On Necessary Pumping Pressures for Industrial Process-Driven Particle-Laden Fluid Flows

T. I. Zohdi
Department of Mechanical Engineering,
University of California,
Berkeley, CA 94720-1740

Due to increasing demands for faster and faster manufacturing of new complex materials, such as casting of particulate composites, the determination of pumping pressures needed for particle-laden fluids through channels is critical. In particular, the increase in viscosity as a function of the particle volume fraction can lead to system malfunction, due to an inability to deliver necessary pressures to pump the more viscous fluid through the system. This paper studies the pressure gradient needed to maintain a given flow rate, explicitly as a function of the volume fraction of particles present in the fluid. It is also crucial to control voids in the casted products, which can be traced to air-entrainment, spurious internal reactions, dewetting, etc., which can be traced to high Reynolds numbers. Accordingly, an expression for the resulting Reynolds number as a function of the particle volume fraction and flow rate is also developed. Numerical examples are provided to illustrate the practical use of the derived relations to characterize the necessary pumping pressures for process-driven, particle-laden fluid flows.

[DOI: 10.1115/1.4030620]

1 Introduction

In a variety of industries, ranging from next generation engines, turbomachinery, printed electronics, food processing, etc., new types of heterogeneous materials, comprising particulates in a binding matrix, are being developed and utilized. The macroscopic material characteristics of the material are dictated by the aggregate response of an assemblage of particles suspended in a binding matrix material. In the fabrication of such materials, the basic philosophy is to select material combinations to produce desired aggregate responses. For example, in structural engineering applications, the classical choice is a harder particulate phase that serves as a stiffening agent for a ductile, easy to form, base matrix material. Oftentimes, such materials start in particulate form and are then mixed with a binder and delivered as a flowing slurry to be cast into their final shape. Thus, because of the increasing demands for faster and faster manufacturing of new complex particle-laden materials, the determination of pumping pressures needed to move such fluids through channels is critical (Fig. 1).

For particle-laden fluids delivered through channels, the increase in viscosity can lead to system malfunction, due to an inability to supply necessary pressures to pump the more viscous material properly. This paper studies the pressure gradient needed to maintain a given flow rate, explicitly as a function of the volume fraction of particles present in the fluid. The expression is general and easy to apply for the analysis of pumping particle-laden fluids. Furthermore, it is crucial to control voids in the resulting casted products, which are correlated to air-entrainment, spurious internal reactions, dewetting, etc. These effects are correlated to high Reynolds numbers. Accordingly, an expression for the resulting Reynolds number as a function of the particle volume fraction and flow rate is also developed. Numerical examples are provided to illustrate the practical use of the derived relations to characterize the necessary pumping pressures for process-driven particle-laden fluid flows. Because, resulting voids may be impossible to avoid, we also determine their effects on the overall effective properties of a heterogeneous two-phase slurry consisting of particles and a binding interstitial material. Estimates are developed for the reduction of the overall mechanical and thermal properties, based on embedded, double application of the Hashin–Shtrikman bounds, whereby, on the first level, the effective properties due to voids are computed, and on the second level the smaller scale heterogeneous material is taken into account. This research is also quite relevant to the development of high-resolution electrohydrodynamic-jet printing processes. For overviews, see Wei and Dong [1], where they also developed specialized processes employing phase-change inks. Such processes are capable of producing micron-level footprints for high-resolution additive manufacturing.

Remark. The objective of the analysis is to develop semi-analytical expressions that can help guide analysts who are designing manufacturing systems involving particle-laden flows. Clearly, one could approach the problem with a large-scale Computational Fluid Dynamics (CFD) analysis. However, for direct numerical simulation of particle-laden continua, spatiotemporal discretization grids must be extremely fine, with several thousand numerical unknowns needed per particle length-scale for numerically accurate results. Thus, for several hundred thousand particles in a system, a proper discretization would require several billion numerical unknowns (see, for example, Onate et al. [2,3], Rojek et al. [4], Carbonell et al. [5], Labra and Onate [6], Leonardi et al. [7], Cante et al. [8], Rojek [9], Onate et al. [10], Bolintineanu et al. [11], Avci and Wriggers [12], and Zohdi [13,14], and Zohdi and Wriggers [15]. Although such simulations are possible in high-performance computing centers, their usefulness for rapid daily design analysis is minimal. This will be discussed further in the summary.

