) 
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Based on the tables above, the Learjet aircraft has a handling quality of Level 1 as the short period 

damping ratio is between 0.30 and 2.00 and the phugoid damping ratio is greater than 0.04. The 

handling quality (Level 1) of the aircraft shows that the aircraft  flying qualities is adequate for the 

mission flight phase.  

 The aircraft, Learjet C-21, was found out to be dynamically stable while having a handling 

quality of Level 1, meaning that the aircraft is suitable for a Category B Flight Phase. If the aircraft 

was found out to be dynamically unstable in one of its modes, short period mode or phugoid mode, 

one can improve the dynamic stability characteristics of the aircraft by redesigning some aspects 

of the aircraft. 

  

Figure 7. Short Period two-degrees-of-freedom approximation[1]. 

 

Looking at these short period approximations, one can improve the dynamic stability by tweaking 

the natural frequency and the damping ratio accordingly, which can individually be adjusted by 

the stability derivatives and aircraft parameters that are related to these elements. 

Conclusion 

 Main goal of the prototype testing of Learjet C-21 was to analyze the dynamic stability of 

the aircraft. The main focus was on the model characteristics, time responses, reduced order 

analysis, and the handling qualities of the aircraft. In order to calculate these parameters, the 

Learjet C-21 prototype was tested at sea level and data was obtained. The data obtained included 

the aircraft parameters and the stability derivatives. 
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 Using the data, transfer functions were created in order to plot the time response of the 

aircraft for different types of longitudinal motion, as well as to obtain the natural frequency and 

the damping ratio of the system for different dynamic modes. The damping ratio of the system was 

between 0 and 1, which meant that the system was stable. In addition to that, the time response 

also showed that the aircraft response showed a dampening oscillation occurring after the 

perturbation of the aircraft.  Overall, this aircraft can be considered to be longitudinally 

dynamically stable. 
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