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a  b  s  t  r  a  c  t

The  design  synthesis  of  compliant  mechanisms  yields  optimized  topologies  that  combine  several  stiff
parts  with highly  elastic  flexural  hinges.  The  hinges  are  often  represented  in  a  finite  element  analy-
sis  by  a single  node  (one-node  hinge),  which  leaves  the  actual  physical  meaning  of the  hinge (to  be
fabricated)  ambiguous.  In order  to  circumvent  this  problem,  in this  work,  one-noded  hinges  have  the
fatigue-life  incorporated  into  them  during  the  design  synthesis  by  embedding  analytical  expressions
accounting  for  stress  concentration,  surface  finish,  non-zero  mean  stresses  and  superposed  multiple
loading  conditions  into  the  formulation.  Various  flexural  hinges  with  rectangular,  circular  and  parabolic
profile  geometries  are  investigated.  By incorporating  the  hinge  geometry  and  fatigue  behavior  into  the
design  process,  unclear  interpretation  issues  that  would  be encountered  during  any  later  manufacturing
stage  of  a compliant  mechanism  design  are  removed.  Examples  are  provided  to  illustrate  the overall
process.

© 2013 Elsevier Inc. All rights reserved.

. Introduction

In order to create machine tools for small-scale applications, compliant mechanisms (CM) have become quite popular in recent years,
s an alternative to rigid body systems connected by conventional pin joints. CM are flexible, monolithic structures whose overall motion
s a result of the (elastic) deformation of certain components, so-called flexural hinges. CM are potentially more accurate, have superior
calability, cleaner, less noisy and, most importantly, less expensive to manufacture and maintain than conventional devices. However,
here are two major drawbacks: (1) designing CM is more difficult and nonintuitive, due to its inherent complex overall deformation and
2) fatigue effects on the flexural hinges can lead to premature failure of the entire CM under dynamic loading conditions.

Several approaches have arisen to address the first issue by applying numerical topology design and optimization procedures. Relevant
ontributions have been made by various research teams, e.g. [1–7]. All these techniques lead, in a systematic manner, to final optimized
opologies, i.e., an optimal distribution of material over the design domain is obtained to meet the user-specified motion requirements. As a
ey result, one-noded hinges (often called pseudo-hinges) arise, which have a physically unclear interpretation. Although some techniques
xist for circumventing this critical issue, e.g. [8],  in this work, we propose to circumvent this problem, by having one-noded hinges with the
atigue-life incorporated into them during the design synthesis by embedding analytical expressions accounting for stress concentration,
urface finish, non-zero mean stresses and superposed multiple loading conditions into the formulation. This is achieved by utilizing data
rom the finite element calculations during the topology optimization process. Since nodal displacements for a given topology are known,
he required deflection ranges and (internal) nodal forces are already available, without additional cost. This information can be used to
eplace one-node hinges with real flexural hinges that meet the deflection and fatigue requirements, dependent on their specific geometry
nd material.

The mechanical properties of flexural hinges under static loading have been investigated previously. Paros and Weisbord did pioneering

ork, yielding the approximate compliances of flexural hinges [9].  Background information on flexural elements and systems can be found

n Smith [10]. Lobontiu et al. and Tian et al. analytically investigated flexural hinges based on energy principles to calculate the desired
roperties at individual points within hinges [11,12] and proposed valuable closed-form equations of differently shaped flexure hinges
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ermany. Tel.: +49 40 6541 2745; fax: +49 40 6541 2034.

E-mail address: frank.dirksen@cal.berkeley.edu (F. Dirksen).

141-6359/$ – see front matter ©  2013 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.precisioneng.2012.12.005

dx.doi.org/10.1016/j.precisioneng.2012.12.005
http://www.sciencedirect.com/science/journal/01416359
http://www.elsevier.com/locate/precision
mailto:frank.dirksen@cal.berkeley.edu
dx.doi.org/10.1016/j.precisioneng.2012.12.005


532 F. Dirksen et al. / Precision Engineering 37 (2013) 531– 541

Fig. 1. Synthesis of compliant mechanisms: replacing artificial one-noded hinges by appropriate flexural hinge types meeting specified, known hinge requirements.
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ig. 2. Planar, flexural hinge characterized by length l, depth b, height H, variable thickness t(x) ≥ ts and common points P1, P2, P3 to resist external (nodal) loads Fx , Fz , My .

