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On Necessary Pumping
Pressures for Industrial
Process-Driven Particle-Laden
Fluid Flows
Due to increasing demands for faster and faster manufacturing of new complex materials,
such as casting of particulate composites, the determination of pumping pressures needed
for particle-laden fluids through channels is critical. In particular, the increase in viscos-
ity as a function of the particle volume fraction can lead to system malfunction, due to an
inability to deliver necessary pressures to pump the more viscous fluid through the
system. This paper studies the pressure gradient needed to maintain a given flow rate,
explicitly as a function of the volume fraction of particles present in the fluid. It is also
crucial to control voids in the casted products, which can be traced to air-entrainment,
spurious internal reactions, dewetting, etc., which can be traced to high Reynolds num-
bers. Accordingly, an expression for the resulting Reynolds number as a function of the
particle volume fraction and flow rate is also developed. Numerical examples are pro-
vided to illustrate the practical use of the derived relations to characterize the necessary
pumping pressures for process-driven, particle-laden fluid flows.
[DOI: 10.1115/1.4030620]

1 Introduction

In a variety of industries, ranging from next generation engines,
turbomachinery, printed electronics, food processing, etc., new
types of heterogeneous materials, comprising particulates in a
binding matrix, are being developed and utilized. The macro-
scopic material characteristics of the material are dictated by the
aggregate response of an assemblage of particles suspended in a
binding matrix material. In the fabrication of such materials, the
basic philosophy is to select material combinations to produce
desired aggregate responses. For example, in structural engineer-
ing applications, the classical choice is a harder particulate phase
that serves as a stiffening agent for a ductile, easy to form, base
matrix material. Oftentimes, such materials start in particulate
form and are then mixed with a binder and delivered as a flowing
slurry to be cast into their final shape.1 Thus, because of the
increasing demands for faster and faster manufacturing of new
complex particle-laden materials, the determination of pumping
pressures needed to move such fluids through channels is critical
(Fig. 1).

For particle-laden fluids delivered through channels, the
increase in viscosity can lead to system malfunction, due to an
inability to supply necessary pressures to pump the more viscous
material properly. This paper studies the pressure gradient needed
to maintain a given flow rate, explicitly as a function of the vol-
ume fraction of particles present in the fluid. The expression is
general and easy to apply for the analysis of pumping particle-
laden fluids. Furthermore, it is crucial to control voids in the
resulting casted products, which are correlated to air-entrainment,
spurious internal reactions, dewetting, etc. These effects are corre-
lated to high Reynolds numbers. Accordingly, an expression for
the resulting Reynolds number as a function of the particle vol-
ume fraction and flow rate is also developed. Numerical examples
are provided to illustrate the practical use of the derived relations
to characterize the necessary pumping pressures for process-

driven particle-laden fluid flows. Because, resulting voids may be
impossible to avoid, we also determine their effects on the overall
effective properties of a heterogeneous two-phase slurry consist-
ing of particles and a binding interstitial material. Estimates are
developed for the reduction of the overall mechanical and thermal
properties, based on embedded, double application of the
Hashin–Shtrikman bounds, whereby, on the first level, the effec-
tive properties due to voids are computed, and on the second level
the smaller scale heterogeneous material is taken into account.2

This research is also quite relevant to the development of
high-resolution electrohydrodynamic-jet printing processes. For
overviews, see Wei and Dong [1], where they also developed spe-
cialized processes employing phase-change inks. Such processes
are capable of producing micron-level footprints for high-
resolution additive manufacturing.

Remark. The objective of the analysis is to develop semi-
analytical expressions that can help guide analysts who are design-
ing manufacturing systems involving particle-laden flows. Clearly,
one could approach the problem with a large-scale Computational
Fluid Dynamics (CFD) analysis. However, for direct numerical
simulation of particle-laden continua, spatiotemporal discretization
grids must be extremely fine, with several thousand numerical
unknowns needed per particle length-scale for numerically accurate
results. Thus, for several hundred thousand particles in a system, a
proper discretization would require several billion numerical
unknowns (see, for example, Onate et al. [2,3], Rojek et al. [4],
Carbonell et al. [5], Labra and Onate [6], Leonardi et al. [7], Cante
et al. [8], Rojek [9], Onate et al. [10], Bolintineanu et al. [11], Avci
and Wriggers [12], and Zohdi [13,14], and Zohdi and Wriggers
[15]. Although such simulations are possible in high-performance
computing centers, their usefulness for rapid daily design analysis
is minimal. This will be discussed further in the summary.

