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This work presents a computer simulation framework based on discrete element method 
to analyze manufacturing processes that comprise a loosely flowing stream of particles 
in a carrier fluid being deposited on a target surface. The individual particulate dynamics 
under the combined action of particle collisions, fluid–particle interactions, particle–surface 
contact and adhesive interactions is simulated, and aggregated to obtain global system 
behavior. A model for deposition which incorporates the effect of surface energy, impact 
velocity and particle size, is developed. The fluid–particle interaction is modeled using 
appropriate spray nozzle gas velocity distributions and a one-way coupling between the 
phases. It is found that the particle response times and the release velocity distribution 
of particles have a combined effect on inter-particle collisions during the flow along the 
spray. It is also found that resolution of the particulate collisions close to the target surface 
plays an important role in characterizing the trends in the deposit pattern. Analysis of the 
deposit pattern using metrics defined from the particle distribution on the target surface is 
provided to characterize the deposition efficiency, deposit size, and scatter due to collisions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

This paper addresses the problem of deposition of colliding and flowing particulate media onto a specified target surface, 
and an analysis of the behavior of the resulting deposit pattern. This is an aspect of major interest in a broad variety of 
modern industrial processes, particularly in the context of spray forming and additive manufacturing processes. Extensive 
review of the state of the art for a broad range of such processes can be found in [1], and [2]. Specifically for detailed 
discussion on particle deposition and aggregation phenomena, the reader is referred to [3], and [4]. The applications of 
particle spray and deposition processes encompasses a wide gamut of areas including design of functionally engineered 
surfaces (see for example [5,6]), additive manufacturing technologies (see for example [7–9]), patterning and fabrication 
using inkjet printing (see for example [10,11]), and biomedical applications (see for example [12,13]). It is evident from 
the diversity of such applications that these are fundamentally coupled multi-physical processes, and obtaining information 
on the synergistic interplay between the various physical phenomena that govern these processes is an important issue. In 
general these physical interactions include a combination of fluid–particle interactions, particle-interactions with a collection 
of surfaces that bound the domain of the flow, inter-particle collisional interactions, and adhesive and physical bonding 
interactions. In this work, we present a computer simulation framework that is based on collision driven discrete element 
method to investigate the overall process behavior of a typical particle spray process. Our computational abstraction of such 
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processes involves a collection of particles released in a specified manner from a fixed region in space, being propagated 
towards a target surface by a carrier fluid media, and deposited on the target surface.

A detailed overview of thermal spray process modeling and simulations – with emphasis on the droplet dynamics during 
deposit solidification can be found in [14], and similar other investigations for thermal sprays can also be found in the works 
by [15,16], and [17] amongst other recent works. The computational modeling of particle deposition under the action of a 
carrier fluid has been also studied by researchers in various contexts and using various techniques. For example, deposition 
of aerosol particles in a channel flow has been studied by [18], sub micron size particle dispersion in channel flows has been 
studied by [19], particle deposition in turbulent boundary layers using Lagrangian random-walk approach has been studied 
by [20], and a similar approach for near-wall flows has been used in a study by [21]. However, not much focus has been 
directed towards higher particle number densities, the effect of inter-particle collisions on the deposit pattern properties, 
and on the near-target build up of particles. For guided particle sprays, and for target deposit quality inter-particle collisions 
can cause substantial scattering in the pattern of particle incidence on the specified target site. Discrete element methods 
(see [22,23] for details) for modeling coupled spray dynamics and deposit growth provide the ability to explicitly track 
all inter-particle and particle-target collisions and hence provide a suitable alternative. Discrete element techniques for 
simultaneous flow dynamics, and growth and microstructure evolution are relatively recent - and some related existing 
studies include the work on event-driven particle deposit growth by [24], and on charged particle cluster impact with 
a target surface by [25]. Particularly in the work by [24], a collision based approach was used to incorporate particle 
rebound from the growing deposit pattern. In-flight dynamics of the collection of particles under the combined action of 
fluid–particle and particle–particle interactions have been formulated in the present framework in combination with the 
dynamics of the deposit growth at the target surface, to achieve a systemwide behavior of the process with regards to 
various parameters that govern the particle incidence pattern on the target surface.

The organization of the rest of the paper is as follows: Section 2 details the various physical models at the level of the 
individual discrete particles, Section 3 details in particular the considerations for deriving an appropriate model for deposit 
adhesion, Section 4 outlines the hierarchical assembly of the particle level models, and appropriate boundary conditions 
into the overall computer simulation framework, Section 5 presents detailed numerical examples and analysis to highlight 
the utility of such a framework in capturing physical behavior of the system. Throughout the ensuing discussions, the term 
particles will be used to represent the mathematically abstracted computational units that comprise the discrete medium 
in the flow (also called discrete elements). With regards to applicability in some of the various applications presented 
earlier, these could be representative of not only actual particles, but also meso-scopic idealized computational units. The 
work presented here is part of an ongoing effort towards developing a general-purpose computer simulation tool to analyze 
the dynamics of particulate and granular media in engineering applications. All dynamics simulations were found to be 
reasonable in performance time.

2. Physical models for particle-level interactions

2.1. Particle–particle contact interactions

The principal governing physical interactions for the dynamics of the particle streams are the particle–particle and 
particle–surface contact interactions. Owing to the underlying rigidity of the individual particles that comprise the parti-
cle streams, these systems are collisionally dominant. There exist a wide range of approaches for characterizing the force 
between contacting bodies, and a comprehensive review of all the approaches will be beyond the scope of the current 
work. The interested reader is referred to the classical work of [26], and the extensive reviews on contact force models 
presented by [22], and [27]. A very commonly used approach is to characterize the contact force between two bodies based 
on a geometric overlap that characterizes the contact deformation. For two spherical bodies of radii R1 and R2 (located at 
r1 and r2 respectively), this overlap is easily estimated by δn = ‖r1 − r2‖ − (R1 + R2). Obviously for positive values of δn , 
there is no contact occurring between the two bodies – which forms a direct check for contact detection. Perhaps the most 
fundamental of these models is the Hertzian model for normal contact (see [28] and [26]), which relates the normal contact 
force to the normal contact overlap as:

F n
c = 4

3

√
R E∗δ3/2

n = Knδ
3/2
n

where δn = ‖r1 − r2‖ − (R1 + R2) is the relative deformation that they undergo, 1/R = 1/R1 + 1/R2, and the effective 
elasticity E∗ is defined as 1

E∗ = 1−ν2
1

E1
+ 1−ν2

2
E2

, where ν and E denote the Poisson’s ratio and elasticity of the contacting 
particles. Similar models have also been presented by [29–33], and [22] amongst others. The implementation of these 
models in a computer simulation framework for resolving the particle dynamics requires the numerical time-steps to be 
lesser than the total duration of the contact. While this is required for physically correct representations of systems with 
enduring contacts (that is, with significant contact-durations as compared to the characteristic time-scales of the particle 
system), for collisionally dominant systems with non-enduring contacts of significantly small durations, this may lead to 
very stringent requirements on the numerical time-step sizes.