13,14].  Recently, mechanical properties of flexural hinges were derived and validated, providing a guide from a topology optimization
tandpoint, for static loading conditions [15].

In spite of the cited research, the fatigue life of flexural hinges in compliant mechanisms has not been fully analyzed yet, and, to the
uthor’s knowledge, there are too little of experimental data as pointed out rightly in a fairly recent review paper [16]. In terms of the
ynthesis of compliant mechanisms, this leaves a gap between final, optimized topologies and appropriate flexural hinges that meet (or
xceed) a desired number of life cycles. In order to bridge this gap, fatigue limits for flexural hinges are derived and applied in this work
o provide a guide of designing flexural hinges for dynamic applications from a topology optimization standpoint, prior to any modelling
nd manufacturing efforts. The overall scheme is shown in Fig. 1.

. Objectives

For the synthesis of compliant mechanisms for dynamic applications, it is crucial to know the fatigue limit of embedded flexural hinges.
ssuming harmonic loading with constant amplitudes, explicit analytical expressions of fatigue limits, based on the geometric shape and
aterial of flexural hinges are derived, using a standard x–z-coordinate system, as shown in Fig. 2, by applying different established theories

nd models. These explicit expressions are then (inversely) solved to design appropriate flexural hinges with infinite life based on specified
oads.

In this work, planar flexural hinges of different geometries are examined. Specifically, rectangular, circular and parabolic flexural hinges,
enoted by superscripts R, C, P respectively, are investigated due to their easy manufacturability and convenient mathematical handling.1

The geometry of flexural hinges is described by length l, height H and variable thickness t(x) ≥ ts, as well as common points P1(0, H/2),
2(l/2, ts/2) and P3(l, H/2), as shown in Fig. 2. The depth is set to uniform b = 10 mm over the entire hinge, which is sufficient for the majority
f planar applications.

The key aspect for the following calculations is the geometric shape, given by the variable thickness t(x) of each type of flexural hinge

tR(x) = ts, (1)

P 2 4(H − ts) 4(H − ts) 2
t (x) = 2(c1 + c2x + c3x ) = H −
l

x +
l2

x , (2)

1 Circular shapes are approximated by parabolic functions using Taylor expansion to avoid complicated expressions. The geometric approximation error was checked and
s  negligible in all loaded regions.
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Table 1
Material properties of aluminum alloys mainly used in compliant mechanisms [17].

Name E (GPa) S0.2 (MPa) SU (MPa) εmax

Al 2024-O 73 75 185 20%

x

a

u
m

3

f
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Al  2024-T3 73 345 485 18%
Al  2024-T351 73 325 470 20%

tC (x) = 2
(

zM +
√

r2 − (x − xM)2
)

= H2 − t2
s + l2

4(H  − ts)
−

√
(l2 + (H − ts)

2)
2

(4(H − ts))
2

− (l − 2x)2

4
. (3)

Parabolic and circular hinges are first written in a general form denoted by polynomial coefficients c1, c2, c3 and circle’s center coordinates
M, zM and radius r, respectively. In the second line of Eqs. (2) and (3),  relevant geometric boundary conditions

c1 = H

2
, c2 = −2(H − ts)

l
, c3 = 2(H  − ts)

l2
,

xM = l

2
, zM = ts

2
+ r, r = l2 + (H − ts)

2

4(H  − ts)
,

(4)

re applied. Throughout this paper, the formulations tR,P,C = tR,P,C(x, H, l, ts) are used to keep the solution general and adaptable.
In order to compare analytical results with numerical and experimental data, high strength Aluminum wrought alloys, which are often

sed in applications of CM due to their high fatigue strength and elastic properties, are considered throughout this work. The relevant
aterial specifications are listed in Table 1.

. Stresses in flexural hinges

Since flexural hinges are mainly used in CM to allow rotational motion, the main focus is on axial bending caused by the external nodal
orces Fx, Fz and the moment My(x), as illustrated in Fig. 2. All loads are assumed to be time-harmonic, with constant mean and amplitude,
enoted by index m and index a, respectively. For example, My = Mmy ± May causes time-harmonic (bending) stresses �b = �mb ± �ab, as

llustrated in Fig. 1.