2 Channel Flow

As indicated in Sec. 1, the presence of secondary particles in fluids, particularly within channels, is wide-ranging and their...
We have the following observations:

- Increasing \(\mu^* \), \(Q_o \), or \(q \) increases the stress at the wall (\(\tau_w \)).
- Increasing \(q \) leads to an increasingly more blunted flow profile, and
- Decreasing \(R \) increases the stress at the wall (\(\tau_w \)).

Remark

In the remaining analysis, we will assume steady flow, the particles are not elongated and that they are well distributed within the base fluid. Furthermore, we will adopt a generalization of the classical Poiseuille solution for fully developed flow in a pipe (assuming the velocity depends on some undetermined power \(q \) instead of the standard parabolic dependence for laminar single-phase flow).

3 Pressure Gradients

The previous expressions allow us to correlate the pressure applied to a volume of particle-laden to allow it to move as a constant flow rate. By performing a force balance, we have in the positive \(x \)-direction (assuming steady flow, no acceleration)

\[
-(P + \Delta P) + P \pi R^2 - \tau_w 2\pi R \Delta x = 0
\]

where \(x \) is the coordinate along the length of the channel, and \(\Delta x \) is the differential length, leading to

\[
-\Delta P = \mu^* \frac{Q_o(q + 2)}{\pi^2 R^5} 2\pi R \Delta x = \frac{2\mu^* Q_o(q + 2) \Delta x}{\pi R^4}
\]

where we used the expression for \(\nu_{\text{max}} \) and where the effective viscosity is a function of the volume fraction of particles, \(\mu^* = \mu^*(\nu_p) \). An explicit relation for \(\mu^*(\nu_p) \) will be given shortly. Solving for the pressure gradient yields

\[
-\frac{\Delta P}{\Delta x} = \frac{2\mu^*(q + 2)}{\pi R^4} Q_o = C Q_o
\]

If we fix the flow rate \(Q_o \), the multiplier \(C \) identifies the pressure gradient needed to achieve a flow rate \(Q_o \). For a fixed value of \(q \), the expression directly indicates that an increase in viscosity will require an increase in the pressure gradient. For small channels this can be a problem, as indicated by the \(R^4 \) term in the denominator. However, in general, \(q \) is a function of the Reynolds number. This case will be considered next.

4 Velocity Profile Characteristics

As the Reynolds number increases, the velocity profile will change from a quadratic \((q < 2) \) to a more blunted profile \((q \gg 2) \).
which represents, phenomenologically, turbulent (inertia-dominated) behavior (Fig. 2). The effect of a changing profile is described by representing \(q \) by a linear function of the centerline Reynolds’ number \((R_{ec}) \)

\[
q = q(R_{ec}) = c_1 R_{ec} + c_2
\]

(9)

where \(R_{ec} \) is \((\rho^* v_{max}^2 R/\mu^*) \), and \(c_1 \) and \(c_2 \) are constants. Models of this type, linking the profile exponent \((q) \) to the centerline Reynolds’ number \((R_{ec}) \), are quite well-established, for example, see Hinze [16]. Usually, \(0 \leq c_1 \ll 1 \) and \(c_2 \approx 2 \), and in the limit we have, for \(c_1 = 0 \) and \(c_2 = 2 \), laminar flow \((q = 2) \). For the general case, combining Eq. (4) with Eq. (9) and the definition of the centerline Reynolds’ number, we obtain a quadratic relationship for \(q \)

\[
q^2 - (\gamma^* + c_2)q - 2\gamma^* = 0
\]

(10)

where \(\gamma^* = (2c_1 Q_o \rho^*/\pi R \mu^*) \), where \(\rho^* \) is the effective density and \(\mu^* \) is the effective viscosity. This quadratic relationship can be solved in closed form for \(q \) to yield \(^4\)

\[
q(R_{ec}) = \frac{1}{2} \left(\gamma^* + c_2 \pm \sqrt{(\gamma^* + c_2)^2 + 4\gamma^*} \right)
\]

(11)

The larger root is the physically correct choice (since the smaller root can become negative). We further observe that \(q(R_{ec}) \) is a function of \(R^{-1} \) and decreasing \(R \) increases \(q \), for fixed \(Q_o \).