2 Channel Flow

As indicated in Sec. 1, the presence of secondary particles in
fluids, particularly within channels, is wide-ranging and their

1Over 50% (by mass) of man-made materials start in granulated form.
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2Generally, use of homogenized effective properties is justified if the inherent
length-scale ratio of the particles to the structure is below 1:50.

Journal of Manufacturing Science and Engineering MARCH 2016, Vol. 138 / 031009-1
Copyright VC 2016 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/138/3/031009/6267126/m
anu_138_03_031009.pdf by U

niversity of C
alifornia Library - Berkeley user on 25 M

ay 2021

https://crossmark.crossref.org/dialog/?doi=10.1115/1.4030620&domain=pdf&date_stamp=2015-10-01


presence can dramatically increase the effective overall viscosity,
thus requiring increased applied pressure to maintain nominal
flow rates (Fig. 1). The primary objective of the first part of this
analysis is to derive a relatively easy to use expression for the
pressure gradient required to maintain a given flow rate in a chan-
nel, as a function of the volume fraction of secondary particles
present in the fluid.

Accordingly, consider an idealized channel with a circular cross
section of area A¼pR2, with a velocity profile given by a classical
channel-flow of the form

v ¼ vmax 1� r

R

� �q� �
(1)

where vmax is the centerline velocity, and r is the radial coordinate
from the centerline of the channel. For fully developed laminar
flow, q¼ 2, while for increasing q one characterizes, phenomeno-
logically, progressively turbulent flow (q� 2). The shear stress is
given by

s ¼ l�
@v

@r
¼ �l�vmaxq

R

r

R

� �q�1

(2)

where l* is the effective viscosity of the particle-laden fluid. We
assume that the overall flow rate is assumed constant, thus

Q ¼
ð

A

vdA ¼ Qo (3)

One can show that

vmax ¼
Qoðqþ 2Þ

Aq
¼ Qoðqþ 2Þ

pR2q
(4)

The stress at the wall becomes

sw ¼ �sðr ¼ RÞ ¼ l�vmaxq

R
¼ l�Qoðqþ 2Þ

pR3
(5)

We have the following observations:

• Increasing l*, Qo, or q increases the stress at the wall (sw),
• Increasing q leads to an increasingly more blunted flow pro-

file, and
• Decreasing R increases the stress at the wall (sw).

Remark. In the remaining analysis, we will assume steady flow,
the particles are not elongated and that they are well distributed
within the base fluid.3 Furthermore, we will adopt a generalization
of the classical Poiseuille solution for fully developed flow in a
pipe (assuming the velocity depends on some undetermined power
q instead of the standard parabolic dependence for laminar single-
phase flow).

3 Pressure Gradients

The previous expressions allow us to correlate the pressure
applied to a volume of particle-laden to allow it to move as a con-
stant flow rate. By performing a force balance, we have in the pos-
itive x-direction (assuming steady flow, no acceleration)

ð�ðPþ DPÞ þ PÞpR2 � sw2pRDx ¼ 0 (6)

where x is the coordinate along the length of the channel, and Dx
is the differential length, leading to

� DP ¼ l�
Qoðqþ 2Þ

p2R5
2pRDx ¼ 2l�Qoðqþ 2ÞDx

pR4
(7)

where we used the expression for vmax and where the effective vis-
cosity is a function of the volume fraction of particles,
l*¼ l*(�p). An explicit relation for l*(�p) will be given shortly.
Solving for the pressure gradient yields

� DP

Dx
¼ 2l�ðqþ 2Þ

pR4|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
C

Qo ¼
def

CQo (8)

If we fix the flow rate Qo, the multiplier C identifies the pressure
gradient needed to achieve a flow rate Qo. For a fixed value of q,
the expression directly indicates that an increase in viscosity will
require an increase in the pressure gradient. For small channels
this can be a problem, as indicated by the R4 term in the denomi-
nator. However, in general, q is a function of the Reynolds num-
ber. This case will be considered next.