.1. Moments of area

The moments of area for the considered flexural hinges are required to calculate the stresses in the following sections. The areas of the
ross-section are

AR,P,C (x) = btR,P,C (x), (5)

nd the second moments of area Iy(x) are

IR
y = bt3

s

12
,

IP
y (x) = b(H(l − 2x)2 + 4ts(l − x)x)

3

12l6
,

IC
y (x) = b((x − xM)2 + 2r(zM − r))

3

12r3
,

(6)

here the thicknesses ts and tR,P,C(x) are given in Eqs. (1)–(3).  The listed moments of area are used to calculate nominal stresses in the
pcoming section.

.2. Nominal stresses �a, �m

The largest principal tensile stress is the most significant stress component in fatigue analysis for the materials typically used in
M [18]. Assuming negligible normal stresses in lateral direction, i.e., �y = �z = 0, this equals the normal stress in the x-direction �x(x,
) = (Fx/A(x)) + (My(x)/Iy(x))z, which depends on the external loads, cross-section A(x), depth b, second area moment Iy(x, z) and the z-
oordinate, where a linear-elastic, isotropic stress–strain relation is assumed. Thus, the relevant nominal stresses within flexural hinges
re

�R
x (z) = 1

bts
Fx + 12(x − l)z

bt3
s

Fz + 12z

bt3
s

My,

�P
x (x, z) = l2

bh3∗ (x)
Fx + 12l6z

bh9∗ (x)
My + 12l6(x − l)z

bh9∗ (x)
Fz, (7)
�C
x (x, z) = 1

2bh∗∗(x)
Fx + 3z(x − l)

2bh∗∗(x)
My + 3z

2bh∗∗(x)
Fz,

here h3∗ (x) = H(l − 2x)2 + 4(l  − x)xts and h∗∗(x) = zM −
√

r2 − (x − xM)2 are introduced to keep the expressions concise.
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Table  2
Fatigue strengths (Sf) in absence of mean stresses (�m = 0): experimental data Sf,exp [17], a linear estimate [18], bending fatigue strength Sfb,Ra and tensile fatigue strength Sft,Ra

[19].

Name Sf,exp (MPa) Sft = ˛SU (MPa) Sfb,R (MPa) Sft,R (MPa)

Al 2024-O 90 65 74 63
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4
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a
f

4
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b

4

s
�

a
w
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o
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Al  2024-T3 140 170 130 111
Al  2024-T351 140 165 130 111

In the ensuing sections, the axial force Fx causes a tensile stress �t whereas the moment My and the force Fz cause a bending stress, �b,
ithin the cross-section of the flexural hinges. For both loading conditions, the resulting mean stresses �m = (�max + �min)/2, amplitude

tresses �a = (�max − �min)/2 and ratio R = �min/�max can be calculated using the nominal stresses �R,P,C
x,max which occur at the thinnest cross

ection at the upper or lower edge substituting (x = l/2) and z = ± ts/2 into Eq. (7).

. Fatigue strength of flexural hinges

The fatigue strengths of different flexural hinges are calculated using the stress-life approach. Accordingly, first, the fatigue strength of
 smooth test specimen is determined. This value is then lowered by applying different reduction factors (“knock-down factors”) which
ccount for nonzero mean stresses, notch effects and surface finish. Thermal effects (both ambient and generated) are considered negligible
or the applications of interest.

.1. Fatigue strength with no mean stress (�m = 0)

Fatigue strengths have been determined by extensive experiments and, thus, are known for some materials. However, if bending fatigue
trength Sfb and tensile fatigue strength Sft are not available, they can be estimated in absence of mean stress (�m = 0) based on numerous
xperiments on unnotched standard test pieces. There are different methods to estimate the fatigue strengths. A classical approach is given
y using the linear relation between tensile fatigue strength Sft and ultimate tensile strength SU

Sft = ˛SU, (8)

here the factors  ̨ = 0.5 for steel and Titanium alloys, and  ̨ = 0.35 for Aluminum alloys are typically used. As mentioned in [18], this is
ot necessarily a good measure and only provides an initial estimate. Another approach was  used by Radaj and Vormwald [19], where
he bending fatigue strength Sfb,Ra was estimated for Aluminum alloys possessing different tensile strengths for N = 108 life cycles by the
ollowing

Sfb,R ≈
(

0.4SU for SU ≤ 325 MPa

130 MPa for SU ≥ 325 MPa
,  (9)

nd the tensile fatigue strengths Sft,Ra were further reduced to

Sft,Ra ≈ 0.85 Sfb,R. (10)

The different fatigue strengths in absence of any mean stresses (�m = 0) are listed in Table 2. Index i is used for formulas which apply to
oth, tensile and bending load. Otherwise the indexes b for bending and t for tension are used separately.