5 Models for Effective Properties of Particle-Laden Fluids

It is important to be able to characterize the effective properties of a particle-laden fluid as a function of the volume fraction of particles and the baseline (interstitial) fluid properties. The density of the particle-laden fluid is actually an “effective density,” since it actually is a mixture of materials (particles and interstitial fluid). Effective properties are defined through volume averages. For example, the effective density of the mixture is

\[
\rho^* \equiv (\rho(x)) = \rho \frac{1}{V} \int_{V} \rho(x) dV = \frac{1}{V} \left(\int_{V_f} \rho_f dV + \int_{V_p} \rho_p dV \right)
\]

\[
= \nu_t \rho_f + \nu_p \rho_p
\]

(12)

where \(\nu_t \) and \(\nu_p \) are the volume fractions of the fluid and particles, respectively. The volume fractions have to sum to unity

\[
\nu_t + \nu_p = 1 \Rightarrow \nu_t = 1 - \nu_p
\]

(13)

Similar approaches can be used to calculate various types of properties, such as the effective viscosity (a transport property). However, to calculate them is a bit more complicated, since they require one to estimate the types of interaction between the constituents. There are a number of models which provide expressions for the effective viscosity of the fluid containing particles. For the purposes of this flow analysis, the particles are considered to be rigid, relative to the surrounding fluid. For example, in 1906, Einstein [17] developed an approximation which is quite simple, but only valid at extremely low volume fractions of particles (under one percent). It can be written as

\[
\mu^* = \mu_f (1 + 2.5 \nu_p)
\]

(14)

where \(\mu_f \) is the viscosity of the surrounding (incompressible) fluid, and the particles are assumed rigid. At even quite moderate to high volume fractions, this approximation is inaccurate. A better approximation, which is in fact a rigorous lower bound on the effective viscosity, can be derived from the well-known Hashin and Shtrikman [18–20] bounds (see Appendix A), and written as

\[
\mu^* = \left(\frac{\mu_f (1 + 2.5 \nu_p)}{1 - \nu_p} \right)
\]

(15)

The expression above is the tightest known lower bound on the effective viscosity of a two-phase material comprising rigid particles in a surrounding incompressible fluid. The origin of the expression in Eq. (15) stems from bounds on effective responses for solid two-phase mixtures (see Appendix). This expression remains quite accurate up to about \(\nu_p = 0.25 \), which is sufficient for most applications and allows us to directly correlate the pressure gradient to the volume fraction of the particles. We refer the reader to Torquato [21] for more details.

6 Correlation of Pressure Gradient to Particle Volume Fraction

Using the effective properties, we have an expression for the velocity profile exponent

\[
q(R_{ec} (\mu^*, \rho^*); \gamma^*) = \frac{1}{2} \left(\gamma^* + c_2 \pm \sqrt{(\gamma^* + c_2)^2 + 4\gamma^*} \right)
\]

(16)

Consequently, the pressure gradient’s dependency on the volume fraction of particles can be written as

\[
\frac{\Delta P}{\Delta x} = \frac{2}{\pi R^4} \left(\frac{\mu_f (1 + 2.5 \nu_p)}{1 - \nu_p} \right) (q(R_{ec} (\mu^*, \rho^*); \gamma^*) + 2)
\]

\[
\frac{C_o}{Q_o} = C^* Q_o
\]

(17)

where \(C^* = C^*(Q_o) \). For a fixed flow rate, \(Q_o \), increasing the volume fraction of particles \((\nu_p) \) requires a corresponding increase in the pressure differential. Explicitly, the Reynolds number is

\[
R_e = \frac{v_{max}}{\nu_p} = \frac{2 Q_o (q + 2) (1 - \nu_p) \rho_t + \nu_p \rho_p}{\pi R q \mu_f (1 + 2.5 \nu_p) / (1 - \nu_p)}
\]

(18)