Alternatively, a direct pairwise balance of linear and angular momenta for a collection of contacting particles can be used 
to derive an estimate of the contact forces. This approach has been used for flowing particulate media in the works of Zohdi 
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Fig. 1. Schematic of a typical particle–surface contact configuration (left) and particle–particle contact configuration (right) used to derive the collisional 
interactions using a balance of linear and angular momenta.

et al. (see [34–37] for details). For applications involving dynamic systems of particles undergoing non-enduring contacts, 
this provides a theoretically consistent estimate of the contact interactions. Furthermore, this approach does not require an 
explicit force deformation relation to be evaluated and integrated over the duration of the contact – thereby relaxing the 
restrictions on the time-step sizes to be lesser than contact duration.

In order to outline the expressions for the forces obtained using a direct balance of momenta, we refer to the schematic 
representations of inter-particle and particle–surface contacts as presented in Fig. 1. For particle–particle collisions, we 
define normal vectors for the pairwise collisions as follows:

n̂ ji = r j − ri

‖r j − ri‖ n̂i j = ri − r j

‖ri − r j‖ (1)

Assuming the particles are idealized to be rigid (that is, any contact deformations that occur are neither permanent nor 
significant as compared to the particle dimensions), the velocities at the point of contact for each spherical particle can thus 
now be written as:

vpi = vci + ωi × (Rin̂ ji) (2)

vpj = vcj + ω j × (R jn̂i j) (3)

The relative velocity at the point of contact can be defined as vrel = vpj − vpi . Using the relative velocity at the contact 
point, the direction of tangential slip can be characterized by a unit vector t̂i j as follows:

t̂i j = vrel − (vrel · n̂i j)n̂i j

‖vrel − (vrel · n̂i j)n̂i j‖ (4)

The pairwise linear momentum balance for the collision of the particles can now be written as:

mivi(t + δt) − mivi(t) = 〈Fc
i 〉δt + 〈Fe

i 〉δt (5)

m jv j(t + δt) − m jv j(t) = 〈Fc
j〉δt + 〈Fe

j〉δt (6)

where superscripts ‘c’ and ‘e’ denote contact forces and external, non-contact forces respectively, and 〈·〉 denotes the av-
eraged impulse over the collision duration δt . While the contact deformations are assumed negligible, in reality the work 
done by the mechanical forces within the bulk of the contact particles owing to any inelastic deformations leads to a dis-
sipation of energy. This can be accounted for using the restitution coefficient (e). Decomposing the overall contact event 
into a compression phase where particles approach each other, followed by a recovery phase where particles recede from 
each other, the restitution coefficient (e) can be defined as the ratio between the contact impulse during recovery phase to 
that during compression phase. Assuming further that the total contact force for the pairwise collision on particle i can be 
written as Fc

i = f N n̂i j + f T t̂i j , and performing some algebra the total normal contact force can be written as follows:

〈 f N〉δt = 〈 f N〉C δt1 + 〈 f N〉R(δt − δt1) = (1 + e)〈 f N〉C δt1

= 1 + e

mi + m j

[
mi〈F e

jn〉C δt1 − m j〈F e
in〉C δt1

]
− (1 + e)mim j

mi + m j

[
vin(t) − v jn(t)

]
(7)

where 〈·〉C , 〈·〉R denote impulse over compression and recovery phases respectively. The interested reader is referred to 
Appendix A for mathematical details. The contact impulse can now be plugged back into the linear momentum balance 
equations to get the respective post collisional velocity updates as follows:
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mi vin(t + δt) = mi vin(t) + 1 + e

mi + m j

[
mi〈F e

jn〉C δt1 − m j〈F e
in〉C δt1

]
− (1 + e)mim j

mi + m j

[
vin(t) − v jn(t)

] + 〈F e
in〉δt (8)

m j v jn(t + δt) = m j v jn(t) − 1 + e

mi + m j

[
mi〈F e

jn〉C δt1 − m j〈F e
in〉C δt1

]
+ (1 + e)mim j

mi + m j

[
vin(t) − v jn(t)

] + 〈F e
jn〉δt (9)

For the tangential component of the contact impulses, the momentum balance in t̂i j (see Eq. (4)) can be used along 
with a Coulomb stick-slip criteria, to derive expressions for the impulse. The inherent discontinuity of the stick-slip law can 
lead to mathematical complications, thereby requiring rigorous numerical techniques to handle such a model within the 
rigid body assumption for contact force calculation. An extensive review of the techniques available can be found in [38]. 
The latest developments, as discussed in the review, incorporate the idea of impulsive forces in rigid body dynamics as 
measures of distributions instead, and the idea of combining rigid body contact problems with an area of convex analysis 
called the linear complementarity problem (for mathematical foundations of the method see the text by [39]). However, 
the implementation of such a formulation into the time-discretized motion equations for a system of particles can be 
a complex task, as discussed by [38]. For systems of flowing particles with non-enduring contacts the system behavior 
is not significantly dependent on the exact stick-slip nature of the contact friction, as opposed to more static, enduring 
contacts (see for example the discussion [40], and [22]). Therefore, for the applications of interest in this paper, the exact 
determination of stick-slip friction in an impulse–momentum balance type contact formulation can be replaced by a simple 
regularization of the discontinuous Coulomb friction law. Such regularized friction models can lead to robust numerical 
methods for integrating the motion equations. Discussions on the models for regularized Coulomb friction can be found in 
the works by [41], and by [42], and in general, the friction force can be given by:

〈 f T 〉 = μR
(

vslip,t
)‖ f N‖ (10)

where R 
(

vslip,t
)

is a regularization function that approximates the discontinuity of the stick-slip criteria. A commonly used 
form of the regularization function R can be given as follows:

R1
(

vslip,t
) =

⎧⎪⎨
⎪⎩

−1 ∀vslip,t < −ε
vslip,t

2ε ∀ − ε ≤ vslip,t ≤ ε

1 ∀vslip,t > ε

(11)

where ε is a regularization parameter, and smaller values of this parameter lead to better approximations of the stick-slip 
friction law. The tangential velocity updates can now be given using the tangential component momentum balance as 
follows:

mi vit(t + δt) = mi vit(t) + μR
(

vslip,t
)‖ f N‖δt + 〈F e

it〉δt (12)

m j v jt(t + δt) = m j v jt(t) − μR
(

vslip,t
)‖ f N‖δt + 〈F e

jt〉δt (13)

In order to balance the angular momenta, we define a third unit vector ŝi j = n̂i j × t̂i j , to complete a triad. The total 
angular momentum balance can now be written in terms of components along ŝi j for the two bodies as follows:

Iiωis(t + δt) = Iiωis(t) − RμR
(

vslip,t
)‖ f N‖δt + 〈Mis〉δt (14)

I jω js(t + δt) = I jω js(t) − RμR
(

vslip,t
)‖ f N‖δt + 〈M js〉δt (15)

