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Abstract Phase field modeling of fracture has been
in the focus of research for over a decade now. The
field has gained attention properly due to its benefiting
features for the numerical simulations even for com-
plex crack problems. The frameworkwas so far applied
to quasi static and dynamic fracture for brittle as well
as for ductile materials with isotropic and also with
anisotropic fracture resistance. However, fracture due
to cyclic mechanical fatigue, which is a very impor-
tant phenomenon regarding a safe, durable and also
economical design of structures, is considered only
recently in terms of phase field modeling.While in first
phase field models the material’s fracture toughness
becomes degraded to simulate fatigue crack growth, we
present an alternative method within this work, where
the driving force for the fatigue mechanism increases
due to cyclic loading. This new contribution is gov-
erned by the evolution of fatigue damage, which can
be approximated by a linear law, namely the Miner’s
rule, for damage accumulation. The proposed model is
able to predict nucleation as well as growth of a fatigue
crack. Furthermore, by an assessment of crack growth
rates obtained from several numerical simulations by
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a conventional approach for the description of fatigue
crack growth, it is shown that the presented model is
able to predict realistic behavior.
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1 Introduction

The field of cyclic mechanical fatigue is one of the
most important branches of post and current research
in engineering. Catastrophic failures of different types
of technical structures like trains, airplanes, bridges,
turbine rotors, pressure vessels and others, occurred
as consequence of the fatigue of materials. Accord-
ingly, this phenomenon must be kept in the focus of
present studies. From a material science perspective,
the fatigue mechanism principles are mostly under-
stood and explained in several textbooks by e.g. Dowl-
ing (2013), Schijve (2009), Haibach (2006). The total
fatigue life of a structure is generally divided into two
phases. The crack nucleation phase describes the period
in which a microcrack is initiated as a consequence
of irreversible cyclic slip in grains with proper orien-
tation and the growth of this microcrack to an order
where it is visible with the naked eye or at least by uti-
lizing a low rate magnifying glass. The second period
contains the propagation of the macrocrack until final
failure. For both of these periods different phenomeno-
logical prediction frameworks exist. The total life time
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approach is mainly based on so-called Wöhler curves
or S-N curves, respectively. These curves assign a cer-
tain number of bearable load cycles to a certain load
amplitude. The particular cycle numbers may serve as
input for damage accumulation laws, where the lin-
ear accumulation hypothesis referred to as the Miner
rule (Miner 1945) is widely applied. The most pop-
ular method to describe macrocrack growth is Paris’
law (Paris and Erdogan 1963). Within this method the
cyclic crack growth rate da/dN is described as a func-
tion of the cyclic stress intensity factor�K , which basi-
cally incorporates effects of external load, actual crack
length and geometry. It was found that, at least within
the region of sub critical crack extension, this function
plotted on a double logarithmic scale is a straight line.
Accordingly the crack growth rate is approximated by
a power law. Extensions of this law were proposed to
include effects like mean stress or stress ratio (see e.g.
Dowling 2013). Paris’ law is also the basis for the most
widely used numerical tool for fatigue crack growth
simulations namely NASGRO (Forman et al. 2005).

Essential studies attempt to model cyclic fatigue
failure using the framework of Continuum Damage
Mechanics (CDM), which was comprehensively out-
lined by Lemaitre (1992) to describe the evolution of a
damage variable, were presented by e.g.Marigo (1985)
or Chow and Wei (1991). However, within these mod-
els, the fatigue life is modeled only for the period until
crack nucleation. A numerical model for the simula-
tion of fatigue crack growth was introduced by Fish
and Oskay (2005). The damage evolution within this
work is modeled by the growth of the void volume
fraction, which is governed by extensions of Gurson’s
failure model. To obtain a crack or its sharp interfaces,
respectively, finite elements are deleted once a critical
void volume fraction is reached.

