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Application of the Particle Finite
Element Method in Machining
Simulation Discussion of the
Alpha-Shape Method in the
Context of Strength of Materials
In particle finite element simulations, a continuous body is represented by a set of par-
ticles that carry all physical information of the body, such as the deformation. In order to
form this body, the boundary of the particle set needs to be determined. This is accom-
plished by the a-shape method, where the crucial parameter a controls the level of detail
of the detected shape. However, in solid mechanics, it can be observed that a has an influ-
ence on the structural integrity as well. In this paper, we study a single boundary segment
of a body during a deformation and it is shown that a can be interpreted as the maximum
stretch of this segment. On the continuum level, a relation between a and the eigenvalues
of the right Cauchy–Green tensor is presented. [DOI: 10.1115/1.4034434]

1 The Particle Finite Element Method (PFEM)

Common techniques in computational modeling can be catego-
rized as continuum based or discrete methods. Discrete methods,
such as molecular dynamics are well suited to track large configu-
rational changes and can therefore determine, e.g., the nucleation
and growth of defects. However, these methods are computation-
ally expensive for problems with large length- and time-scales.
Standard finite element methods (FEMs) are a common way to
solve continuum-based problems and are well established in vari-
ous engineering applications. Although they are well suited to
model problems on the scale of engineering components, large
configurational changes often lead to a failure of the method. The
particle finite element method (PFEM) combines the benefits of
continuous and discrete methods and is, therefore, well suited to
cope with large configurational changes, e.g., separation of mate-
rial. It was first applied to problems with sloshing liquids in Ref.
[1], and since then the number of applications has increased
including problems in solid mechanics as in Refs. [2,3] or even
simulations of liquid–solid interaction in Ref. [4]. The PFEM
algorithm used in this work consists of several parts. At first, the
boundary of a set of particles needs to be determined which is
accomplished by the so called a-shape method. This method origi-
nates from the field of computer graphics (see e.g., Refs. [5,6])
and will be explained in more detail in Sec. 2. After detecting the
boundary, the region can be meshed with finite elements. A
detailed description of the element implementation used in this
work, will be given in Sec. 3. After the meshing, a FEM problem
can be solved, where the deformation data of previous load steps
needs to be included to restore the overall deformation. The FEM
problem is then solved using the academic code FEAP [7], the
resulting displacements are used to update the particle coordi-
nates, and the deformation gradient is stored for the next load
step. Figure 1 gives a graphic overview of the algorithm.

2 Identifying the Boundary

The boundary of a set of particles S can be considered as a
chain of boundary segments. To identify these segments, every
possible pair of particles within the set needs to be examined. A
two-dimensional ball (or circle) that intersects the respective pair
is defined and it is tested, if the circle contains any other particles
of the set. The radius of this circle corresponds to the minimum
distance between any two particles in the set, scaled by the param-
eter a. If no other particles are located in the circle, the line
between the respective pair forms a boundary segment. Therefore,
it can be said that there are two essential conditions which have to
be fulfilled in order to form a boundary segment. The distance
between the pair of particles must not exceed the diameter of the
circle and the circle must not contain any other particles. In the
following paragraph, the working principle of the a-shape method
is explained in more detail.

Consider two particles i and j as displayed in Fig. 2 which are
part of the set S.

The line element connecting these particles is then described as
the vector

Fig. 1 PFEM algorithm in pseudocode
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hij ¼ xi � xj (1)

In order to define a circle intersecting both particles, we need to
define the direction to the midpoint of the circle. This is realized
with an orthogonal vector to the line segment

nij ¼
1

jhijj
� hij � ey

hij � ex

� �
(2)

This vector is normalized and has to be scaled to give the accurate
position of the circle’s center. Making use of Pythagoras’s theo-
rem, this value can be expressed as

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1

2
jhijj

� �2
s

(3)

where the radius of the circle is defined as

r ¼ a hmin (4)

In Eq. (4), hmin symbolizes the minimum distance between any
two particles in the set S. With the distance d from the circle’s
center to the vector hij, the position of the midpoint as shown in
Fig. 2 can be expressed as

mij ¼
1

2
xi þ xjð Þ þ d nij (5)

The final step of the method is to examine if any other particles
are located in the circle. For an arbitrary particle k, its distance to
the center of the circle can be defined as

jrkj ¼ j xk �mijj (6)

If the condition jrkj � r is fulfilled, particle k is not located within
the circle and the condition is checked for every remaining parti-
cle in the set S. If the condition holds, particles i and j form a
boundary segment. In Fig. 3, two examples of a detected boundary
for the same set of particles are shown.