The derivation of contact interactions presented here is based on the knowledge of restitution coefficient, and the dura-
tions of the compression and recovery phases of collision. A physically consistent model for these parameters is therefore 
necessary to capture the inelastic effects during the collision realistically. We refer to the discussions presented in the clas-
sical work by [26] and [43], and for two spheres undergoing elastic collisions, the total contact duration can be shown to 
be as follows:

δt = 2.87

(
m2

R vn E∗2

)1/5

(16)

where E∗ and R are as defined at the beginning of Section 2.1. The underlying contact forces being completely elastic, the 
compression and recovery durations should be equal to each other (each being equal to δt/2 from Eq. (16) above). This 
is true for low impact velocities, and as the impact velocities increase, inelastic deformations occur more readily, thereby 
leading to a limiting normal velocity of impact Vlim which can be derived from a balance of energies to give the following:

1

2
mV 2

lim = 53
R3Y 5

E∗4
(17)

where Y is the yield stress of the softer of the colliding pair. For any velocity higher than this limit, inelastic deformations 
occur in the continua of the colliding bodies, and based on the change in energy due to this inelastic deformation, the 
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restitution coefficient can be derived to be (see [26] for details):

e = e(vcn, E∗) = 3.74

√
Y

E∗

(
1
2 mvcn(t)2

Y R3

)−1/8

(18)

The collision durations for the inelastic collision regimes are understandably no longer equally divided, and the compres-
sion and recovery durations can be derived as a function of the restitution coefficient as follows:

δt1 =
√

πm

24RY
and δt − δt1 = 1.2eδt1 (19)

2.2. Particle–surface contact interaction

The contact interactions between a particle and a surface can also be formulated using similar considerations. Assuming 
the surface description is known to be in form of a mathematical representation F(x, y, z) = 0, it is possible to define a 
normal vector to the surface by using the following definition (for the unit outward normal) n̂ = − ∇F

‖∇F‖ . We consider a 
spherical particle approaching this surface, and denote the point of contact with subscript p, and center of mass with the 
subscript c. If the surface velocity vector is known to be vsurf , then the slip velocity at the point of contact can be obtained 
as:

vslip = (
vp − vsurf

) − [(
vp − vsurf

) · n̂
]

n̂ (20)

following which, the direction of tangential slip can be defined as:

t̂ = vslip

‖vslip‖ (21)

From Fig. 1 the generic form of the contact force acting on the particle can be now motivated to be Fcontact = f N n̂ −
f T t̂. Starting from the balance of linear momentum for the particle over the contact duration and using the definition of 
restitution coefficient (e) as in the previous section, the final expression for the normal force can be estimated as follows 
(additional algebra details can be found in Appendix A):

〈 f N〉δt = 〈 f N〉C δt1 + 〈 f N〉R(δt − δt1) = (1 + e)
[
mvsurf ,n − mvcn(t) − 〈F e

n〉δt1
]

(22)

Plugging the expression for the total contact impulse into the balance of linear momentum of the particle, the post impact 
normal velocity of the particle can be obtained as follows:

vcn(t + δt) = (1 + e)vsurf ,n − evcn(t) + 1

m
〈F e

n〉R(δt − δt1) − e

m
〈F e

n〉C δt1 (23)

The tangential force can be estimated using a regularized friction model analogous to the case of particle contact using 
Eq. (10). The tangential velocity updates can then be obtained again using Eq. (12), and the updates to the angular velocities 
due to the contact can be obtained using Eq. (14).

2.3. Particle–fluid interaction

A fully coupled solution of the fluid field incorporating effects of the particle phase on the flow is computationally 
intensive, and a wide range of existing studies have attempted to tackle such a computation and address underlying issues 
– for further details see the works by [44–48] amongst others. For applications involving colliding and flowing particulate 
media, for relatively small particle sizes, the overall dynamics of the ensemble of particles can be approximated reasonably 
well by assuming that the fluid–particle interactions are one-way coupled (see also the works of [18–21] wherein similar 
one-way coupled fluid–particle interaction has been employed to study particle motion). Furthermore, for higher density 
particulate material transported by a gaseous medium, the drag force can be shown to be the most dominant interaction 
force on the particles. Hence a correct estimate of the drag force is crucial to resolving the dispersed particulate phase 
behavior. The standard form of the drag force has been used here:

Fdrag = 1

2
ρ f (π R2

p)C D(Rep)|u f − vp|(u f − vp) (24)

where Rep is the particle slip velocity based Reynold’s number given by Rep = 2R p |u f − vp |/ν f . The drag coefficient C D can 
be expressed as a correlation function in terms of Rep , and the form of the drag coefficient law used in this work has been 
given by [49] for a broad range of Reynolds number values. The correlation is as below:

C D
(
Rep

) = 24

Rep

(
1 + 0.1806Re0.6459

p

)
+ 0.4251

1 + 6880.95
(25)
Rep
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For the one-way coupled assumption, since the particle-phase does not affect the flow velocity, knowledge of the velocity 
field is a necessary boundary condition. In order to obtain realistic description of the particulate phase dynamics, a jet 
velocity profile has been assumed here as follows:

u f = C1

x1/3
sech2

(
C3 y

x2/3

)
(26)

v f = C2

x2/3

[
2

C3

x2/3
sech2

(
C3 y

x2/3

)
− tanh

(
C3 y

x2/3

)]
(27)

For three-dimensional simulation, the assumption of axi-symmetry is invoked, and y is replaced by the radial cross-span 
coordinate location, and x becomes the stream-wise coordinate location. In consistency with free jet-flow from a nozzle, a 
small region of flow with no entrainment has been assumed near the nozzle exit – which is referred to as the potential 
core. The form of the velocity ensures that centerline stream-wise velocity decays with distance proportional to x−1/3, while 
entrainment scales as x−2/3. Other possible forms of velocity profiles appropriate for spray dynamics have been discussed 
in detail by [50,14], and [51], and can be imported into the simulation framework easily if required.