As an alternative to conventional crack growth simu-
lation techniques, phase field modeling for fracture has
gained attention within the past decade. This method
provides a very useful tool for the numerical simula-
tion of problems dealing with sharp interfaces, as it
does not require procedures for mesh disconnection,
element deletion, and re-meshing for an explicit mod-
eling of the interfaces. The phase at a certain location
is incorporated by introducing additional degrees of
freedom. In the context of fracture, the framework was
applied to dynamic fracture (see e.g. Schlüter et al.
2014), and quasi static brittle fracture in e.g. Kuhn
and Müller (2010); Borden et al. (2014); Miehe et al.

(2010). Extensions of thesemodel exist for ductile frac-
ture (e.g. Kuhn et al. 2016; Borden et al. 2016) and also
effects like anisotropic fracture resistance were stud-
ied by e.g. Teichtmeister et al. (2017), Schreiber et al.
(2017), Hakim and Karma (2009). Models for fatigue
damage were so far presented by Alessi et al. (2017)
and Seiler et al. (2018). In these models the phase field
is driven by degrading the energy release rate once a
damage parameter increases.

In this work, the fatigue mechanisms occurring in a
material are interpreted as additional driving force con-
tribution, contribution that originates from cyclically
accumulated deformation work. The formulation is an
extension of the model proposed by Kuhn and Müller
(2010) for brittle fracture and as a linear elastic mate-
rial model is considered within our work, the range of
validity in terms of the number of cycles to failure NF

may be restricted to high cycle fatigue, which covers
NF ≥ 1000 for many metallic materials. The driving
force for the phase field variable s(x, t) incorporates an
additional energy contribution accounting for fatigue
damage accumulation due to an increasing number of
load cycles.

2 Phase field model for fatigue fracture

2.1 The regularized model for brittle fracture

The core idea of a phase field fracture model is to intro-
duce an additional field variable to represent cracks.
A continuous transition of this field variable s(x, t)
within the interval [0, 1] approximates the crack faces.
The crack field is 1 as long as the material remains
undamaged and drops once fracturing occurs, where
the lower limit s = 0 represents cracks. The phase
field model from Kuhn andMüller (2010) uses the reg-
ularized formulation of a variational model for brit-
tle fracture (Bourdin et al. 2000). As an extension of
Griffith’s theory, which states that a crack propagates
once the energy release rate reaches a certain critical
value, it is postulated that the displacement field u and
the fracture field s locally minimize the total energy E
within a loaded body.

E(∇u, s, ∇s) =
∫

�

ψ(∇u, s, ∇s) dV

=
∫

�

[(g(s) + η)W (∇u) + �(s,∇s)] dV .

(1)
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In Eq. (1) W is the elastic strain energy density, which
is multiplied by a degradation function g(s) to account
for the stiffness reduction in cracked regions. The sur-
face energy density contribution � accounts for the
energy required for the formation of a crack surface.
The parameter η shall be chosen 0 < η � 1 to avoid
numerical problems within the static solution scheme.
The elastic strain energy density

W = 1

2
ε(u)TCε(u) (2)

can be formulated in terms of the infinitesimal strain
tensor

ε(u) = 1

2

(
∇u + (∇u)T

)
, (3)

where ∇u is the spacial gradient of the displacements.
In Eq. (2) the Voigt notation for symmetric tensors is
used for the linearized strain tensor ε and the stiffness
tensor C . The second energy contribution in Eq. (1) is
the fracture energy density

�(s,∇s) = Gc
(

(1 − s)2

4ε
+ ε|∇s|2

)
, (4)

which besides a local part, further consists of a non-
local part, characterized by the spacial gradient of s.
The two contributions are multiplied by the critical
energy release rate Gc. The length scale ε controls the
width of the transition zone between undamaged and
broken material. This crack surface contribution reg-
ularizes Griffith’s theory, which proposes the propor-
tionality of the fracture energy and the crack surface.
Assuming a hyperelastic material, the stresses can be
derived from the potential ψ by

σ = ∂ψ

∂ε
= (g(s) + η)Cε. (5)