From the figures, it can be easily observed that different values
for a lead to different boundaries. The boundary on the left is

detected with a¼ 1.0 and the boundary on the right is detected
with a¼ 2.0, where the small notch is not captured and the larger
notch is shaped differently. This indicates that the choice of a con-
trols the level of detail and is therefore highly significant.

3 Solution of Boundary Value Problems and Update

of Particle Data

After identifying the boundary, a continuous body can be
defined. Combined with boundary conditions, we can state a
boundary value problem using the basic equations of nonlinear
solid mechanics. These are taken from textbooks as Refs. [8–10].
Since we want to track the changes in the topology, we divide the
overall mechanical load into several load steps, and redetect the
boundary in between these steps. This means that the overall
deformation is defined as

F ¼ @x

@X
¼ @x

@n

@n

@X
¼ Fact Fold (7)

The coordinate n then describes the position of the body in one of
the load steps, and the coordinates X and x represent the position
in the undeformed, and deformed configuration. This multiplica-
tive split of the deformation gradient can be found in Ref. [11]
and goes back to Ref. [12], where it was first used in the context
of elastoplasticity. Using this modified deformation gradient, we
can compute the left Cauchy–Green tensor to express the strain in
the current configuration

b ¼ FFT (8)

As constitutive relation, a hyperelastic material is considered and
the stress in the actual configuration can therefore be expressed as

r ¼ 2b
@W

@b
with W bð Þ ¼ l

2
IB � 3ð Þ þ g Jð Þ (9)

where the strain energy function W represents a standard neo-
Hooke material and is based on the first invariant IB ¼ trðbÞ, and
the determinant of the deformation gradient J ¼ detF. The volu-
metric part of the strain energy function g(J) is expressed as

g Jð Þ ¼ k
4

J2 � 1ð Þ � k
2

ln J � l ln J (10)

and the parameters l and k in Eq. (10) represent the Lam�e con-
stants in the small deformation limit. For the current configura-
tion, the mechanical equilibrium is defined using the Cauchy
stress tensor

div rþ f ¼ 0 (11)

where f represents the volume forces and the divergence is com-
puted with respect to x. Now, all necessary equations have been
stated and with boundary conditions we can form a boundary
value problem. In order to solve the resulting problem, Eq. (11) is

Fig. 2 Detecting segments between particles

Fig. 3 Result of boundary detection for a 5 1.0 and a 5 2.0
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transferred into a weak form which has to be linearized and dis-
cretized. For all problems discussed in this work, we use triangu-
lar finite elements with the shape functions

N1ðr; sÞ ¼ 1� r � s; N2ðr; sÞ ¼ r; N3ðr; sÞ ¼ s (12)

where r and s are the element coordinates. After solving the finite
element problem, the deformation gradient is projected from the
Gauß points to the nodes. Before the final projection, improved
values for the deformation gradient at the Gauß points

FGP;impr ¼
XN

I¼1

NI rGP; sGP
� �

FI (13)

are calculated in a least squares sense. To obtain the final nodal
values of the deformation gradient, the integral of the mesh
volume

MIJ ¼
ð
Bt

NI rGP; sGP
� �

NJ rGP; sGP
� �

dX (14)

and the entries of the deformation gradient on the element level
weighted by the element volume

PIðFGPÞ ¼
ð
Bt

NI rGP; sGP
� �

FGP dX (15)

have to be assembled, which leads to the set of linear equations

XN

J¼1

MIJFJ ¼ PI FGPð Þ (16)

The matrix MIJ is diagonalized

�MII ¼
XN

J¼1

MIJ ¼
ð
Bt

NI rGP; sGP
� �

dX (17)

and the lumped system

�M
II

FI ¼ PI FGPð Þ (18)

can easily be solved. In the next step, the old deformation data
can be recaptured as

Fold ¼
XN

I¼1

NIðrGP; sGPÞFI;old (19)

and the overall deformation can be recovered using Eq. (7).

4 Physical Interpretation of a

As described in Sec. 2, the a-shape method detects the sur-
rounding of a set of particles by identifying a path of segments
connecting the boundary particles. Once the boundary of the body
is established, the domain can be meshed and a finite element sim-
ulation is performed. After the simulation, the particle coordinates
are updated by the displacements. Now, the a-shape algorithm
runs again and determines the boundary. Since the distances
between particles change during a deformation, the detected
boundary might change and recalling the working principle of the
a-shape method, we can define two necessary conditions to iden-
tify a boundary segment. As mentioned in Sec. 2, an intersecting
circle with the radius r ¼ ahmin is defined for every pairwise com-
bination of particles in a set. This implies that the distance
between these particles and therefore, the length of the segment
must not exceed the diameter of the circle. Another necessary con-
dition for the identification of boundary segments is that the circle

must not contain any other particles. This confines the first condi-
tion w.l.o.g. to be valid only for segments at the boundary. In the
following, the behavior of a boundary segment during a deforma-
tion is studied in order to investigate the relationship between the
parameter a and a separation of material, i.e., failure of boundary
segments. Figure 4 shows two particles i and j, and the related
boundary segment before and after a deformation, as well as the
corresponding a-circles.