3. Adhesion and deposition of particles

The exact mechanism of deposition is a complicated aspect of the governing physics of spray particle deposition technolo-
gies. Deposition can result from chemical reactions, solidification of molten droplets, physical bonding, or ionic/electrostatic 
mechanisms. For a detailed review on these various processes the reader is referred to the work by [1], and the discussions 
presented by [14]. For the current example, it is sought to have a simple model to treat the basic process of a flowing dis-
crete element sticking to a surface – which can then be hierarchically integrated into a large-scale simulation to understand 
the global system behavior. To do this, we refer to the macroscopic force of adhesion between a sphere and a surface at very 
small distances. For two macroscopic particles – themselves composed of a large number of molecules – the net interaction 
energy between the particles can be computed by summing over all possible interactions between these molecules. Such 
interactions are characterized by an appropriately modeled interaction potential U (r) – with force Fadh = −∇U . The general 
form of this integration can be written as:

Uadh =
∫
V1

dV1

∫
V2

dV2ρc1ρc2U (r) (28)

where the integrations are done over the volumes V1 and V2 of the two bodies with molecule densities ρc1 and ρc2
respectively. The earliest calculations for two rigid spheres using the London Van Der Waals potential form U (r) = −C

r6 was 
performed by [52], and later modified slightly by [53], and further mathematical details can be found in the extensive 
discussions presented by [54]. However, particularly for the case of calculating interaction forces and energies between 
spheres separated by a distance d such that R1, R2 
 d, an important result exists due to the work by [55] (see also 
the discussion in [54] for details). The result, referred to as the ‘Derjaguin approximation’, states that the interaction force 
between two spheres, for any choice of potential U (r), can be related to the interaction energy between two semi infinite 
planes as follows:

‖F(d)spheres‖ = 2π RU (d)planes (29)

where R is the effective radius, and for most common potential choices, the integration to obtain U (d)planes is easier to com-
pute than that for spheres. An interesting conclusion that can be drawn from this is the relation between interaction forces 
and surface energy γ . If we assume that two spheres are in contact, then the actual separation length-scale between the 
two will be of the order of molecular separation. Representing this separation by ε0, the energy of interaction U (ε0) = −2γ , 
thereby giving:

‖F (ε0)‖ = −4πγ R (30)

The surface energy for creating an interface by bringing two surfaces in contact will be equal to the sum of the original 
surface energies minus the work down to bring them together. This can be estimated using a simple combination law as 
follows (see [54] for details):

γ12 = γ1 + γ2 − 2
√

γ1γ2 = (√
γ1 − √

γ2
)2 (31)

Using the Derjaguin Approximation for forces between a sphere and a flat surface, the adhesion force can be written as 
in terms of the particle–surface interface energy (γ12) as:

F adh = −4πγ12 R (32)

with γ12 ≈ 2
√

γ1γ2 (if dispersion forces are dominant [54]). Referring to Fig. 2, and using the expression for the final 
velocity as in Eq. (23), it can be seen that

vcn(t + δt) = −evcn(t) + 1
F adh

n (δt − δt1) − e
F adh

n δt1 (33)

m m
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Fig. 2. Schematic for the derivation of a velocity dependent adhesion criteria.

Let us consider vcn(t) = −v0, and Fadh = −F adhn̂, which is consistent with Fig. 2. Furthermore, since the fundamental as-
sumption is that of a nearly-rigid collision, with very small time-scales of collision that do not overlap the simulation 
time-steps, it will be expected that within one time-step of the simulation, the final velocity vcn(t + δt) should be positive 
if adhesive effects have not dominated the collision. On the other hand, if vcn(t + δt) is negative, then the above assump-
tions are contradicted, and adhesion effects are dominant – and appropriate physical bonding interactions are established. 
Therefore, if vcn(t + δt) < 0 it is assumed that the particle sticks to the surface, and assumes the same velocity as the sur-
face. With the further consideration that purely elastic collisions will occur at very low velocities for all practical purposes 
(which leads to lower collision forces, and more adhesion dominant collisions), it can be assumed that this criteria on final 
velocity be applied in the regime of inelastic collisions, which then gives us the following final criteria after some algebra:

0 > −ev0 − 1

m
F adh(1.2eδt1) + e

m
F adhδt1

v0 <
0.2F adhδt1

m
(34)

where we have used the discussions presented in Section 2.1, for the relative magnitude of compression and recovery times 
in inelastic collision. The adhesion criteria in Eq. (34) will actually lead to very low velocity requirements if the force F adh is 
computed using the values of surface energy alone. In real applications, however, the effective physical bonding interaction 
force might be much larger – owing to either the fact that it is trying to represent a different interaction phenomenon, 
or that the surface to be deposited has been functionally enhanced through some engineered mechanism. Hence the force 
is multiplied by an appropriate factor αADH so as to capture the real system behavior more correctly. Thus the velocity 
dependent criteria becomes v0 < 0.2αADH F adhδt1/m. Note that as particle size increases, the particle mass increases, thereby 
leading to very low upper bounds for impact velocities to induce complete adhesion – which is consistent with the physical 
behavior of such systems. The simple form of Eq. (34) also allows for a simple integration into simulation algorithms, and 
captures the reported trends on critical velocity and diameter well [56].

4. Simulation framework

4.1. System configuration and boundary conditions

A representative system geometry for the simulation framework has been presented in Fig. 3 where a stream of particles 
are tracked within a computational domain until it collides with a surface. Depending upon their impact velocity, the 

Fig. 3. The schematic representation of the computation domain with identified boundary conditions. Only a cross-section is shown for simplifying the 
schematic. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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particles either adhere to the surface or collide and bounce back. Apart from the target surface where deposition is being 
tracked, the computational domain comprises an inlet surface, and boundaries for the overall domain. The latter boundaries 
are subjected to an ‘escape’ boundary condition – that is, any particle crossing this boundary is considered to be exiting the 
computation domain, and is removed from the calculations. The ‘inlet’ boundary condition is modeled in terms of a particle 
injection. The particle injection is performed by generating random sequentially added spherical particles within a circular 
cross section area at the inlet boundary. The total number of particles injected Nin , and the number of time-steps after 
which injection is performed Tin are set using a desired particle feed-rate (measured in number of particles per second) as 
follows (where 
t is the numerical time-step):

f in = Nin

Tin
t
(35)

It is noted here that this is a relatively generic technique of assigning an inlet condition, and can be easily extended to 
assign a specified momentum or mass flow-rate at the inlet as well.

4.2. Handling particle polydispersity

For the numerical examples illustrated in the subsequent sections, the random variability in the particle sizes was incor-
porated by assuming the particle sizes to be drawn from an underlain distribution. The most widely used size distribution 
is based on the Weibull family of distributions (alternatively referred to as the Rosin–Rammler distribution in the literature, 
see for example [57]). The general form of the distribution is as follows:

f (D p;λ,n) = n

λ

(
D p

λ

)n−1

exp

[
−

(
D p

λ

)n]
(36)

The parameter n is a shape parameter for the distribution function, and is chosen to be a free parameter. For a chosen 
shape parameter value, the scale parameter λ is then correlated with the median particle size to be simulated using the 
following relation:

Dmedian = λ [log (2)]1/n (37)

The particle diameters are sampled from the distribution in Eq. (36) by using an inverse transform sampling technique.