Different types of degradation functions g(s) are pro-
posed in the literature (Bourdin et al. 2000; Kuhn et al.
2015; Borden et al. 2016). However, this function has
to fulfill several criteria as g(0) = 0, g(1) = 1 and
also g′(0) = 0. These requirements are satisfied by the
quadratic function

gb(s) = s2, (6)

which is used in the original regularized formulation
proposed by Bourdin et al. (2000). Discussions about
a quadratic and a cubic degradation function are given
in Kuhn et al. (2015). These functions were shown to
shift the stress level at which crack initiation occurs to
higher stresses and also to conserve the linear elastic
stress strain behavior until crack initiation. A mixed
formulation for the degradation function

gβ(s) = β(s3 − s2) + 3s2 − 2s3 (7)

was proposed by Borden et al. (2016). Notice, that for
β = 2, gβ becomes gb and for β → 0, gβ becomes the
cubic degradation function introduced by Kuhn et al.
(2015). Accordingly, the model behavior is effected by
varying the parameter β.

A generalized Ginzburg-Landau equation (Gurtin
1996) is used to obtain the time evolution of the phase
field s via

ṡ = −M

{
∂ψ

∂s
− ∇ ·

(
∂ψ

∂∇s

)}
︸ ︷︷ ︸

δψ/δs

= −M

2

{
g′(s)εTCε − Gc

(
4ε�s + 1 − s

ε

)} (8)

where � is the Laplace operator. The scalar mobility
parameter M in Eq. (8) acts as a viscous control param-
eter to approach the stationary limit, which is specified
by δψ

δs = 0. The limit case M → ∞ approximates
quasi static conditions.

2.2 Phase field formulation for cyclic fatigue

To provide a correct understanding of the model
described in the following, it is important to comment
on the interpretation of the phase field variable s. In
particular the transition zone between the two phases
broken and intact (0 < s < 1) requires special consid-
eration. A possible interpretation is to connect s to the
fraction of micro voids within a representative volume
element, as it was proposed byVoyiadjis andMozaffari
(2013). Here, s is brought in direct connection with the
damage variable from the CDM framework (Lemaitre
1992). On the other hand, the phase field variable in
Bourdin’s original model (Bourdin et al. 2000) did not
have a physical interpretation at all, but the scalar phase
field s was rather incorporated in the energy formula-
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tion of a fractured body to enable a regularization of the
crack energy. According to this explanation, the mean-
ing of s results from the phase field philosophy itself,
which is to approximate sharp interfaces by a smooth
transition of an order parameter for numerical reasons.
In the phase field model presented within this work,
we follow this second interpretation. The term damage
refers to fatigue damage, which will be applied to drive
the phase field, but it is not explicitly connected to it.
Specifically, s is driven by a proper estimate for the
fatigue damage increment dDf occurring in the mate-
rial within a certain cycle interval.

2.2.1 Phase field fracture model for fatigue failure

As explained in Sect. 2.1, a sequence of local mini-
mizers of the total internal energy, depending on dis-
placement and fracture fields, has to be found in order
to obtain the correct crack pattern, or in other words
information for crack initiation, kinking or branch-
ing, respectively. Suppose a sample is exposed to a
monotonically increasing load. In that case the solu-
tion reveals an evolution of the crack field, since at
some point the surface part of Eq. (1) will increase
as it becomes energetically more favorable to form a
crack, which means to decrease s, than to allow for
more strain energy. Within the regime of cyclic fatigue
the load maximums are rather small to very small com-
pared to quasi static fracture loads. Presuming such a
small load and a constant Gc, the solution will not yield
a decline of s in case of the classical model (Kuhn and
Müller 2010), as energy consumed by irreversible pro-
cesses associated with an increasing state of fatigue
is not taken into account. Accordingly, crack growth
would be too costly with respect to the total internal
energy. A modification of the total energy formulation
has been proposed by Alessi et al. (2017) in order to
enable crack growth driven by cyclic fatigue. Themod-
ification basically applies to the crack energy

∫
�

� dV ,
where the fracture resistance Gc is degraded by a func-
tion of a plastic strain variable, which is accumulated
over an increasing number of load cycles.