In the undeformed state, the segment is of length jHj and is
therefore smaller than the diameter 2 a jHj of the circle. After a
deformation U, the length of the segment and the diameter are
equal, which gives a critical deformation for the case that hij is
still a boundary segment. This critical point can be identified as

jhj ¼ 2 a jHj ! a ¼ jhj
2 jHj (20)

Equation (20) implies that a can be interpreted as a critical stretch
of a boundary segment. Since the PFEM is a combination of a dis-
crete and a continuum-based modeling technique, it would be use-
ful to establish a relation between the parameter a and the strain
state in the continuous body in the sense of a failure criterion.
Therefore, we express the length of the segments in Eq. (20) with
the scalar product, which yields

h � hð Þ
1
2 ¼ 2 a H �Hð Þ

1
2 (21)

From textbooks like Ref. [8] or [11], we know that the deforma-
tion of a line segment can be described with the mapping

h ¼ F H (22)

where F is the deformation gradient. It must be noted that we
assume F to be spatially constant. With this expression, we can
eliminate the deformed segment h and rearrange Eq. (21) to

ðF HÞ � ðF HÞ ¼ 4 a2 H �H (23)

Introducing the right Cauchy–Green tensor

C ¼ FTF (24)

and with some transformations, we can express Eq. (23) as

H � ððC� 4 a2 1ÞHÞ ¼ 0 (25)

In order to solve this equation, we transfer the right
Cauchy–Green tensor into a diagonalized matrix

diagðkC
i Þ ¼ QTCQ (26)

Fig. 4 Line element in reference- and spatial-configuration
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where Q is an orthogonal matrix containing the eigenvectors of C
corresponding to the eigenvalues kC

i . Equation (25) then becomes

H � ððQQTCQQT � 4 a2 QQT1QQTÞHÞ ¼ 0 (27)

which can be rearranged to

ðQTHÞ � ððdiagðkC
i Þ � 4 a2 1ÞðQTHÞÞ ¼ 0 (28)

Using the abbreviations y ¼ QTH and A ¼ diagðkC
i Þ � 4 a2 1, we

can distinguish between three different solutions for the equation

y � ðAyÞ ¼ 0 (29)

If tensor A is positive-definite ðkC
i > 4a2Þ or negative-definite

ðkC
i < 4a2Þ, only the trivial solutions yi ¼ 0 exist, and therefore,

the corresponding undeformed line segments are Hi ¼ Q yi ¼ 0.
If A is positive-semidefinite

ðkC
1 ¼ 4a2 � kC

2 > 4a2 or kC
2 ¼ 4a2 � kC

1 > 4a2Þ

or negative-semidefinite

ðkC
1 ¼ 4a2 � kC

2 < 4a2 or kC
2 ¼ 4a2 � kC

1 < 4a2Þ

the shape of the nontrivial solutions is

y1 ¼
j
0

� �
y2 ¼

0

j

� �
ðj 6¼ 0Þ (30)

and the corresponding line segments are

H1 ¼ Q y1 ¼ j
Q11

Q21

� �
; H2 ¼ Q y2 ¼ j

Q12

Q22

� �
(31)

It should be noted that this would mean that the undeformed line
segment H would have to be collinear to the eigenvectors corre-
sponding to ki.

In the third case, A is indefinite

ðkC
1 > 4a2 � kC

2 < 4a2 or kC
2 > 4a2 � kC

1 < 4a2Þ

The shape of the solution is

y1 ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðkC

2 � 4a2Þ
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kC

1 � 4a2

q
0
B@

1
CA

y2 ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kC

2 � 4a2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðkC

1 � 4a2Þ
q

0
B@

1
CA

(32)

and the undeformed line segment is

H1 ¼ Q y1 or H2 ¼ Q y2 (33)

5 Analytical Example

In this section, the previous discussed theory is tested on a sim-
ple analytical example. The punched strip in Fig. 5 is a popular
example in continuum mechanics and if subjected to a tensile
loading, we expect the strip to fracture at the right and left bound-
ary of the hole. As a first approach, a single finite element at the
critical position of the boundary is studied. For this investigation,
the element nodes are fixed in both degrees-of-freedom and a dis-
placement û is applied at the top node. The a-shape algorithm is

applied to the blue-colored boundary segment and traces the sepa-
ration of material.