4.3. Numerical formulation

The particle-level physical interaction models described in Sections 2 and 3 can now be hierarchically assembled to 
construct an overall simulation framework for the particulate spray dynamics. Considering an ensemble of N particles PN

as shown in Fig. 3, the individual motion equations can be written for each particle (marked in red) as follows:

dv

dt
= 1

mi

[
F f l

i + Is (Pi,S)
[

Fadh
i + Fc

i (Pi,S)
]
+

∑
Ip

(
Pi,P j

)
Fc

i j

]
(38)

dxi

dt
= vi (39)

where Is and Ip are indicator functions for particle–surface and particle–particle collisions respectively. For the derived 
forces from a global momentum balance formulation presented in Section 2, the forms of these indicator functions for a 
pair of particles can be mathematically defined as:

δn = ‖ri − r j‖ − (
Ri + R j

)
Ip(i, j) =

{
1 if δn ≤ 0 and vij,n < 0 (contact)

0 if δn > 0 or vij,n > 0 (no contact)
(40)

For a particle–surface contact check, the form of the indicator function remains the same. The only variation is in the 
evaluation of the contact overlap δn . For interactions between a spherical particle and a plane surface – which is the 
application we are interested in here – this can be estimated by considering the plane to be defined as ax + by + cz + d = 0
in three-dimensional Euclidean space, and writing the overlap using the total distance of the center of the sphere from this 
plane as follows:

δn = ‖a jxi + b j yi + c j zi + d j‖√
a2

j + b2
j + c2

j

− Ri

Is(i,S j) =
{

1 if δn ≤ 0 (contact)
(41)
0 if δn > 0 (no contact)
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The check on the relative velocities for the contacting particles in Eq. (40) is critical to resolve the contact forces 
accurately. The evaluation of the collision indicator Ip is the most computationally intensive step – since it requires a 
pairwise collision check for all N particles in the ensemble. However, potential collisions can only occur amongst the near-
est neighbors provided the time-steps are not erroneously big. Therefore appropriate binning and neighbor-list construction 
algorithms can be employed to resolve the geometrical locality of the particle ensembles and perform contact checks only 
amongst the close neighbors for a particle. A wide variety of such algorithms exist (see for example, the works by [22,58]
(specifically Chapter 7), [59,60], the classical work by [61], more recent works of [62,63] (for more algorithmic details), and 
[64]). Implementation of such algorithms reduce significantly the time-complexity of resolving the collision physics. For the 
simulation framework presented here, a direct binning algorithm is used. The domain is decomposed into rectangular bins, 
and for each particle, contact checks are performed with particles in its own bin and in all the neighboring bins. The bin 
size is set based on a scaling with respect to the largest particle diameters in the generated particle ensemble, and detailed 
algorithmic analysis is presented in [22].

4.4. Solving the system equations

Within a certain time-step, physical contact for a particle or a surface may happen at any instant. However, checking for 
contacts inside of a time-step will be a computationally intensive task. Hence as an approximation, it can be assumed that 
the instant when contact occurs is shifted to the beginning of the time-step. This is analogous to the ‘Collide-and-Stream’ 
type calculations typical in Lattice–Boltzmann type simulations (see [65], and more specifically [37], and [25] for such 
calculations in particulate flow problems). This means that for an individual particle, contacts with another particle or a 
surface at a time instant t∗ > tn are resolved by applying the appropriate force at the beginning of the time-step tn+1. The 
motion equations for each individual particle are solved using a one-step φ discretization scheme outlined as follows:

vN+1
i = vN

i + 
t

mi

[
φFN+1

i,net + (1 − φ)FN
i,net

]
(42)

xN+1
i = xN

i + 
t
[
φvN+1

i + (1 − φ)vN
i

]
(43)

FN
i ,net = F f l,N

i + Is

(
PN

i ,S
)[

Fadh,N
i + Fc,N

i

(
PN

i ,S
)]

+
∑

Ip

(
PN

i ,PN
j

)
Fc,N

ij (44)

where superscripts N and N + 1 indicates the indices of the current and the future time-step in the discretization respec-
tively. The notation PN

i indicates the dynamic phase-space location of the i’th particle at the time-step indexed by N . This 
is a generalized one-step scheme, with φ ∈ [0, 1], and φ = 0 is the explicit Euler integration scheme, while φ = 1 is the 
fully implicit Euler integration scheme. The implicit implementation of the position and velocity updates, as is evident from 
Eqs. (42) and (43), requires an iterative solution for vN+1

i and xN+1
i . A fixed-point iterative scheme can be formulated by 

re-arranging Eq. (42) and Eq. (43) as follows (see [66], and [67] for details):

vN+1
i = Gv

(
vN+1

i ;PN+1
i , i = 1, . . . , Np

)
+Rv (45)

xN+1
i = Gx

(
xN+1

i ;PN+1
i , i = 1, . . . , Np

)
+Rx (46)

Gv = 
t

mi
φFN+1

i,net (47)

Rv = vN
i + 
t

mi
(1 − φ) FN

i,net (48)

Gx = 
tφvN+1
i (49)

Rx = xN
i + 
t (1 − φ)vN

i (50)

where an explicit dependence of the forces (and therefore the functions Gv and Gx) on the overall phase-space of the 
particles has been indicated by the additional function argument PN+1

i . The iterations can now be carried out as follows:

vN+1,K+1
i = Gv

(
vN+1,K

i ;PN+1
i , i = 1, . . . , Np

)
+Rv (51)

xN+1,K+1
i = Gx

(
xN+1,K

i ;PN+1
i , i = 1, . . . , Np

)
+Rx (52)

where the superscript K indicates the number of iterations. The successive fixed-point iterations are carried out until the to-
tal particle phase space error is below a certain specified threshold value. The form of the error function has been presented 
below:

etotal =
∑ ‖vN+1,K+1

i − vN+1,K
i ‖ + ‖xN+1,K+1

i − xN+1,K
i ‖

‖vN+1,K+1 − vN+1,0‖ + ‖xN+1,K+1 − xN+1,0‖ (53)

i i i i i
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Algorithm 1 The procedural implementation of the simulation framework. The evaluation of the contact, fluid, and adhesion 
forces, and resolution of particle adhesion vs rebound is using the models described in Sections 2 and 3.
1: instantiate and initialize all data structures
2: construct the binned neighbor-list
3: set-up fluid velocity profile
4: 
t ← time-step size; Tsim ← simulation-time
5: for (t ≤ mod(Tsim/
t)) do
6: if (mod(t/Tin) = 0) then
7: inject Nin particles
8: end if
9: while (etotal ≤ eTOL) do

10: Fc
i j ← build all contact forces using binning ∀i, j = 1, · · · , Np

11: F f l
i ← build all fluid forces ∀i = 1, · · · , Np

12: resolve all adhesions at the surface ∀i = 1, · · · , Np

13: if (particle i is not deposited) then
14: particle rebounds with Fc

i ← contact force between particle and surface
15: end if
16: calculate total force as sum of all forces
17: for particle_index = 1, num_particles do
18: update velocities
19: update positions � as from Eqs. (42), (43), (44)
20: end for

21: etotal = ∑
i

‖vN+1,K+1
i −vN+1,K

i ‖+‖xN+1,K+1
i −xN+1,K

i ‖
‖vN+1,K+1

i −vN+1,0
i ‖+‖xN+1,K+1

i −xN+1,0
i ‖

22: end while
23: reset the particle bins
24: conditionally dump particle phase-space data to external file for post-processing
25: end for

Table 1
Representative simulation parameters used for the numerical experiments performed in this 
study.