4 Velocity Profile Characteristics

As the Reynolds number increases, the velocity profile will
change from a quadratic (q¼ 2) to a more blunted profile (q� 2),

Fig. 1 (a) A particle-laden fluid in a channel and (b) the increase in the ratio of effective viscosity to baseline
fluid viscosity (l*/lf) as a function of secondary particle volume fraction (mp)

3In long channels, elongated particles can tend to align themselves in a particular
direction that could also affect their viscosity. The assumptions made eliminate this
possibility for the problems under consideration.
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which represents, phenomenologically, turbulent (inertia-domi-
nated) behavior (Fig. 2). The effect of a changing profile is
described by representing q by a linear function of the centerline
Reynolds’ number (Rec)

q ¼ qðRecÞ ¼ c1Rec þ c2 (9)

where Rec ¼ q�vmax2R=l�ð Þ, and c1 and c2 are constants. Models
of this type, linking the profile exponent (q) to the centerline
Reynolds’ number (Rec), are quite well-established, for example,
see Hinze [16]. Usually, 0� c1 � 1 and c2 � 2, and in the limit
we have, for c1¼ 0 and c2¼ 2, laminar flow (q¼ 2). For the gen-
eral case, combining Eq. (4) with Eq. (9) and the definition of the
centerline Reynolds’ number, we obtain a quadratic relationship
for q

q2 � ðc� þ c2Þq� 2c� ¼ 0 (10)

where c� ¼ 2c1Qoq�=pRl�ð Þ, where q* is the effective density
and l* is the effective viscosity. This quadratic relationship can
be solved in closed form for q to yield4

qðRecÞ ¼
1

2
ðc� þ c2Þ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� þ c2Þ2 þ 8c�

q� �
(11)

The larger root is the physically correct choice (since the smaller
root can become negative). We further observe that qðRecÞ is a
function of R�1 and decreasing R increases q, for fixed Qo.

5 Models for Effective Properties of Particle-Laden

Fluids

It is important to be able to characterize the effective properties
of a particle-laden fluid as a function of the volume fraction of
particles and the baseline (interstitial) fluid properties. The density
of the particle-laden fluid is actually an “effective density,” since
it actually is a mixture of materials (particles and interstitial fluid).
Effective properties are defined through volume averages. For
example, the effective density of the mixture is

q� ¼defhqðxÞiV ¼
def 1

V

ð
V

qðxÞdV ¼ 1

V

ð
Vf

qfdV þ
ð

Vp

qpdV

 !

¼ �fqf þ �pqp (12)

where �f and �p are the volume fractions of the fluid and particles,
respectively. The volume fractions have to sum to unity

�f þ �p ¼ 1) �f ¼ 1� �p (13)

Similar approaches can be used to calculate various types of prop-
erties, such as the effective viscosity (a transport property). How-
ever, to calculate them is a bit more complicated, since they
require one to estimate the types of interaction between the

constituents. There are a number of models which provide expres-
sions for the effective viscosity of the fluid containing particles.
For the purposes of this flow analysis, the particles are considered
to be rigid, relative to the surrounding fluid. For example, in 1906,
Einstein [17] developed an approximation which is quite simple,
but only valid at extremely low volume fractions of particles
(under one percent). It can be written as

l� ¼ lfð1þ 2:5�pÞ (14)

where lf is the viscosity of the surrounding (incompressible) fluid,
and the particles are assumed rigid. At even quite moderate to
high volume fractions, this approximation is inaccurate. A better
approximation, which is in fact a rigorous lower bound on the
effective viscosity, can be derived from the well-known Hashin
and Shtrikman [18–20] bounds (see Appendix A), and written as

l� ¼ lfð1þ 2:5
�p

1� �p

� �
(15)

The expression above is the tightest known lower bound on the
effective viscosity of a two-phase material comprising rigid par-
ticles in a surrounding incompressible fluid. The origin of the
expression in Eq. (15) stems from bounds on effective responses
for solid two-phase mixtures (see Appendix). This expression
remains quite accurate up to about �p¼ 0.25, which is sufficient
for most applications and allows us to directly correlate the pres-
sure gradient to the volume fraction of the particles. We refer the
reader to Torquato [21] for more details.