7 Trends

To illustrate the trends, we varied \(Q_o \) from \(10^{-3} \) m\(^3\)/s to \(10^{-2} \) m\(^3\)/s and utilized the expression in Eq. (17). We plotted the pressure gradient and Reynolds number as a function of the volumetric flow rate \((Q_o) \) in Fig. 3 for various values of \(\nu_p \) with the following parameters used: \(^5\)

- Viscosity: \(\mu_f = 0.01 \) Pa s,
- Fluid density: \(\rho_f = 2000 \) kg/m\(^3\),
- For reference, the viscosity of water is \(\mu_f = 0.001 \) Pa s and for honey is \(\mu_f = 1 \) Pa s.
Particle density: \(\rho_v = 5000 \text{ kg/m}^3 \),
Channel radius: \(R = 0.01 \text{ m} \), and
Profile constants: \(c_1 = 0.01 \) and \(c_2 = 2 \).

Generally, the trends are that a steady increase in the pressure gradient (approximately 40% more) is needed to maintain a fixed \(Q_{vo} \) for increasing the volume fraction of particles. Due to the increase in the particle volume fraction, the viscosity increases, thus decreasing the Reynolds number. High Reynolds numbers, and consequential turbulence, can lead to aspiration (air entrainment), spurious internal reactions, devaporation, etc., which can lead to voids. The point of this example was not to illustrate an all encompassing parameter set, but simply to show the explicit dependency of the pressure gradient and Reynolds number on the presence of secondary particles. Other parameter sets can be easily simulated.

8 Summary

The presence of particle-laden fluids is widespread. Because the presence of particles increases the overall viscosity of the fluid, the pressure gradients needed to pump such fluids through channels at a nominal flow rate can increase dramatically. The present analysis and model can provide a useful guide to designing systems that pump particle-laden flows, with the purpose to be able to cast materials. This paper derived the pressure gradient needed to maintain a given flow rate, as a function volume fraction of particles present in the fluid. The expression explicitly correlates the dependency of the pressure gradient to the particle volume fraction and is hopefully easy to use by researchers in the field. Furthermore, the developed expressions also provide estimates on the Reynolds numbers that arise for given flow rates. The tracking of the Reynolds number is important, since turbulence can lead to improper casting due to the resulting voids. For example, one can estimate the reduction of the material quality as a function of the porous material by assuming that it comprises an isotropic elastic matrix, with a bulk modulus \(K_m \) and shear modulus \(\mu_m \), while the porous void space is modeled by an elastic material with very low bulk and shear moduli \(K_v = \delta K_m \) and \(\mu_v = \delta \mu_m \) with \(0 < \delta \ll 1 \). The exact case of voids corresponds to \(\delta \rightarrow 0 \). To estimate the properties of the material with voids, we employ the Hashin–Shtrikman bounds (see Appendix), assign the following (the harder material is the matrix and the softer is the voids):

\[
K_v = K_1, \mu_v = \mu_1 \quad \text{and} \quad K_m = K_2, \mu_m = \mu_2, \quad \nu_v = \nu_1 \quad \text{and} \quad \nu_m = \nu_2, \quad \text{and force} \quad \mu_0 \rightarrow 0 \quad \text{and} \quad K_0 \rightarrow 0 \quad \text{to obtain}
\]

\[
0 \leq K^{\text{voids}} \leq K_m (1 - \nu_v G(\nu_v)) \quad (19)
\]

where

\[
G(\nu_v) = \frac{3K_m + 4\mu_m}{3\nu_v K_m + 4\mu_m} \quad (20)
\]

and

\[
0 \leq \mu^{\text{voids}} \leq \mu_m (1 - \nu_v C(\nu_v)) \quad (21)
\]

where

\[
C(\nu_v) = \frac{5(3K_m + 4\mu_m)}{K_m(9 + 6\nu_v) + \mu_m(8 + 12\nu_v)} \quad (22)
\]

One can then assign the effective properties of the void-free part of the particle-laden mixture to the matrix material, \(K^{\text{no–voids}} = K_m \) and \(\mu^{\text{no–voids}} = \mu_m \), leading to

\[
0 \leq K^{\text{voids}} \leq K^{\text{no–voids}} (1 - \nu_v G(\nu_v)) \quad (23)
\]

and

\[
0 \leq \mu^{\text{voids}} \leq \mu^{\text{no–voids}} (1 - \nu_v C(\nu_v)) \quad (24)
\]

It is important to note that

• As \(\nu_v \rightarrow 1 \), \(\nu_v G(\nu_v) \rightarrow 1 \) and \(\nu_v C(\nu_v) \rightarrow 1 \), thus \(\mu^{\text{voids}} \rightarrow 0 \)
• As \(\nu_v \rightarrow 0 \), \(\nu_v G(\nu_v) \rightarrow 0 \) and \(\nu_v C(\nu_v) \rightarrow 0 \), thus \(\mu^{\text{voids}} \rightarrow \mu^{\text{no–voids}} \).