Parameter Values/ranges used

Target material properties 80.0 GPa (shear), 160.0 GPa (bulk)
Particle material properties 77.0 GPa (shear), 167.0 GPa (bulk)
Target material yield strength 690.0 MPa
Particle density 5680.0 kg/m3

Surface energy of target surface 1100.0e–3
Surface energy of particles 46e–3 J/m2

Friction coefficient 0.50–0.60 (variable)
Friction regularization parameter 0.0001
Restitution coefficient 0.80 (variable based on velocity)
Carrier fluid density 1.10 kg/m3

Carrier fluid viscosity 25.0e–6 m2/s
Release nozzle radius 0.01 m
Target surface stand-off distance 0.30 m
Simulation time-step (
t) 2 × 10−6–5 × 10−6 s

where superscripts N + 1, 0 indicate the initial guesses for the positions and velocities at the beginning of the time-step to 
get the iterative calculations started. The overall implementation of the solution algorithm has been presented in form of a 
pseudocode in Algorithm 1.

5. Numerical example

5.1. Three-dimensional simulation of particle flow and deposition

Fully three-dimensional particle flow and deposition simulations were performed, with varying system parameters. The 
global system parameter values and ranges have been presented in Table 1. Particles were released at the rate of 50 par-
ticles per time step (Nin) after every 100 time-steps (Tin), and particle motion equations were solved using a trapezoidal 
integration scheme (that is, φ = 0.5 in Eqs. (42), and (43)). These parameter choices are reasonable, and have been kept 
constant across a broad range of numerical experiments with the developed simulation framework. The various forms of 
particle size distributions used in the numerical experiments have been presented in Fig. 4.

An illustration of the dynamics of the particle stream dispersed in the carrier fluid and being propagated towards the 
target surface is presented in form of snapshots in Fig. 5. The particles are released with an inlet velocity that has been 
chosen uniformly randomly between 0 and 50 m/s. Owing to the randomness in particle size, and in particle release veloc-
ities, and also the response of the particles to the entrainment velocity in the carrier fluid flow field, the particles undergo 
mid-air collisions as they propagate towards the target surface. These collisions cause a scatter in the particle deposit pat-
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Fig. 4. The particle size distributions used in the numerical experiments presented here.

tern on the target surface. Also, owing to the variability in the particle impact velocities, based on the deposition criteria, 
a proportion of incoming particles collide and bounce back instead of getting deposited. Since the particle response to the 
imposed flow velocity field varies proportionally to the square of particle diameter, variabilities in particle size will lead to 
variabilities in the particle velocities in the carrier fluid. Additionally, the nature of the imposed flow is such that particles 
close to the spray centerline travel faster, and there is an entrainment flow radially inwards into the spray. Smaller particles 
in the spray respond to this entrainment sooner, and attain a cross-span velocity component. These factors contribute to 
increased number of inter-particle collisions. A typical deposit pattern produced from such a process, and its microstructure 
have been illustrated in Fig. 6, where the same particle spray process was allowed to evolve for a longer duration until a 
sum total of 50 050 particles were injected into the plume. Due to the particle collisions as mentioned earlier, the deposit 
pattern shows significant levels of scatter – most of which have been zoomed out of in Fig. 6. In order to compare the 
uniformity of the deposit pattern and the scatter produced on the target surface, a set of deposit pattern data have been 
visualized for various different simulation configurations in Fig. 10, a detailed discussion on which will be presented in the 
following subsection.

5.2. Analysis and parameter variations

Further analysis of the overall trends in the deposition process is now motivated in terms of simple metrics relating to 
the deposit pattern which are obtained from post-processing the deposited particles and their spread on the target surface. 
The following metrics have been defined and used as a part of this study:

• deposit fraction = Ndel
Ninj

, where Ndel is the number of deposited particles,and Ninj is the number of injected particles, 
both measured after a fixed simulation time interval

• volume fraction =
∑Vp
Vtarget

, where Vp indicates volume of a deposited particle lying within a chosen deposit-target region, 
and Vtarget indicates the total volume of the deposit-target (e.g. for our simulations it is the circular pellet of width 
0.01 m)
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Fig. 5. Successive snapshots of a three dimensional particle stream of mono-disperse particles impacting a target surface with a deposit factor of 5000. 
(Particle markers made slightly bigger to aid better visualization). (For interpretation of the colors in this figure, the reader is referred to the web version 
of this article.)

• mean spread μ =
∑ |xp−x0|

Ndep

• scatter in spread σ =
√∑ (|xp−x0|−μ

)2

Ndep

• maximum deposit thickness h = max(xi · s) − min(xi · s) where s is the vector along the streamwise direction of spray 
plume

In order to isolate the effect of variations in the deposition parameter αADH and its relation to the characteristic release 
velocity, spray particles sampled from a distribution with mean radius 80 μm and shape parameter n = 5.0, were directed 
towards a target surface with varying levels of αADH for stream velocities of 30.0 m/s, 50.0 m/s, and 80.0 m/s respectively. 
The variations in the deposit volume fraction, the measure of maximum deposit thickness, the mean deposit spread, and 
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Fig. 6. Illustration of a representative deposit microstructure obtained after 50 050 particle injections were completed, for a median particle radius of 
80.0 μm. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

the standard deviation have been compared in Fig. 7. The metric for the deposit depth has been normalized using the 
median particle radius used in the simulations. It is observed, in consistency with the velocity dependent deposition criteria 
implemented in the simulations, that lower particle impact velocities lead to higher probabilities of deposition. However, 
as is evident from an analysis of the particle trajectories, slower particle release velocities also cause a higher number 
density in the stream and lead to higher rate of inter-particle collisions, causing a higher scatter in the deposit pattern 
(higher standard deviation in Fig. 7 (bottom, right)). These competing phenomena therefore also explain the observation 
that volume fraction is consistently higher for the more moderate velocity in Fig. 7 (top, left). This particular aspect is 
further illustrated in Fig. 8, where particle trajectories for varying characteristic release velocities have been presented with 
a clear indication of more scatter due to collisions for the slower release velocity simulation (top).

Variability in particle sizes also plays an important role in the overall system dynamics. While poly-dispersity of particle 
sizes will lead to lesser collisional cross-sectional area, the corresponding particle Stokes numbers become variable, and lead 
to higher occurrence probability for collision. Furthermore, since the response of a particle to the imposed fluid flow will 
additionally be dependent on the initial velocity of release, variabilities in the release velocity can affect the probability of 
occurrence of inter-particle collision, and scatter in the deposition patterns. A comparison of these effects, in combination 
with the variation in deposit parameter αADH , has been presented in Fig. 9 (top-left), where the total deposit fraction after 
a fixed duration of simulation time have been compared for various combinations of the aforementioned factors. The trends 
in Fig. 9 (top-left) can be explained by considering the combined effect of the velocity threshold for deposition for a given 
αADH (Eq. (34)), and the total number of particles being dynamically transported to the target surface. For a given velocity, 
the deposit fraction varies rapidly to start with, and gets flatter as αADH increases. Thus for a chosen particle velocity regime, 
deposit fraction varies slowly for values of αADH much higher than the threshold, and rapidly for αADH much lower than the 
threshold. For Fig. 9 (top-right), the combined effect of reduced collisional cross-section and increased variability in Stokes 
numbers as mentioned above is manifested in the trends. The trend in Fig. 9 (middle-left) is due to the fact that variabilities 
in the particle response to the fluid flow causes more collisions and lesser particles to be transported to the target surface 
within a fixed simulation duration.