.2. Fatigue strength with nonzero mean stress (�m /= 0)

Considering nonzero mean stresses, the maximum permissible stress amplitudes need to be formulated as a function of the mean
tresses Sai(�m), i.e., the same number of life cycles can only be achieved for higher mean stresses �m by reducing the stress amplitudes
a. Three classical relations have been proposed by Gerber [20], Goodman [21] and Soderberg [22], respectively:

Gerber : Sai(�m) = Sfi

(
1 −
(

�m

SU

)2
)

, (11)

Mod.Goodman : Sai(�m) = Sfi

(
1 − �m

SU

)
, (12)

Soderberg : Sai(�m) = Sfi

(
1 − �m

S0.2

)
, (13)

s illustrated in Fig. 3(a). Soderberg provides a very conservative estimate, whereas Goodman and Gerber match experimental data quite
ell [23]. The modified Goodman relation is used in this work.

.3. Notch effect
The fatigue strength of a flexural hinge is significantly lower than it is for unnotched test specimen, due to stress concentrations that
ccur at the root of flexural hinge, causing nucleation of microcracks which possibly leads to failure. In a quasi-static analysis, the stress
oncentration factor Kti is mainly used to account for the occurring higher peak stresses, compared to the nominal stresses, as shown in
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Fig. 3. Fatigue diagrams: (a) three established relations and (b) reduced fatigue strength of flexural hinges using modified Goodman relation.

15]. The stress concentration factors for rectangular leaf type hinges strongly depends on the corner radius and can be found in [24]. For
ircular and parabolic hinges, stress concentration factors for tension KC,P

tt and bending KC,P
tb

can be approximated following [25,26]

KC,P
tt = 1 +

[
0.1
(

r

t∗

)
+ 0.7

(
1 + ts

2r

)2( ts

2r

)−3
+ 0.13

(
ts

2r

)  (
ts

2r
+ t∗

r

)−1( t∗

r

)−1.25
]−(1/2)

,

KC,P
tb

= 1 +
[

0.08
(

r

t∗

)0.66
+ 2.2

(
1 + ts

2r

)2.25( ts

2r

)−3.375
+ 0.2

(
ts

2r

)  (
ts

2r
+ t∗

r

)−1( t

r

)−1.33
]−(1/2)

,

(14)

here t∗ = ((H − ts)/2) and the radii of curvature r are

rC = l2 + (H − ts)
2

4(H − ts)
= const. (15)

nd

rP
(

x = l

2

)
= l2

4(H  − ts)
, (16)

or circular and parabolic hinges as shown in Fig. 4. Here, the geometric properties given in Eq. (2) and corresponding derivatives t′(x), t′′(x)
ere applied to calculate the radius of curvature of a parabola

rP(x) =
∣∣∣∣∣ (1 + t′(x)2)

3/2

t′′(x)

∣∣∣∣∣ .

In fatigue analysis, various experiments have suggested that the (static) stress concentration factor overestimates the notch severity of

exural hinges. Therefore, the “notch effect” is described more accurately by the fatigue strength reduction factor Kfi, also called fatigue

Fig. 4. Peak stresses depending on the curvature at the root lead to a reduced fatigue strength of flexural hinge.