The triangular finite element used in this work has already been
briefly introduced in Sec. 3. For isoparametric elements, the defor-
mation gradient can be expressed in terms of the transformation
matrices

Fe ¼ je J�1
e (34)

where j maps the position vector in the deformed configuration to
the isoparametric reference configuration and is defined as

je ¼
@x

@r
¼
XN

I¼1

xI �rrNI (35)

In Eq. (35), r represents the coordinates in the isoparametric refer-
ence configuration and NI are the shape functions described in Eq.
(12). The transformation matrix J maps the position vector in the
undeformed configuration to the isoparametric reference configu-
ration. Hence, J is defined in a similar way as

Je ¼
@X

@r
¼
XN

I¼1

XI �rrNI (36)

Now, the right Cauchy–Green tensor can be formed according to
Eq. (24) and the strain state is known in the finite element. The
eigenvalues of C can be computed and compared to the limit 4 a2,
which is presented in Fig. 6.

In Fig. 6, the maximum eigenvalue of C is plotted over the ver-
tical stretch of the finite element. In this example, a¼ 1.0 which
represents a stretch of the boundary segment by 100%. If the max-
imum eigenvalue kC> 4.0, the a-circles at the segment cannot
intersect both particles, and the segment fails.

6 Numerical Examples

Section 5 demonstrated the relation between a and the eigenval-
ues of C on an analytical example. Now, more sophisticated
examples with a larger number of particles will be studied. The
first three examples are bodies with simple geometries, subjected
either to uniaxial tension or a shear deformation. Figure 7 demon-
strates the two loading scenarios.

For the following examples subjected to a uniaxial tensile load-
ing, the body is vertically fixed at the bottom and a vertical dis-
placement is applied at the top. The simple shear simulation is
carried out in a way that the left and right boundaries of the body
are translated with linear decreasing displacements from top to

Fig. 5 Punched strip and critical boundary segment
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bottom. The sides are then tilted by the shear angle c as described
in Fig. 7. Figure 8 shows the deformed body of the tensile test in
the critical load step.

The contour plot in Fig. 8 represents the maximum eigenvalue
at the Gauß points. For this simulation we set a¼ 1, which means
that the material separates if the maximum eigenvalue exceeds the
value of 4. The figure displays the last load step, before the mate-
rial separates. In the following simulation, the body is subjected to
a simple shear loading scenario, and Fig. 9 shows a contour plot
of the maximum eigenvalue.

The body is again displayed in the critical load step where the
maximum eigenvalue has just reached the critical point. This sim-
ulation was also carried out for a¼ 1.0, which represents a maxi-
mum stretch of the boundary segments by 100%. In the next
example, we again study the punched strip discussed in Sec. 5.
The boundary conditions correspond to the ones used in the tensile
test simulations, explained in Fig. 7. In Fig. 10, the punched strip
is shown in the undeformed setting and the color code again indi-
cates the maximum eigenvalue. As previously mentioned, the
largest strain occurs at the middle of the punch hole, which is why
we expect the material separation to start at this position.

Figure 11 shows a contour plot of the maximum eigenvalue in a
latter load step. As expected, the specimen fails at the predicted
position and at the critical eigenvalue corresponding to a¼ 1.0.

To give more quantitative results, we studied the failure of the
first boundary segment for the uniaxial tension, the simple shear,
and the punched strip simulation. Figures 12–14 show the critical
stretch of the boundary segments a and the ratio of the length of
the deformed boundary segment with respect to the length of the
undeformed segment for the three simulations.

In Figs. 12–14, the stretch of the boundary segment is plotted
over the ratio of the size of the deformed specimen l and the size
of the undeformed specimen L as displayed in Fig. 7 for the ten-
sile test. For the case of the simple shear simulation, the ratio l/L
is expressed as l=L ¼ 1þ tanðcÞ where the shear angle c is
explained in Fig. 7. The plots confirm the statement of the maxi-
mum stretch based on a and the first failure of a boundary seg-
ments occurs at the predicted point except for the simple shear
simulation. The cause of this can be explained with Fig. 15.