The rate at which the deposit pattern grows in number can also be tracked with respect to simulation time, and provides 
an additional metric to probe and understand the trends in the system behavior. To illustrate the same, two different sets of 
simulation data have been presented in Fig. 9 on the middle-right, and bottom-left panels. For a fixed characteristic stream 
velocity of 50.0 m/s, and particles of median radius 80.0 μm sampled from a distribution with n = 5, the deposit rates have 
been post-processed for varying choices of the deposit parameter αADH . The time-variation of the total number of deposited 
particles, have been presented in Fig. 9 on the bottom-left panel. The corresponding rates have been calculated as the slopes 
of the last few time-steps when the deposition and rebound process nearly attains a quasi-steady state, and have been 
presented on the bottom-right panel. The large variation at a specific regime of deposit parameter values is characteristic 
of the threshold for the velocity regime for the particular spray particle dynamics in consideration. The trend for the 
time-variation of the total number of deposited particles with respect to particle distribution shape parameter as presented 
in Fig. 9 on the middle-right panel, is a little more indirect, and can be rationalized by comparing the corresponding 
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Fig. 7. Comparison of deposit metrics with variations in the deposit parameter and carrier stream velocity. Clockwise from top left: variations in volume 
fraction, measure of deposit height (in proportion of median particle radius), standard deviation, and mean value of the deposit spread distance.

distribution functions presented in Fig. 4. It is evident that as n varies from 1 to 5, the sampled particle radius values 
are more evenly spread around the median radius value of 80.0 μm. This causes the dynamic behavior of the polydisperse 
particle sprays to resemble that of the monodisperse spray for increased n. Physically, the slopes of these time-varying 
count of deposited particles are a resultant of the velocities attained by the particle owing to the fluid–particle interactions 
and particle–particle collisions, and the mechanism of deposition that causes a fraction of the incident particles to bounce 
back depending upon their velocity prior to impact. A direct visualization of the combined effect of these phenomena on 
the deposit pattern microstructure is also illustrated in form of a series of deposit pattern snapshots in Fig. 10. Clearly, for 
lower deposition factors, the higher release velocities lead to higher particle velocities causing more rebounding particles 
(deposit pattern on top-right). However, for higher deposit factor, the higher release velocities cause lesser in-flight collisions 
between particles – leading to deposit pattern becoming more uniform as we increase release velocities (from bottom-left 
to bottom-right).

6. Concluding remarks

In the present study, a three dimensional discrete element framework has been presented for particle spray deposi-
tion processes. The framework encompasses particle–particle collisional interactions, one-way fluid–particle interactions, 
particle–surface contact interactions, and a model for particle deposition upon impact on a flat target surface. The latter has 
been derived from a balance between near-field physical bonding interactions and forces due to mechanical contact. This 
criteria has been augmented using a factor αADH that models the extent by which the actual bonding mechanisms differ 
from that of near-field surface interactions. The derived criteria actually captures the relation between critical velocity and 
particle diameter as reported through experiments in the literature (see [56] for example). Detailed numerical examples 
have been presented to illustrate and analyze not only the dynamics of the particle streams due to the combined multi-
physical interactions, but also the deposit patterns obtained. Numerical experiments on parameter variations were also 
performed using the framework to investigate the effect of in-flight dynamics and collisions on the nature of the deposit 
pattern obtained. It was observed that owing to the particle injection strategy described in Eq. (35), slower particle injection 
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Fig. 8. Snapshots of fully developed particle spray dynamics for characteristic release velocities 30.0, 50.0 and 80.0 m/s from top to bottom, showing the 
varying extents of particle scatter due to inter-particle collisions. (For interpretation of the colors in this figure, the reader is referred to the web version of 
this article.)

velocities or slower nozzle gas velocities cause an increase in particle number density in the spray plume. From a kinetic 
theory perspective, an increase in the number density of particles in a region in space will increase the frequency of particle 
collisions – thereby leading to increased scatter in the deposit. However, amongst the range of particle incidence velocities 
during impact with the target surface, lower velocities should lead to more probability of deposition. The overall deposit 
pattern microstructure is governed by the competition between these two factors. It was also observed that deposit number 
fraction and volume fraction vary rapidly at regimes of αADH lower than the threshold regime, and slowly at regimes of 
αADH higher than the threshold for a chosen stream velocity. Effects of particle size polydispersity on deposition rates and 
deposit properties were also discussed. The dependence of the deposit patterns and their properties on in-flight collisions 
amongst traveling particles would have been impossible to understand with any continuum based approaches.

It is to be noted that effect of the swirling fluid velocities at locations very close to the target surface owing to fluid 
stagnation has not been incorporated in this analysis, and neither have turbulent fluctuations in the velocity field. For the 
former, however, we must realize that the nature of the flow field is such that it decays with stand-off distance from the 
nozzle, causing flow velocities close to target surface to be substantially lower. At such flow velocities, considering the high 
ratio of particle density to carrier gas density and the highly inertial motion of the particles, it is expected that any varia-
tions in the flow field will only change locally the trajectories of already accelerated particles, affecting the local distribution 
of distributed particles but not changing the global properties and their qualitative trends as presented here. As for turbu-
lence, additional fluid velocity fluctuations in the carrier flow field will only cause added particle velocity variabilities and 
potentially lead to higher collision probabilities, and greater extent of scatter in deposit pattern. The discussions presented 
here therefore form a good baseline estimate of the qualitative trends for such processes. Furthermore, implicit with the 
one-way coupled assumption, is the flexibility of incorporating additional velocity field fluctuations due to turbulence quite 
easily into the framework, and possible approaches for this have been presented by [68] amongst others. We also remark 
that for all the simulations discussed here the particle number densities were maintained in the regime where the assump-
tion of collisionally driven, one-way coupled particle flow was still valid. This was achieved by controlling the parameters 



D. Mukherjee, T.I. Zohdi / Journal of Computational Physics 290 (2015) 298–317 313
Fig. 9. Effect of parameter variations on deposit number fraction and deposit growth rate. The successive subfigures are enlisted as follows – variation of 
the fraction of injected particles deposited with changes in deposit parameter and carrier stream velocity is on top-left, with particle size distribution on 
top-right, and with variance in particle injection velocities on middle-left. Time-variation of the number of deposited particles for varying particle size 
polydispersity is on middle-right, and with varying deposit parameter is on bottom-right. Finally the rate of growth of deposit is measured for varying 
deposit parameters is on bottom-left.
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Fig. 10. Comparison of deposit pattern microstructures (top view) for varying deposit parameters, and varying carrier fluid stream velocities. The obser-
vations are consistent with the trends in Fig. 7. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

in Eq. (35). Further considerations of including turbulent flow field, and resolving two-way, particle–fluid coupling are areas 
of active investigation by the authors.