Within this work we present an alternative approach
for a regularized formulation of the total energy

E f(∇u, s,∇s, Df) = E + Eac

=
∫

�

[(g(s) + η)W + �] dV +
∫

�

h(s)P(Df) dV,

(9)

where an additional energy density contribution P is
introduced to account for the sum of additional driv-
ing forces associated with the mechanism of cyclic
mechanical fatigue. The function h(s) degrades P in
a similar way as W is degraded by g(s) once a crack
propagates. The energy contribution Eac is governed
by a piece-wise defined function

P(Df) =
{
0 for Df < Dfc

q(Df − Dfc)
b for Df ≥ Dfc,

(10)

with the threshold value Dfc. According to this defini-
tion the amount of additional energy to enter Eq. (9)
remains zero until a certain critical value Dfc of
the accumulated damage Df is reached and increases
rapidly (governed by the model parameters q and b)
after this limit is exceeded. The actual accumulated
fatigue damage is in general described as

Df = D0 + dDf(σa, σ̄ , R, ε̇, D0), (11)

which is the sum of the previous damage state D0 and
the damage increment dDf as a function of the ampli-
tude σa , the mean value of the stress σ̄ , the load ratio R,
the stain rate ε̇, and the damage history or the previous
damage state, respectively.Themain task in this context
is to find an accurate formula for the increment dDf.
Equation (11) indicates that, generally, several effects
have to be considered for an estimate of the damage
increment. However, the choice has to be made also
in consideration of computational effort, which a cer-
tain model may cause. Straightforward approaches for
the fatigue lifetime estimation of a component, which
are commonly used and were also incorporated within
approaches for numerical fatigue estimations (see e.g.
Bograd et al. 2008) are Miner’s rule (Miner 1945) and
the fatigue damage model proposed by Chaboche and
Lesne (1988). The main difference between these two
approaches is that Miner’s rule does not consider the
effect of the current state of damage D0 on the incre-
ment, which is formulated as

dDfi = 1

NFi
dN , (12)

with the number of bearable load cycles NFi and the
cycle increment dN . Considering Eq. (12) it becomes
clear that the damage accumulation is linear and
accordingly the influence of load sequence on the
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Fig. 1 Schematic illustration of a S-N line

fatigue life is not cough. Within this work we primar-
ily want to give a principal description of the proposed
modification of the phase field model. Hence, only the
Miner rule was so far incorporated for the evaluation
of the damage increment, as it provides an easy and
very stable way of implementation. However, it shall
be outlined at this point, that other approaches, as e.g.
the model for fatigue damage from Chaboche, could
also be incorporated within the presented framework.

The particular critical cycle number NFi can be
obtained by an appropriate S-N curve. These curves
(see Fig. 1) are plots, obtained within fatigue exper-
iments, of the stress magnitude for cyclic loading
depending on the corresponding number of bearable
load cycles NF . A straight line is obtained using a dou-
ble logarithmic scale.

With Eq. (12) and an appropriate S-N curve, the total
internal Energy E f of a component that may contain
cracks caused by quasi static or by cyclic loading is
then

E f =
∫

�

(g(s) + η)
1

2
εTCε dV

+
∫

�

Gc
(

(1 − s)2

4ε
+ ε|∇s|2

)
dV

+
∫

�

h(s)q

〈
D0 + dN

nD

(
σA

AD

)k

− Dc

〉b
dV,

(13)

with the driving force quantity σA, which is related
to a stress amplitude. This variable will be explained
within the next section. Other quantities introduced in
Eq. (13) are the fatigue limit AD/2, the knee point cycle
number nD and the slope factor k of the S-N curve. The

〈·〉n denote Macauley brackets with the definition

〈·〉n =
{
0 for (·) ≤ 0
(·)n for (·) > 0.

(14)

Considering the energy in Eq. (13) the stresses become

σ = (g(s) + η)Cε︸ ︷︷ ︸
σ e

+ h(s)qb〈Df − Dfc〉(b−1) ∂Df

∂ε︸ ︷︷ ︸
σ ac

.