Recalling the two conditions which need to be fulfilled in order
to identify a boundary segment, one statement expresses that the
a-circles must not contain any particles except for the ones that

Fig. 7 Dimensions and displacements for uniaxial tension and
simple shear simulations

Fig. 8 Specimen under uniaxial tension

Fig. 9 Maximum eigenvalue in simple shear simulation

Fig. 10 Punched strip in undeformed setting

Fig. 6 Maximum eigenvalue compared to a-limit for a 5 1.0
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form the segment. However, in simulations with large deforma-
tions, the boundary may be strongly distorted and other particles
move into the a-circles. On the left in Fig. 15, some particles are
about to enter the a-circles. The right side of the figure shows the
following load step where some former boundary segments have
been eliminated, due to the violation of the mentioned condition.

6.1 Applications in Manufacturing. As discussed in the
introduction of this work, the PFEM was designed to cope with
large configurational changes. In many processes in manufactur-
ing, a material is largely deformed or separated. This section
shows two applications in manufacturing. Since this
implementation of the PFEM uses a hyperelastic material model,
the material parameters for these simulations were set to
l¼ 925 MPa and k¼ 2160 MPa, which mimics the behavior of
plastics. The first numerical example is a simulation of a vertical
cutting process, where a workpiece is shortened by a cutting tool.
Figure 16 shows the workpiece represented by a set of particles
and the rigid tool.

In this simulation, only the left part of the workpiece is fixed in
both degrees-of-freedom. The cutting tool is vertically translated
and a normal contact condition is considered between tool and
workpiece. Figure 16 shows the maximum eigenvalue at Gauß
point level and it can be observed that the material separates in a
region with high stretches. However, this simulation is done with
a¼ 0.8, and therefore, the predicted critical eigenvalue is 2.56.

Fig. 12 Stretch of boundary segments h/H and critical stretch
a 5 0.9

Fig. 11 Maximum eigenvalue plotted on deformed
configuration

Fig. 13 Stretch of boundary segments h/H and critical stretch
a 5 1.0

Fig. 14 Stretch of boundary segments h/H and critical stretch
a 5 1.1

Fig. 15 Boundary segments and a-circles before and after
separation

Fig. 16 Maximum eigenvalues in workpiece for a 5 0.8
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The color code indicates that the actual eigenvalues are somehow
smaller than the critical value, which is further discussed on the
following example.

For the simulation of a turning process, we modelled a hollow
shaft represented by a set of particles that is cut by a rigid tool.
Figure 17 shows the deformed workpiece and the cutting tool and
effects as the formation of a chip and burr are visible.

In Fig. 17, it can once again be observed that the material
separates in the region with the highest stretches, but the maxi-
mum eigenvalue in the critical finite element is of much
smaller value than the predicted limit of 4.0. To understand
this effect, we want to investigate the eigenvectors correspond-
ing to the maximum eigenvalues in the workpiece. In Fig. 18,

the eigenvectors are plotted in every element in the region of
interest.

In Sec. 4, it is mentioned that a can be related to the eigenval-
ues of the right Cauchy–Green tensor as long as the relevant
boundary segment is stretched in the same direction as the eigen-
vectors. However, Fig. 18 shows that the eigenvector in the criti-
cal finite element at the tip of the cutting tool and the related
boundary segment are not collinear, which is why the following
figure compares the scalar stretch of this boundary segment to a.

In Fig. 19, it can be observed that the stretch of the line segment
increases until reaching the critical value a. At this point, the
deformed boundary segment is of the same size as the diameter of
the a-circle. Any further stretch leads to the failure and elimina-
tion of this segment.

7 Conclusion

The particle finite element method is a suitable technique for
problems with large configurational changes and can be applied to
complex simulations in manufacturing where chips and burrs are
formed. In the PFEM, the boundary of a set of particles is detected
prior to every load step by the a-shape method. This method is
named after its crucial parameter a and it can be observed that a
variation of this parameter leads to different topologies of the
boundary. Taking a closer look at the a-shape method applied to a
single boundary segment in the deformed and undeformed config-
uration, a can be interpreted as a maximum stretch of a boundary
segment. A relation to the eigenvalues of strain tensors, such as
the right Cauchy–Green tensor can be established to give a
continuum-based interpretation of a. It is shown that the eigen-
strains can be compared to a if the corresponding eigenvectors are
collinear to the boundary segments. This assumption is first vali-
dated on a single finite element and then on numerical examples
with simple loading conditions. Contour plots of these simulations
show the maximum eigenvalue of the right Cauchy–Green tensor,
where the color code is limited by 4a2. To give a quantitative
measure, the stretch of the critical boundary segments is studied
and compared to a in respective line plots. With the aid of this
concept, we can provide a prediction for a separation of material
in particle finite element simulations applied to solid mechanics.
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