These expressions show the resulting effective property loss as a function of the voids. Further expressions on the reduction of material performance are provided in Appendix B. We remark that in some applications, such as biomedical devices, controlled porosity with prespecified pore shapes, sizes, and distributions is sought after using, for example, porogen templating processes. We refer the reader to Hong et al. [22] for a detailed overview of the state of the art of porogen patterning. Other emerging, cutting-edge, approaches for controlled generation of desired porosity involve laser processing (Kongsuwan et al. [23]). This is particularly useful for precisely functionalized layered substrates.
In summary, the present analysis and model can provide a useful
guide to designing and interpreting experiments. However,
while the model can provide qualitative information, extensions
are almost certainly going to require complex spatiotemporal
discretization resolving multiparticle–fluid interaction. Such
particle/fluid systems are strongly coupled, due to the drag forces
induced by the fluid onto the particles and vice versa. For exam-
ple, in Zohdi [13,14], a flexible and robust solution strategy was
developed to resolve coupled systems comprising large groups of
flowing particles embedded within a continuous flowing fluid.
The focus of that work was to develop adaptive time-stepping schemes
which properly resolve the coupling, via a staggered recursive
time-stepping process. The approach can be used in conjunction
with computational fluid mechanics codes based on finite differ-
ence, finite element, finite volume, or discrete element discretiza-
tion, for example, such as those developed in Onate et al. [2,3],
Rojek et al. [4], Carbonell et al. [5], Labra and Onate [6],
Leonardi et al. [7], Cante et al. [8], Rojek [9], Onate et al. [10],
Bolintineanu et al. [11], Avcı and Wriggers [12], and Zohdi
[24–26]. Finally, we mention that oftentimes the detrimental
boding of particles to the surfaces. This is a complex process,
where only the volume fractions and phase
contrasts of the constituents are known. Note that no geometric or
phase microstructures, where only the volume fractions and phase
and strongly coupled diffusive, chemical effects, and thermal
effects. The application of such computational procedures to the
problems considered in this paper is under current investigation by
the author.

Appendix A: Effective Property Bounds

The literature on methods to estimate the overall macroscopic
properties of heterogeneous materials dates back at least to Max-
well [30,31] and Rayleigh [32], with a notable contribution being
the Hashin–Shtrikman bounds [18–20]. The Hashin–Shtrikman
bounds are the tightest possible bounds on isotropic effective
moduli of the respective phases (\(\kappa_i\)), the Hashin–Shtrikman
bounds
\[\begin{align*}
\kappa^\ast & \leq \kappa \leq \kappa_2 \\
& \text{with} \\
& \kappa_1 - \kappa_2 + 3(1 - \kappa_2) \leq \kappa \leq \kappa_1 - \kappa_2 + \frac{1 - \kappa_2}{3 \kappa_2 + 4 G_2} \\
& \text{and for the shear modulus}
\end{align*} \]

and for the shear modulus

\[G^\ast \leq G \leq G_2 \]

where \(\kappa_2\) and \(\kappa_1\) are the bulk moduli, and \(G_2\) and \(G_1\) are the shear
moduli of the respective phases (\(\kappa_2 \geq \kappa_1\) and \(G_2 \geq G_1\)), and \(\nu_i\) is the phase fraction of the respective phase. Such bounds are the tight-
est possible on isotropic effective responses, with isotropic two-
phase microstructures, where only the volume fractions and phase
contrasts of the constituents are known. Note that no geometric or
statistical information is required for the bounds. For an authorita-
tive review of (a) the general theory of random heterogeneous
media see, for example, Torquato [21], (b) for more mathematical
homogenization aspects, see Jikov et al. [33], and (c) for solid-
mechanics inclined accounts of the subject see, for example,
Hashin [20], Mura [34], or Markov [35]. We note that numerical
methods have become the dominant tool for determining effective
properties. In particular, finite element-based methods are extremely
popular, and we refer the reader to Ghosh [36], Ghosh
and Dimiduk [37], and Zohdi and Wriggers [15].