536 F. Dirksen et al. / Precision Engineering 37 (2013) 531– 541

n
s

w

w
f

a

4

s
t
r
y

w

4

g
t
w

Fig. 5. Notch sensitivity for different radii r [24].

otch factor, defined as the ratio of the fatigue strength of unnotched test specimen (as described in the previous section) and the fatigue
trength of the notched specimen, i.e., the flexural hinge:

1 ≤ Kfi = Sfi,Test Specimen

Sfi,Flexure Hinge
≤ Kti. (17)

The fatigue strength reduction factor Kfi can be calculated using the notch sensitivity q, which is defined as

q = Kfi − 1
Kti − 1

, (18)

here q varies from zero (no notch effect: Kfi = 1) to one (full notch effect Kfi = Kti) and can be determined from Fig. 5.
Kfi can also be determined from experiments or empirical measures as proposed by Peterson or Neuber:

Peterson : Kfi = 1 + Kti − 1
1 + (AP/r)

, (19)

Neuber : Kfi = 1 + Kti − 1

1 +
√

AN/r
, (20)

ith AP and AN as material constants depending on the strength and ductility, e.g., AP ≈ 0.66 for Aluminum alloys [27]. Thus, the reduced
atigue strength of flexural hinges is calculated by Eqs. (11)–(13) yielding, for example, following Goodman

Sai(�m) = Sfi

Kfi

(
1 − �m

SU/Kti

)
, (21)

s illustrated in Fig. 3(b) where the ordinate and abscissa are scaled by 1/Kti and 1/Kfi, respectively.

.4. Superposed bending and tension

Thus far, pure bending or pure tensile cyclic loads was considered. Although superposed bending and tension cause similar critical
tresses, the overall fatigue life is unequally more complex due to different amplitudes, frequencies and phase relations. There are, to
he authors’ knowledge, neither material parameters nor precise methods known that hold for arbitrary loading conditions. However, a
easonable equivalent stress �a,e can be estimated following Issler et al. [27] by choosing, for example, the tensile loading as a reference
ielding

�a,e = �at + ��ab, (22)

ith � = Sat/Sab as a reference coefficient.

.5. Surface effect

The surface roughness of the root of flexural hinges affects the fatigue strength significantly, due to possible crack nucleation and propa-
ation on the surface. The surface roughness reduction factor � accounts for different surface qualities obtained by different manufacturing
echnologies, such as polishing, grinding, milling, and drilling. It is defined as the ratio of the fatigue strength of standard test specimen

ith a specific surface quality and the fatigue strength of a very smooth test specimen

� = Sfi

Sfi,smooth
. (23)
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Fig. 6. Surface roughness reduction factor � for Al wrought alloys adopted and modified from [19] based on VDI guideline 2226 [28].

It is assumed that the influence of the surface finish is similar for unnotched and notched test specimens. Therefore, values for � , which
ere measured on unnotched test specimen are applied to flexural hinges, as well. The surface reduction factor � depending on the surface

oughness Rt, also called total height of the profile, is shown in Fig. 6.
The absolute arithmetic average surface roughness Ra for electric discharged machined specimens is typically within a range of 1.6–5 �m

29]. There is no mathematical relation between Rt and Ra. However, an experience-based estimate is given in [30] by a factor of 8.7 yielding
pproximate values of Rt ≈ 14–44 �m.  Assuming a reasonable surface roughness of Rt ≈ 20 �m yields for Al wrought alloys mainly used in
M, e.g., Al 2024-T3 or Al 2024-T351, with a ratio S0.2/SU ≈ 0.7 a surface reduction factor of � = 0.75.

The fatigue strength of flexural hinges is further reduced to

Sai(�m) = Sfi

Kfi

(
1 − �m

SU/Kti

)
, (24)

s illustrated in Fig. 3(b) where the ordinate and abscissa are further scaled by � .
Generally, the resulting fatigue strength of flexural hinges depend on the surface finish and on notch effect that is linked directly with

he radii of curvature, i.e., smaller radii of curvature result in lower fatigue strengths. This is not a surprising result, however Eqs. (14)–(24)
rovide explicit analytical expressions to calculate the reduced fatigue strength of flexural hinges prior to any modeling or manufacturing
fforts.

.6. Fatigue safety factor

The resulting mean and amplitude stresses �m, �a that occur in flexural hinges can be calculated by Eq. (7) based on given loads, for
xample, from the topological synthesis. The highest capable stress amplitude for a given mean stress Sai(�m) is linked to the flexural
inges geometric and material properties by Eq. (24). The ratio of these values is typically referred as the safety factor SD as

SD = Sat(�m)
�a,e

, (25)

ith �a,e as defined in Eq. (22).