(15)

The first term in Eq. (15) is the usual degraded stress
tensor and the second term may be considered an addi-
tional stress component accounting for accumulated
micro stresses as consequence of the fatigue mecha-
nism.

2.2.2 Cycle resolved simulation scheme

Depending on the magnitude of the load cycles, the
fatigue mechanism may require a very large number of
cycles before consequences on a macro level like crack
nucleation or extension can be observed. Accordingly,
an efficient scheme is required to integrate large num-
bers of cycleswith respect to a characteristic cycle num-
ber, otherwise simulation times cannot be kept within
a reasonable limit. Even for conventional fatigue life
approaches certain amounts of similar cycles are sum-
marized to blocks, where the connection of all these
blocks represents thewhole loadhistory called load col-
lective. Fish and Yu (2002) proposed a scheme called
“cycle jump”, where the damage at the end of a simula-
tion step including a certain number of cycles D(i+�Ni )

is calculated via

D(i+�Ni ) = Di + �Ni · �Di . (16)

The damage at the previous step is Di and the particular
�Di values are obtained by an explicit Euler method.
Within this simulation scheme the block size summa-
rizing several cycles, �Ni is chosen adaptive.
The time-cycle transfer scheme presented within this
work is quite similar. Suppose a constant block size or
number of cycles per time �N

�t , respectively, leads to a
certain evolution of damage. By utilizing Eq. (12), the
damage of the actual time is

Di = Di−1 + dDfMiner(�ti ). (17)
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The phase field evolution Eq. (8) can be transferred
to the cycle domain using the chain rule. Accordingly,
the evolution of the phase field can be reformulated in
terms of cycles

ds

dN
= − M̂

{
g′(s)1

2
εTCε + h′(s)P(Df)

−Gc
(
2ε�s − s − 1

2ε

)}
,

(18)

with M̂ denoted the mobility in the cycle domain.
The damage will be updated within every simulation
step according to the change caused by a chosen cycle
number. To ensure good convergence even for a rapid
increase of P , adaptive step size adjustment must be
implemented.

3 Numerical implementation

For the evaluation of the enhancement of this phase
field model for fatigue failure the quadratic degrada-
tion function from Eq. (6) is chosen for g(s) and h(s).
If volume forces are neglected within the mechanical
equilibrium and the modified evolution equation for
the phase field Eq. (18) is utilized, the governing set of
differential equations for the unknown displacements
u and the order parameter s is given by
[
∇· 0
0 1

M̂
d
dN + 2(W + P) + Gc

2ε − Gc2ε�

][
σ(u)

s

]
=

[
0
Gc
2ε

]
(19)

where ∇· is used as divergence operator. Multiplying
both equations with the respective virtual quantities δu
and δs and integration by parts, the particular weak
forms are obtained

0 = −
∫

�

σ T · δε dV +
∫

∂�t

δuT · t∗ dS (20)

with the prescribed traction vector t∗ on ∂�t and

0 = −
∫

�

δs M̂−1 ds

dN
dV

−
∫

�

δs

(
sεTCε + 2P(Df) + Gc s − 1

2ε

)
dV

−
∫

�

2Gcε∇sT∇δs dV,

(21)

where the homogeneous Neumann boundary condition
∇s · n = 0 at ∂� is used. The isoparametric concept
is used in order to obtain a discrete description of the
field quantities u and s bymeans of the shape functions
HI for the nodes I = 1, . . . , n with

u(x) =
n∑

I=1

HI (x)ûI (22)

and

s(x) =
n∑

I=1

HI (x)ŝI , (23)

where the denotation ˆ(·) indicates nodal values. By
introducing the differential operator matrices for a two
dimensional setting

Bu
I (x) =

⎡
⎣H(x)I,x 0

0 H(x)I,y
H(x)I,y H(x)I,x

⎤
⎦ (24)

and

Bs
I =

[
H(x)I,x
H(x)I,y

]
, (25)

where (·),v indicates partial derivatives ∂(·)
∂v

, the values
for ε and ∇s can be computed from

ε(x) =
n∑

I=1

Bu
I (x)ûI (26)

and

∇s(x) =
n∑

I=1

Bs
I (x)ŝI , (27)

where the Voigt notation is used. An analog discretiza-
tion may be applied for the virtual quantities. Accord-
ingly the contributions to the vector of the internal
forces at node I become