It is also noted that considerations for calculating an appropriate value for the deposit parameter αADH for specific ap-
plications have not been discussed here. This model parameter estimation will only be possible by performing appropriate 
experimentation, and using the experimental data to construct corresponding inverse problems. We remark that experi-
ments based on Atomic Force Microscopy for individual particles as illustrated in [69], amongst others, could be utilized 
to set-up a procedure for estimating this parameter, and used in simulations thereafter. The specific aspect of validation 
of numerical simulations is also worth a mention. While extensive validation tests have not been undertaken as a part 
of this work, some comments can be made about possible strategies to validate the overall framework. Individual particle 
contact model parameters can be estimated, and their overall motion under the influence of collisional interactions can be 
validated using inverse problems based on available experimental data, as illustrated in [70] and [71] for different applica-
tions. The specific issue of adhesion can be validated again using experiments as mentioned above [69,72]. This aspect of 
parameter estimation, and validation using inverse problem formulation however deserves a more detailed discussion by 
itself, and is currently being investigated by the authors. Additionally, the bonding and deposition criteria derived here is 
based on physical bonds being established depending on the particle kinetic energy. Hence an upper threshold on impact 
velocities is obtained. Alternatively, for processes involving a transformation of kinetic energy into plastic deformation this 
trend should be reversed. This is characteristic of cold-spray deposition processes (see [73], and [8]) – where the critical 
velocity is such that velocities lower than critical are ineffective in causing bonding through deformation (see the discussion 
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in [74]). The framework developed here is general enough to be able to incorporate such criteria as well, thereby rendering 
a substantially broad applicability to the discussions presented here.
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Appendix A. Contact force derivation

For the sake of completeness, we present here the algebraic manipulations involved in the derivation of the contact force 
expressions in Eqs. (7) and (22). We start from the pairwise balance of linear and angular momenta (re-written here from 
Eqs. (5), and (6)),

mivi(t + δt) − mivi(t) =
t+δt∫
t

[
Fc

i + Fe
i

]
dt = 〈Fc

i 〉δt + 〈Fe
i 〉δt, (a)

m jv j(t + δt) − m jv j(t) =
t+δt∫
t

[
Fc

j + Fe
j

]
dt = 〈Fc

j〉δt + 〈Fe
j〉δt. (b)

As mentioned in Section 2.1, assuming the contact force is represented as Fc
i = f N n̂i j + f T t̂i j , and taking a dot-product of 

Eq. (a) and (b), with n̂i j , we get

mi vin(t + δt) − mi vin(t) = 〈 f N〉δt + 〈F e
in〉δt, (c)

m j v jn(t + δt) − m j v jn(t) = 〈− f N〉δt + 〈F e
jn〉δt. (d)

The collision linear momentum balance can further be decomposed into a balance over the ‘compression’ and the ‘recovery’ 
phase of the collision:

mi vcn − mi vin(t) = 〈 f N〉C δt1 + 〈F e
in〉C δt1 compression, (e)

m j vcn − m j v jn(t) = 〈− f N〉C δt1 + 〈F e
jn〉C δt1 compression, (f)

mi vin(t + δt) − mi vcn = 〈 f N〉R(δt − δt1) + 〈F e
in〉R(δt − δt1) recovery, (g)

m j v jn(t + δt) − m j vcn = 〈− f N〉R(δt − δt1) + 〈F e
jn〉R(δt − δt1) recovery, (h)

where the compression duration is assumed to be δt1, the recovery duration thereby being δt − δt1, vcn being the common 
normal velocity at the end of the compression phase (leading to a zero relative normal velocity between the particles), and 
〈·〉C , 〈·〉R denote the averaged impulses over the compression and recovery phases respectively. Using now the definition of 
restitution coefficient in tees of the ratio of recovery impulse to compression impulse in the normal direction, we have,

e = recovery impulse

compression impulse
=

∫ t+δt
t+δt1

fndt∫ t+δt1
t f Ndt

= 〈 f N〉R (δt − δt1)

〈 f N〉C δt1
(i)

Multiplying Eq. (g) and (h) with m j and mi respectively, and eliminating vcn , we obtain the compression impulse as follows:

〈 f N〉C δt1 = 1

mi + m j

[
mi〈F e

jn〉C δt1 − m j〈F e
in〉C δt1

]
− mim j

mi + m j

[
vin(t) − v jn(t)

]
(j)

Additionally, we have the total contact impulse 〈 f N 〉δt = 〈 f N 〉C δt1 + 〈 f N 〉R(δt − δt1), and from the definition of restitution 
coefficient as in Eq. (i), we have 〈 f N 〉δt = (1 + e)〈 f N 〉C δt1. Using the expression obtained in Eq. (j), we finally obtain:

〈 f N〉δt = 1 + e

mi + m j

[
mi〈F e

jn〉C δt1 − m j〈F e
in〉C δt1

]
− (1 + e)mim j

mi + m j

[
vin(t) − v jn(t)

]
(k)

Plugging these contact impulses in the momentum balance equations as in Eqs. (5) and (6), the velocity update expressions 
presented in Eqs. (8) and (9) can be directly obtained. Extending the same algebraic formulation for the collisional momen-
tum balance for a particle–surface contact, we can write the particle linear momentum balance, take the dot product along 
the normal vector to the surface, and decompose the collision step into a compression and recovery phase respectively as 
follows:

mvc(t + δt) − mvc(t) =
t+δt∫
t

[
Fc + Fe]dt = 〈Fc〉δt + 〈Fe〉δt (l)

mvcn(t + δt) − mvcn(t) = 〈 f N〉δt + 〈F e
n〉δt (m)
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mv̄ − mvcn(t) = 〈 f N〉C δt1 + 〈F e
n〉δt1 compression (n)

mvcn(t + δt) − mv̄ = 〈 f N〉R(δt − δt1) + 〈F e
n〉(δt − δt1) recovery (o)

where v̄ is again the common normal velocity at the end of the compression phase. Using the relation 〈 f N 〉δt =
(1 + e)〈 f N 〉C δt1 as described earlier, and setting the common velocity v̄ (which is the normal surface velocity vsurf ,n) from 
Eq. (n) and (o), we obtain the final form of the average normal contact impulse:

〈 f N〉δt = (1 + e)
[
mvsurf ,n − mvcn(t) − 〈F e

n〉δt1
]

(p)

Once the normal impulses are obtained, the tangential impulses are estimated using the regularized friction model directly, 
as described in Section 2.1 and Section 2.2.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jcp.2015.02.034.
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