. Design of optimal flexural hinges

The optimal shape of circular and parabolic flexural hinges are calculated inversely based on the explicit expressions derived in the
revious section and linked to the safety factor SD. In any case, the maximum mean and amplitude stresses depend on the given loads as
ritten in Eq. (7) and occur at x = (l/2) and z = ± (ts/2):

�mb = 6

bt2
s

Mmy − 3l

bt3
s

Fmz, �ab = 6

bt2
s

May − 3l

bt3
s

Faz,

1 1
(26)
�mt =
bts

Fmx, �at =
bts

Fax.

emark. The hinge height H is substituted by the relation H = 2t* + ts as illustrated in Fig. 4.
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.1. Circular flexural hinges

In order to connect the geometric properties of circular flexural hinges to the safety factor, the stress concentration factors are obtained
y Eqs. (14) and (15):

KC
tb = 1 +

(
0.32

(4 + (l2/t∗2))0.66
+ 0.01(l2 + 4t∗2)

1.33
ts

t2.66(2t∗ + ts)
+ 0.02(l2 + 4t∗2)

1.13
(l2 + 4t∗(t∗ + ts))

2.25

(t∗ts)
3.375

)−0.5

, (27)

KC
tt = 1 +

(
0.01 + 0.013l2

t2
+ 0.01(l2 + 4t∗2)

1.25
ts

t2.5(2t∗ + ts)
+ 0.01(l2 + 4t∗2)(l2 + t∗(4t∗ + 4ts))

2

t∗3t3
s

)−0.5

. (28)

The fatigue strengths become with Eqs. (15), (19), (24) and (26)

Sab = Sfb(l2 + 4t∗(2AP + t∗))(3FmzKC
tb

l − 6KC
tb

Mmy + bSUt2
s )�

bSU(8APt + KC
tb

(l2 + 4t∗2))t2
s

,

Sat = Sft(l2 + 4t∗(2AP + t∗))(−FmxKC
tt + bSUts)�

bSU(8APt∗ + KC
tt(l2 + 4t2))ts

.

(29)

Substituting Eq. (29) into Eq. (22) yield the equivalent stress

� = Sft(8APt∗ + KC
tb

(l2 + 4t∗2))ts(−FmxKC
tt + bSUts)

Sfb(8APt∗ + KC
tt(l2 + 4t∗2))(3FmzKC

tb
l − 6KC

tb
Mmy + bSUt2

s )
,

�a,e = 1
bts

Fax + �

(
6

bt2
s

May − 3l

bt3
s

Faz

)
.

(30)

The safety factor becomes after substituting Eqs. (27)–(30) into Eq. (25):

SD = �SfbSft(l2 + 4t∗(2Ap + t∗)(−FmxKC
tt + bSUts)(3FmzKC

tb
l − 6KC

tb
Mmy + bSUts

2)

(3SUSft(Fazl − 2May)(8APt∗ + KC
tb

(l2 + 4t∗2))(FmxKC
tt − bSUts) + FaxSfb(8APt∗ + KC

tt(l2 + 4t∗2))(3FmzKC
tb

l − 6KC
tb

Mmy + bSUts
2))

(31)

This expression explicitly links the safety factor SD with the design variables of the circular flexural hinge, i.e., the thicknesses tS, t* and
he length l.

emark. The relevant variables are printed in bold and the dependencies, e.g., Ktt = Ktt(ts, t*), are omitted for simplicity.

.2. Parabolic flexural hinges

In order to connect the geometric properties of parabolic flexural hinges to the safety factor, the stress concentration factors are obtained
y Eqs. (14) and (16)

KP
tb = 1 +

(
0.32t∗1.32

l1.32
+ 0.01l2.66ts

t∗2.66(2t∗ + ts)
+ 0.02(l3 + 4lt∗ts)

2.25

(t∗ts)
3.375

)−0.5

, (32)

KP
tt = 1 + 3.67

(
1

t∗5.5t3
s (2.t∗ + ts)

l2.5

(
0.29(lt∗)3.5 + 0.15l3.5t∗2.5ts + 0.13t∗3t4

s + l1.5ts(2.35t∗4.5 + 1.18t∗3.5ts) + t2
s (4.71t∗5.5 + 2.69t∗4.5ts + 0.17t∗3.5t2

s )
l0.5

))−0.5

. (33)

The fatigue strengths become with Eqs. (16), (19), (24) and (26)

Sab = �(l2 + 8t∗AP)Sfb(3lFmzKP
tb

− 6KP
tb

Mmy + bSUt2
s )

b(8t∗AP + l2KP
tb

)SUt2
s

,

Sat = �(l2 + 8t∗AP)Sft(−FmxKP
tt + bSUts)

b(8t∗AP + l2KP
tt)SUts

.