Fu
I =

∫
�

(
Bu

I

)T
σ dV (28)
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and

Fs
I =

∫
�

HI M̂
−1 ds

dN
dV

+
∫

�

HI

(
sεTCε + 2sP(Df) + Gc s − 1

2ε

)
dV

+
∫

�

2Gcε
(
Bs

I

)T ∇s dV .

(29)

In the following,we denote byσA(ε) any representative
component of the stress tensor or property of the stress
tensor, chosen as the driving quantity for the fatigue
mechanism. Thiswork aims at investigating fundamen-
tals of the integration of fatigue failure within a phase
field formulation in terms of mode-I fracture. Accord-
ingly, the normal stress component in loading direction

σA = 1TCε, (30)

with 1 = (0, 1, 0)T is considered as appropriate stress
measure for cyclic tensile loading in vertical direc-
tion. In order to find a solution U∗ = (u∗, s∗, ṡ∗)T
of the nonlinear system, the Newton-Raphson scheme
is applied. The particular components of the current
stiffness matrix are found as

K uu
I J =∂Fu

I

∂uJ
=

∫
�

Bu
I (s

2 + η)CBu
J

+ s2Bu
I ( f1 + f2)C1 [C1]T Bu

J dV, (31)

K su
I J =∂Fs

I

∂uJ
=

∫
�

HI2s (Cε + f3 · C1)T Bu
J dV,

(32)

K us
I J =∂Fu

I

∂sJ
=

∫
�

(
Bu

I

)T 2sHJ (Cε + f3 · C1) dV,

(33)

K ss
I J =∂Fs

I

∂sJ
=

∫
�

HI HJ

(
εTCε + 2P + Gc

2ε

)

+ 2Gcε
(
Bs

I

)T Bs
J dV (34)

with

f1 = ∂2P(Di−1 + �Di )

∂D2
i

·
(
kσ (k−1)

A

nD Ak
D

dN

)2

, (35)

f2 = ∂P(Di−1 + �Di )

∂Di
· k(k − 1)σ (k−2)

A

nD Ak
D

dN , (36)

Fig. 2 Set up for phase field simulation of C(T)-specimen

f3 = ∂P(Di−1 + �Di )

∂Di
· kσ

(k−1)
A

nD Ak
D

dN (37)

and the damping matrix is zero, except for the compo-
nent

Dsṡ
I J = ∂Fs

I

∂s,N
=

∫
�

HI HJ M̂
−1 dV . (38)

Using the implicit Euler method for the transient prob-
lem is sufficient as the number of cycles is directly pro-
portional to time. However, automatic step size adjust-
ment is applied to ensure a stable computation when
the phase field decreases due to rapid increase of the
fatigue damage.

4 Examples and validation

For an experimental characterization of the fatigue
crack growth behavior of materials the so-called com-
pact tension (CT) specimen is, among others, fre-
quently used. Accordingly, this specimen geometry
was also chosen for the conducted simulations within
this study, whose results are presented in the following.
The definition of the geometry of the C(T)-specimen is
given in the ASTM E 399 standard (ASTM 2009). For
the simulations the software FEAP 8.4 was used. The
model was implemented into a user element routine
for a 4-node quadrilateral element. Figure 2 shows the
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Fig. 3 Schematic illustration of the approximation of cyclic
loading within simulation

setup for the mode-I simulations. For the simulations,
force was used as control variable. The force trans-
mission by a bolt was approximated by a distributed
sinusoidal load across the upper semi-circle of the bolt
hole. The pulsating load is approximated within the
transient simulations by means of a ramp function,
where each simulation step represents a certain incre-
ment of load cycles (seeFig. 3).As only constant ampli-
tude loading was considered the applied force was kept
constant after the maximum load was reached. For all
numerical experiments a material with Young’s mod-
ulus E = 2.1 · 105 MPa, Poisson’s ratio ν = 0.3 and
critical energy release rate Gc = 2.33 · 103 J/m2 was
considered. Further, the parameters AD = 200MPa
and k = 5 were used.