6 Correlation of Pressure Gradient to Particle

Volume Fraction

Using the effective properties, we have an expression for the
velocity profile exponent

qðRecðl�;q�Þ; c�Þ ¼
1

2
ðc� þ c2Þ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� þ c2Þ2 þ 8c�

q� �
(16)

Consequently, the pressure gradient’s dependency on the volume
fraction of particles can be written as

�DP

Dx
¼

2 lf 1þ2:5
�p

1��p

� �� �
ðqðRecðl�;q�Þ;c�Þþ2Þ

pR4
Qo¼

def
C�Qo

(17)

where C*¼C*(Qo). For a fixed flow rate, Qo, increasing the vol-
ume fraction of particles (�p) requires a corresponding increase in
the pressure differential. Explicitly, the Reynolds number is

Re ¼
vmaxDq�

l�
¼ 2Qoðqþ 2Þ

pRq

ðð1� �pÞqf þ �pqpÞ

lf 1þ 2:5
�p

1� �p

� � (18)

7 Trends

To illustrate the trends, we varied Qo from 10�3 m3/s to 10�2 m3/s
and utilized the expression in Eq. (17). We plotted the pressure
gradient and Reynolds number as a function of the volumetric flow
rate (Qo) in Fig. 3 for various values of �p, with the following param-
eters used:5

• Viscosity: lf¼ 0.01 Pa s,
• Fluid density: qf¼ 2000 kg/m3,

Fig. 2 Progressive blunting of the velocity profile with increas-
ing Reynolds number

4In the special case of laminar flow (c1¼ 0 and c2¼ 2), there are two roots to
Eq. (11), q¼ 2 and q¼ 0. 5For reference, the viscosity of water is lf¼ 0.001 Pa s and for honey is lf¼ 1 Pa s.
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• Particle density: qp¼ 5000 kg/m3,
• Channel radius: R¼ 0.01 m, and
• Profile constants: c1¼ 0.01 and c2¼ 2.

Generally, the trends are that a steady increase in the pressure
gradient (approximately 40% more) is needed to maintain a fixed
Qo, for increasing the volume fraction of particles. Due to the
increase in the particle volume fraction, the viscosity increases,
thus decreasing the Reynolds number. High Reynolds numbers,
and consequential turbulence, can lead to aspiration (air entrain-
ment), spurious internal reactions, dewetting, etc., which can lead
to voids. The point of this example was not to illustrate an all
encompassing parameter set, but simply to show the explicit
dependency of the pressure gradient and Reynolds number on the
presence of secondary particles. Other parameter sets can be
easily simulated.

8 Summary

The presence of particle-laden fluids is widespread. Because
the presence of particles increases the overall viscosity of the
fluid, the pressure gradients needed to pump such fluids through
channels at a nominal flow rate can increase dramatically. The
present analysis and model can provide a useful guide to design-
ing systems that pump particle-laden flows, with the purpose to be
able to cast materials. This paper derived the pressure gradient
needed to maintain a given flow rate, as a function volume frac-
tion of particles present in the fluid. The expression explicitly cor-
relates the dependency of the pressure gradient to the particle
volume fraction and is hopefully easy to use by researchers in the
field. Furthermore, the developed expressions also provide esti-
mates on the Reynolds numbers that arise for given flow rates.
The tracking of the Reynolds number is important, since turbu-
lence can lead to improper casting due to the resulting voids. For
example, one can estimate the reduction of the material quality as
a function of the porous material by assuming that it comprises an
isotropic elastic matrix, with a bulk modulus jm and shear modu-
lus lm, while the porous void space is modeled by an elastic mate-
rial with very low bulk and shear moduli jv¼ djm, lv¼ dlm,
with 0� d� 1. The exact case of voids corresponds to d! 0. To
estimate the properties of the material with voids, we employ the
Hashin–Shtrikman bounds (see Appendix), assign the following
(the harder material is the matrix and the softer is the voids):
jv¼ j1, lv¼ l1 and jm¼j2, lm¼ l2, �v¼ �1 and �m¼ �2, and
force lv! 0 and jv! 0 to obtain