(34)

The equivalent stress �a,e becomes with Eq. (22):

� = (8t∗AP + l2KP
tb

)Sftts(−FmxKP
tt + bSUts)

(8t∗AP + l2KP
tt)Sfb(3KP

tb
(lFmz − 2Mmy) + bSUt2

s )
,

�a,e = 1
bts

Fax + �

(
6

bt2
s

May − 3l

bt3
s

Faz

)
.

(35)

The safety factor becomes after substituting Eqs. (32)–(35) into Eq. (25):

SD =
�SfbSft t2

s (l2 + 8t∗AP )(−FmxKP
tt + bSU ts)(3KP

tb
(lFmz − 2Mmy) + bSU t2

s )

SU ts(3Fx,atsKP
tb

(8t∗AP + l2KP
tt)(lFmz − 2Mmy)Sfb + 3(Faz l − 2May)Fmx(8t∗AP + l2KP

tb
)KP

ttSft ts + bSU t2
s (Faxts(8t∗AP + l2KP

tt)Sfb − 3Sft(Faz l − 2May)(8t∗AP + l2KP
tb

)))
. (36)
This expression links explicitly the safety factor SD with the design variables of the parabolic flexural hinge, i.e., the thicknesses tS, t*
nd the length l.

emark. Again, the relevant variables are printed in bold and the dependencies, e.g., Ktt = Ktt(ts, t*), are omitted for simplicity.



F. Dirksen et al. / Precision Engineering 37 (2013) 531– 541 539

5

t
S
s
p
c
h

6

6

M
c

1

2

3

4

5

6

Fig. 7. Safety factor SD as a function of t* and ts for parabolic and circular flexural hinges (see Example 2).

.3. Geometrical parameter selection

Eqs. (31) and (36) are nonlinear functions SD(t*, ts, l), where t*, ts and l must to meet given geometric specifications. Maximizing SD(t*,
s, l) results in a flexural hinge with optimal geometric properties. In general, this problem can be solved numerically. However, plotting
D(t*, ts, l) as given in Eqs. (31) and (36) is not very costly and enables the analyst to easily pick optimal geometric parameters for different
afety factors. An example is given in Fig. 7 and discussed in Section 6.2. It can be seen, that circular hinges yield higher safety factors than
arabolic hinges, for a given thinnest cross-section tS, i.e., an infinite life is more likely using circular hinges. In other words, circular hinges
an have a thinner cross-section than parabolic hinges for a given safety factor. However, the reader should be aware that circular flexural
inges are not necessarily the best choice in terms of deflection range and precision, as described [15].

. Examples on analysis and optimal design

.1. Example 1: life cycle analysis of a flexural hinge undergoing superposed bending and tension

Consider a given parabolic flexural hinge (H = 10 mm,  l = 8 mm,  b = 10 mm,  ts = 0.5 mm)  is undergoing a cyclic loading of
y = 20 ± 30 N mm−1 and Fx = 10 ± 20 N. The monolithic CM is made of Al wrought alloy T3 and the hinges are manufactured by wire

utting-EDM (surface roughness Rt = 20 �m).  A check is made for infinite life (with a safety factor SD ≥ 2) by performing the following:

. Calculate the maximum nominal stresses by Eq. (7):

�mb = 6

bt2
s

Mmy = 48 N mm−2, �ab = 6

bt2
s

May = 72 N mm−2,

�mt = 1
bts

Fmx = 2 N mm−2, �at = 1
bts

Fax = 4 N mm−2.

. Determine the ultimate tensile strength and the fatigue strength of unnotched test specimen from Tables 1 and 2:

SU = 485 MPa, Sfb,R = 130 MPa, Sft,R = 111 MPa.