4.1 Crack initiation and model characteristics

Themain feature of the original phase field formulation
for brittle fracture is a crack pattern that locally mini-
mizes the total energy. The solution is allowed to yield
cracks and cracks will appear once their formation is
beneficial with respect to the total energy. However, as
previously explained, the modified phase field model
for fatigue fracture has an additionalmechanism,which
includes a fatigue related driving force. The plots in
Fig. 4 show the evaluation of the stress contributions
σ e and σ ac of Eq. (15) in vertical direction on a line,
which extends in horizontal direction from the notch
tip of the C(T)-specimen. Furthermore, the effective
stress in vertical direction σA is indicated. For simplic-
ity all stresses are normalized by the threshold stress
AD . A corresponding contour plot of the phase field
s within a square section (edge length approximately
1mm) around the notch tip is indicated in every illus-
tration. Note that for this simulation the initial s field

was 1 over the whole specimen. In other words, the
specimen was not pre-cracked and the crack initiation
period will be illustrated in the following. The plot in
Fig. 4a shows the situation after the initial ramp up,
i.e. complete load applied. The phase field remains 1
indicating intact material everywhere. The stress at the
notch tip is slightly above AD . This state stays unal-
tered until a number of approximately 1.4 · 105 cycles
was applied (Fig. 4b). At this point an increase of the
σ ac contribution can be recognized, which indicates
that the damage at the notch tip has grown to a rele-
vant amount such that the energy density contribution
P significantly affects the energy functional. Conse-
quently the phase field decreases and the stresses are
degraded. After another 0.3 · 105 cycles the phase field
at the notch tip is almost zero (Fig. 4c) andσA increases,
while σ e

y decreases due to the degradation. This obser-
vation illustrates that σA rather than σ e

y is a suitable
driving force, as otherwise the fatigue damage would
stop to grow. A fatigue crack was initiated after a cycle
number of approximately 2.0·105 (Fig. 4d). Both stress
contributions are zero at the crack tip as they are fully
degraded. Note that for the subsequent evolution of
the energy density contribution P a higher stress is
observed as driving force as for the crack nucleation.
This will certainly lead to a smaller number of cycles
until the next crack growth increment occurs, compared
to the interval for crack initiation. This behavior is in
agreementwith experimental findings (see e.g.Haibach
2006).

In order to assess the crack growth behavior, another
simulation was set up and ran until a fatigue crack with
a total length of 15mm was generated. Figure 5 shows
the results obtained from this simulation by means of
different illustrations. The plot on the right shows the
crack evolution with respect to the number of applied
load cycles. For selected N-a states, contour plots, rep-
resenting the phase field variable s over the specimen,
are indicated among the line plot. The crack length is
measured from the tip of the V-notch to the actual crack
tip (maximum x-coordinate with s = 0). A nonlinear
function of the crack length with respect to the number
of applied load cycles is obtained from the simulation.
The steep gradient at the end of the simulation indicates
high crack growth rates. This behavior is qualitatively
in line with experimental findings (see e.g. Dowling
2013). An illustration of the particular energy contri-
butions of the total energy (Eq. (9)) with respect to the
number of load cycles for the same simulation is shown
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(a) (b)

(c) (d)