Finally, to derive Eq. (15), one can take the limit of the particle
phase becoming rigid, i.e., the bulk and shear moduli tending to
infinity, \(k_i \to \infty\) and \(G_i \to \infty\), signifying that the particles
are much stiffer than the interstitial fluid, while simultaneously
specifying that the interstitial fluid is incompressible, i.e.,
\(k_f/G_f \to \infty\) with \(G_f\) being finite. This yields

\[G^\ast = G_f \left(1 + 2.5 \frac{\nu_p}{1 - \nu_p}\right) \]

(A3)

One can then assign \(\nu_p\) the value of \(G_f\) to obtain Eq. (15). See, for
example, Abedian and Kachanov [38] and Sevostianov and
Kachanov [39] for more details.

Appendix B: Reduction in Failure Strength
Due to Voids

The failure of most structural materials is associated with
reaching a critical deviatoric stress. In order to determine the
reduction in failure strength due to voids, we denote the macro-
scopic effective elastic shear modulus as \(\mu^\ast\) and the deviatoric
stress at yield as \(\Sigma^\ast\). To start the analysis, we consider the
dense material to have met the failure stress (\(\Sigma^m\)), thus yielding an
expression for the overall failure stress (\(\Sigma^\ast\))

\[\langle \sigma \rangle = \langle \sigma \rangle^m + \nu_m \langle \sigma \rangle^m = \langle \sigma \rangle - \langle \sigma \rangle^m = (1 - \nu_m) \langle \sigma \rangle^m = \Sigma^m \]

(B1)

where \(\Sigma^m\) is the stress at which the dense material fails. The effective
shear modulus needed to determine (\(\Sigma^\ast/2\mu^\ast\)) can be estimated as in the main body of the text. Thus, for the small
overall strains at which macroscopic failure occurs

\[2\mu^\ast voids\left(\epsilon^\ast\right) = 2\mu^\ast voids\left(\epsilon^\ast\right) = 2\mu_m(1 - C(\nu_i)) \left(\epsilon^\ast\right) \]

(B2)

and thus

\[Y^\ast voids,\nu_s = \frac{\Sigma^m}{2\mu_m} \left(1 - \nu_s C(\nu_s)\right) \Phi(\nu_s) \]

(B3)

where \(\Sigma^m\) is the macroscopic small strain deviator at initial
failure. Thus, we have

\[Y^\ast voids,\nu_s = \frac{\Sigma^m}{2\mu_m} \approx \left(\Sigma^m \frac{\Phi(\nu_i)}{2\mu_m}\right) \Phi(\nu_i) \]

(B4)

where the function \(\Phi(\nu_i)\) is a slowly increasing function of \(\nu_i\). It
is noted that since an upper bound was used in the construction
of \(C(\nu_i)\), and due to the functional dependence of \(\Phi\) on
\(C(\nu_i)\), \(\Phi\) is an overestimation of the increase in the overall failure
strain. One can then assign the effective properties of the slurry and binder to
the matrix material, \(\mu^\ast voids = \mu_m,\Sigma^m = \Sigma^m voids,\nu_s,\) and \(Y^\ast voids,\nu_s = Y^\ast voids,\nu_s\). Thus, the change in the yield stress is

\[G^\ast = G_f \left(1 + 2.5 \frac{\nu_p}{1 - \nu_p}\right) \]

(A3)
and the change in yield strain is

\[\Sigma_{\text{voids}} = \Sigma_{\text{no-voids}} (1 - \nu_s) \quad (B5) \]

\[Y''_{\text{voids}} \cong \frac{\Sigma_{\text{voids}}}{2 \mu_{\text{no-voids}}} \Phi(\nu_s) = Y''_{\text{no-voids}} \Phi(\nu_s) \quad (B6) \]

References