. Calculate the fatigue strength reduction factor by Eq. (19) using Eqs. (14) and (16):

r = 1.68 mm, Ktb = 1.02, Ktt = 1.06, Kfb = 1.01, Kft = 1.04.

. Determine the surface roughness reduction factor by Fig. 6:

� = 0.75.

. Calculate the fatigue strength of the flexural hinge by Eq. (24) using the results from steps 2 to 4:

Sab = 86.78 MPa, Sat = 79.73 MPa.
. Calculate the equivalent deflection stress �ae by Eq. (22):

� = 0.92, �ae = 70.2 N mm−2.
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. Calculate the safety factor using Eq. (25) and check with specifications:

SD = 1.14 < 2.

Conclusion: Reliability of the parabolic flexural hinge against fatigue failure with a safety factor SD ≥ 2 cannot be guaranteed. A logical
uestion is, how a flexural hinge can be designed to prevent fatigue failure, which is addressed in the second example.

.2. Example 2: optimal design of a flexural hinge

Consider a parabolic flexural hinge undergoing superposed tensile (Fx = 10 ± 20 N) and bending (My = 120 ± 50 N mm−1) cyclic loading.
he monolithic CM is made of Al wrought alloy T351 and the flexural hinges are manufactured by drilling (surface roughness Rt = 28). The
ength l of the flexural hinge must be 1 mm so that it fits into the CM.  The thinnest cross-section ts and the notch depth t* need to be
etermined in order to provide infinite life with safety factor SD ≥ 2 by performing the following steps:

. Determine the surface roughness reduction factor by Fig. 6:

� = 0.69.

. Calculate the stress concentration factors by Eqs. (32) and (33):

KP
tt = 1 + (t∗3t3

s (2.t∗ + ts))
0.5 ∗ (0.01ts + 0.35t3t2

s + 0.01t∗0.5t4
s

t∗2ts(0.18 + 0.2t2
s ) + t∗(0.02 + 0.09t2

s + 0.01t4
s ))−0.5,

KP
tb

= 1 +
(

0.32t∗1.32 + 0.01ts

t∗2.66(2t∗ + ts)
+ 0.02(1 + 4t∗ts)

2.25

(t∗ts)
3.38

)−0.5

.

. Calculate the safety factor using Eq. (36):

SD = 2.05(1 + 5.28t∗)(KP
tt − 485ts)(−72KP

tb
+ 485t2

s )

t∗ts(852, 746 + 66,  580.8ts) + KP
tb

(−2205KP
tt − 9884.16t∗ + 161, 505ts) + KP

tt(−1758.24t∗ + 12,  610t2
s )

.

The dependencies between the design variables, ts and t*, and the safety factor SD are illustrated in Fig. 7 for parabolic and circular
exural hinges. The latter one was obtained by a similar (but not explicitly shown) calculation. Geometric parameters can be chosen to
chieve optimal flexural hinges with infinite life for a desired safety factor, e.g., t* = 3.5 mm and tS = 1.0 mm for SD = 2.

. Conclusions

In order to avoid fatigue failure of flexural hinges in compliant mechanisms, explicit analytical expressions for the fatigue life of
ectangular, circular and parabolic flexural hinges were derived, accounting for stress concentration, surface finish and non-zero mean
tresses. Time-harmonic, constant amplitude loads, namely axial forces, shear forces and bending moments, are considered. Optimally
esigned flexural hinges with an infinite life were then obtained by an inverse solution of the derived explicit expressions for given loads.
wo example cases were described in detail to illustrate the proposed fatigue analysis and design process. Comparing circular and parabolic
inges in terms of fatigue life, it was shown, that circular hinges provide a “safer” design than parabolic hinges for a given thinnest cross-
ection. Or in other words, circular hinges can have a thinner cross-section than parabolic hinges, while providing the same safety against
atigue failure. From a topological synthesis standpoint, the derived, explicit, analytical expressions provide an effective analysis and design
rocess, in order to incorporate optimal flexural hinges into compliant mechanisms for dynamic applications prior to any modelling or
anufacturing efforts. This formulation eliminates unclear interpretation issues that would be encountered during any later manufacturing

tage of a compliant mechanism.
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