Fig. 4 Evaluation of stress contributions on a horizontal straight line at the crack tip after a 0 cycles, b 1.4 · 105 cycles, c 1.66 · 105
cycles, and d 2.0 · 105 cycles

in the left diagram of Fig. 5. Note that for this simula-
tion the node at the crack tip was initially set to s = 0.
This explains the small deviation of EΓ from zero at
the beginning. However, this evaluation provides good
insight into the mechanism of the proposed phase field
model. The onset of crack growth is indicated in the
plot by the first increase of the crack energy contribu-
tion E� . It may be recognized, that the energies Eac

representing the fatigue energy and EW representing
strain energy are small compared to E� . Accordingly
for the illustration these contributions were factorized
by 10. The fatigue energy Eac increases as consequence
of the rising fatigue damage induced by cyclic loading.
Accordingly, s decreases, which yields an increase of
E� and a decrease of Eac to compensate the additional
crack energy andminimize the total energy. The energy
contribution Eac increases subsequentlywithin another
area according to the actual crack pattern and the pro-
cess starts again. The strain energy contribution EW is
almost constant for the larger part of the simulation and

increases with higher rates only after approximately
2.5 · 105 cycles due to higher stresses with increasing
crack length.

4.2 Evaluation of crack growth rates

The growth behavior of a macro crack, which is
exposed to cyclic loads is still mainly described by the a
relation between the growth rate da/dN and the cyclic
stress intensity factor�K , which represents the proper-
ties of crack length, loading conditions, and geometry.
This law, denoted as Paris’ law, was first presented in
Paris and Erdogan (1963) and is given by

da

dN
= C (�K )m , (39)

were C and m are material dependent parameters. In a
double logarithmic diagram one obtains the power law
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Fig. 5 Illustration of crack growth data from phase field simulation as a plot of the different energy contributions (left) and as a N-a
plot (right)

of Eq. (39) as a straight line. Within common exper-
imental procedures for the identification of the crack
growth behavior, a discrete form of the growth rate

(
da

dN

)
p

≈ ap − ap−1

Np − Np−1
(40)

is utilized with p denoting the p-th data point. For
the approximation of the �K values associated to the
C(T)-specimen we stuck to Srawley (1976), who rec-
ommends:

�K = �F

B
√
L

2 + a
L(

1 − a
L

)3/2 ·
[
0.886 + 4.64

( a
L

)2 − 13.32
( a
L

)3
+14.72

( a
L

)4 − 5.69
( a
L

)5]
,

(41)

where the actual crack length a is considered as the
horizontal distance from the center of the holes to the
crack tip (see Fig. 2). According to this, for another
assessment of the proposed phase field model several
simulations with different maximum force values for
the introduced mode-I test of the C(T)-specimen were

performed. A fatigue crack was generated within every
simulation and driven to amaximum length of approxi-
mately 6mm. Figure 6 summarizes the results of these
simulations. Within a double logarithmic plot of the
crack growth rates with respect to the stress inten-
sity factor all the data points lie close to a straight
line. This straight line, which confirms Eq. (39) with

C = 2.8 ·10−7 mm/cycle
(MPa

√
m)m

andm = 2.5 was estimated
by means of a least square fit and reveals a coefficient
of determination of 0.996. The associated N-a plots are
presented in Fig. 6a. According to the different levels
of the maximum load for each simulation, large differ-
ences are obtained for the number of cycles required to
generate a certain crack length. However, all samples
fit to the Paris parameters of Fig. 6a, which is indeed a
very important property regarding a comparison with
experimental findings.

Concluding remarks

A phase field model, which is able to cover the
phenomenon of cyclic mechanical fatigue, has been
presented as enhancement of the model for brittle
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(a) (b)

Fig. 6 Evaluated crack growth data from four different phase field simulations as a N-a plot and b double logarithmic diagram of crack
growth rates vs. ΔK factors

fracture from Kuhn and Müller (2010). The driv-
ing force for the fatigue mechanism was realized by
a new energy contribution accounting for the irre-
versibility of mechanical fatigue. Numerical simu-
lations show that our model generally yields rea-
sonable results in terms of fatigue crack nucleation
and growth and therefore describes the phenomenon.
Simulated crack growth rates confirm the Paris law,
which represents experimental findings. However, as
fatigue of materials is a rather complex field, which
is effected by many quantities like load ratio, load
sequence, strain rate, temperature, environment and not
forgetting the class of the material, further enhance-
ment of the current phase field model has to be
done in order to accomplish a comprehensive formula-
tion.
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