0 � j�;voids � jmð1� �vGð�vÞÞ (19)

where

Gð�vÞ ¼
3jm þ 4lm

3�vjm þ 4lm

(20)

and

0 � l�;voids � lmð1� �vCð�vÞÞ (21)

where

Cð�vÞ ¼
5ð3jm þ 4lmÞ

jmð9þ 6�vÞ þ lmð8þ 12�vÞ
(22)

One can then assign the effective properties of the void-free part
of the particle-laden mixture to the matrix material,
j�;no�voids ¼ jm and l�;no�voids ¼ lm, leading to

0 � j�;voids � j�;no�voidsð1� �vGð�vÞÞ (23)

and

0 � l�;voids � l�;no�voidsð1� �vCð�vÞÞ (24)

It is important to note that

• As �v ! 1; �vGð�vÞ ! 1 and �vCð�vÞ ! 1, thus l�;voids ! 0
and

• As �v ! 0; �vGð�vÞ ! 0 and �vCð�vÞ ! 0, thus l�;voids

! l�;no�voids.

These expressions show the resulting effective property loss as a
function of the voids. Further expressions on the reduction of ma-
terial performance are provided in Appendix B. We remark that in
some applications, such as biomedical devices, controlled porosity
with prespecified pore shapes, sizes, and distributions is sought af-
ter using, for example, porogen templating processes. We refer
the reader to Hong et al. [22] for a detailed overview of the state
of the art of porogen patterning. Other emerging, cutting-edge,
approaches for controlled generation of desired porosity involve
laser processing (Kongsuwan et al. [23]). This is particularly use-
ful for precisely functionalized layered substrates.

Fig. 3 Trends—Left: the pressure gradient needed (� DP=Dxð Þ) as a function of the desired volumetric flow rate (Qo) for vari-
ous volume fractions of mp. Right: the resulting Reynolds number as a function of the volumetric flow rate (Qo).
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In summary, the present analysis and model can provide a use-
ful guide to designing and interpreting experiments. However,
while the model can provide qualitative information, extensions
are almost certainly going to require complex spatiotemporal dis-
cretization resolving multiparticle particle–fluid interaction. Such
particle/fluid systems are strongly coupled, due to the drag forces
induced by the fluid onto the particles and vice versa. For exam-
ple, in Zohdi [13,14], a flexible and robust solution strategy was
developed to resolve coupled systems comprising large groups of
flowing particles embedded within a continuous flowing fluid. The
focus of that work was to develop adaptive time-stepping schemes
which properly resolve the coupling, via a staggered recursive
time-stepping process. The approach can be used in conjunction
with computational fluid mechanics codes based on finite differ-
ence, finite element, finite volume, or discrete element discretiza-
tion, for example, such as those developed in Onate et al. [2,3],
Rojek et al. [4], Carbonell et al. [5], Labra and Onate [6],
Leonardi et al. [7], Cante et al. [8], Rojek [9], Onate et al. [10],
Bolintineanu et al. [11], Avci and Wriggers [12], and Zohdi
[24–26]. Finally, we mention that oftentimes the detrimental
growth of channel walls (thus clogging feed lines) starts with the
adhesion of particles to the surfaces. This is a complex process,
which is likely to involve low fluid-induced shear stress (allowing
particles stick to the walls, Zohdi [27,28] and Zohdi et al. [29])
and strongly coupled diffusive, chemical effects, and thermal
effects. The application of such computational procedures to the
problems considered in this paper is under current investigation
by the author.

Appendix A: Effective Property Bounds

The literature on methods to estimate the overall macroscopic
properties of heterogeneous materials dates back at least to Max-
well [30,31] and Rayleigh [32], with a notable contribution being
the Hashin–Shtrikman bounds [18–20]. The Hashin–Shtrikman
bounds are the tightest possible bounds on isotropic effective
responses, generated from isotropic microstructures, where the
volumetric data and phase contrasts of the constituents are the
only data known. For linearized elasticity applications, for iso-
tropic materials with isotropic effective (mechanical) responses,
the Hashin–Shtrikman bounds (for a two-phase material) are as
follows:

j�;� ¼def
j1 þ

�2

1

j2 � j1

þ 3ð1� �2Þ
3j1 þ 4G1

� j� � j2

þ 1� �2

1

j1 � j2

þ 3�2

3j2 þ 4G2

¼def
j�;þ (A1)

and for the shear modulus

G�;� ¼def
G1 þ

�2

1

G2 � G1

þ 6ð1� �2Þðj1 þ 2G1Þ
5G1ð3j1 þ 4G1Þ

� G� � G2

þ ð1� �2Þ
1

G1 � G2

þ 6�2ðj2 þ 2G2Þ
5G2ð3j2 þ 4G2Þ

¼def
G�;þ (A2)

where j2 and j1 are the bulk moduli, and G2 and G1 are the shear
moduli of the respective phases (j2�j1 and G2�G1), and where
�2 is the second phase volume fraction. Such bounds are the tight-
est possible on isotropic effective responses, with isotropic two-
phase microstructures, where only the volume fractions and phase
contrasts of the constituents are known. Note that no geometric or
statistical information is required for the bounds. For an authorita-
tive review of (a) the general theory of random heterogeneous
media see, for example, Torquato [21], (b) for more mathematical

homogenization aspects, see Jikov et al. [33], and (c) for solid-
mechanics inclined accounts of the subject see, for example,
Hashin [20], Mura [34], or Markov [35]. We note that numerical
methods have become the dominant tool for determining effective
properties. In particular, finite element-based methods are
extremely popular, and we refer the reader to Ghosh [36], Ghosh
and Dimiduk [37], and Zohdi and Wriggers [15].

Finally, to derive Eq. (15), one can take the limit of the particle
phase becoming rigid, i.e., the bulk and shear moduli tending to-
ward infinity, jp !1 and Gp !1, signifying that the particles
are much stiffer than the interstitial fluid, while simultaneously
specifying that the interstitial fluid is incompressible, i.e.,
jf/Gf!1 with Gf being finite. This yields

G� ¼ Gf 1þ 2:5
�p

1� �p

� �
(A3)

One can then assign lf, the value of Gf to obtain Eq. (15). See, for
example, Abedian and Kachanov [38] and Sevostianov and
Kachanov [39] for more details.

Appendix B: Reduction in Failure Strength

Due to Voids

The failure of most structural materials is associated with
reaching a critical deviatoric stress. In order to determine the
reduction in failure strength due to voids, we denote the macro-
scopic effective elastic shear modulus as l*,voids and the deviatoric

stress at yield as R�;voids;0 . To start the analysis, we consider the
dense material to have met the failure stress (R0m), thus yielding an

expression for the overall failure stress (R�;voids;0 )

hr0iX ¼ �vhr0iXv
þ �mhr0iXm

¼ �mhr0iXm

¼ ð1� �vÞhr0iXm
¼ ð1� �vÞR0m ¼ R�;voids;0 (B1)

where R0m is the stress at which the dense material fails. The effec-
tive shear modulus needed to determine R�;voids;0

�
2l�;voids

	 

can

be estimated as in the main body of the text. Thus, for the small
overall strains at which macroscopic failure occurs

2l�;voidsh�0yiX ¼ 2l�;voidsY0;�;voids � 2lmð1� Cð�vÞÞY0;�;voids

¼ hr0iX � R0mð1� �vÞ
(B2)

and thus

Y0;voids;� ¼ R0m
2lm

� �
1� �v

1� �vCð�vÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼def
Uð�vÞ

(B3)

where Y0;voids;� is the macroscopic small strain deviator at initial
failure. Thus, we have

Y0;voids;� � R�;voids;0

2l�;voids
� R0m

2lm

� �
Uð�vÞ (B4)

where the function U(�v) is a slowly increasing function of �v. It
is noted that since an upper bound was used in the construction of
C(�v), and due to the functional dependence of U on C(�v), U is
an overestimation of the increase in the overall failure strain. One
can then assign the effective properties of the slurry and binder to
the matrix material, l�;no�voids ¼ lm;R

0
m ¼ R0;no�voids;�; and Y0m

¼ Y0;no�voids;�. Thus, the change in the yield stress is
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R0;voids;� ¼ R0;no�voids;�ð1� �vÞ (B5)

and the change in yield strain is

Y0;voids;� � R0;no�voids;�

2l�;no�voids

� �
Uð�vÞ ¼ Y0;no�voids;�Uð�vÞ (B6)
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