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Highlights
• Develops efficient and rapid computational method to simulate fast flash-type single-pulse Lidar.
• Method based on decomposition of a Lidar pulse into a group of rays, which are then tracked and processed.
• Identifies regions where the return signal will be erroneous due to multiple reflections.
• Allows one to quickly quantify the uncertainty in the response.

Abstract

Lidar and other time-of-flight technologies have recently received significant attention in both academic and industrial
biomechanics communities, driven by technological advances in human body scanners. This paper develops an efficient and
rapid computational method to simulate fast flash-type single-pulse Lidar, based on decomposition of a Lidar pulse into a
group of rays, which are then tracked and processed. This allows one to quickly quantify the uncertainty in the response by
identifying regions where the return signal will be erroneous due to multiple reflections.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Remote sensing and scanning technologies have become integral tools, which entail the acquisition of information
about a surface, an object or phenomenon without making physical (mechanical) contact, primarily through
a transmitted signal and a resulting reflection. In particular, optical scanning based on Lidar (light detection
and ranging) and time-of-flight signal processing has become a ubiquitous technology, with many variants now
being proposed. This technology has recently received large amounts of attention by the academic and industrial
biomechanics communities, driven by the ongoing development of human body scanners. Applications range from
3D body scanners that can capture the entire human body quickly, for example for prosthetic designs, analysis of
biomechanical movement, surface scans for tumors, fitness scans, forensic analyses, anomaly detection, generation
of numerical biomechanical models (meshing) and creation of virtual reality avatars. Such technology is based
on scanning Lidar, which produces thousands of narrow bandwidth pulses per second and scans a domain, using a
signal time-of-flight analyses to determine the surface profile. Essentially, a stereographic 3D image is produced.This
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scanning process can be slow and time consuming. Emerging methods are pursuing flash Lidar, which uses a single
“flash” pulse and attempts to extract information of the resulting back-scatter signal. It is much faster, but there is
potentially more error due to possible multiple reflections that pollute the processing of the return signal.

This paper explores these issues by developing a fast computational method based on decomposition of the pulse
into a group of rays, which are then tracked. This allows one to rapidly quantify the uncertainty by identifying
regions where the signal will be erroneous and serves as a guide for practitioners to ascertain where problems
may occur a priori to experiments. Specifically, this work simulates a flash pulse on an oscillatory and materially
nonuniform domain. A discrete-ray model is developed in order to enable rapid assessment of the response of a
surface to an incoming pulse. The pulse is decomposed into a set of discrete rays. Ray-tracking is used to calculate
the propagation and reflection of the return signal. Examples are given and are comprised of initially coherent
incident pulses, their propagation and subsequent scattered reflection. Basic system trends are computed, varying
the surface topology and return signal fidelity. The work is motivated by the advances, within the last few decades,
in the development of optically-based imaging technologies, such as Lidar. Lidar is a technique by which a target is
illuminated with a laser and the reflected light is analyzed. Lidar was developed in the 1960s, and it combines laser
focusing with radar-like technology for calculating distances by measuring the time for a signal to return. It enjoys a
wide range of uses (see [1–6]) in the motion capture community and is a relatively standard tool in the atmospheric
sciences, ranging from remote sensing, airborne laser mapping and cloud measurement, and has been extended to
a variety of applications in engineering and science. It has also started finding usage in the characterization of the
human body. Typically, Lidar uses high-frequency ultraviolet, visible and near infrared light. For reviews, we refer
the reader to Ring [7], Cracknell and Hayes [8], Goyer and Watson [9], Medina et al. [10] and Trickey et al. [11].

1.1. Lidar and time-of-flight cameras

Lidar can be considered as one of a family of methods classified as “time-of-flight” cameras, whereby a pulse
(optical) energy is released and the time it takes to reach the target and to return, coupled with knowledge of the
propagation speed determines the relative distance. Such devices have steadily evolved for the last 20 years [12–18].
In particular, due to the large number of UAV’s and aircraft available, Lidar has become quite popular as a surveying
method that measures distance by illuminating the target-essentially as a 3D laser scanner. Lidar became popular
in 1971 to map the moon’s surface and also as a lunar altimeter. Lidar originated in the 1960s shortly after lasers
were developed. The most common use of time-of-flight methods is as a Digital Elevation Model (DEM) using the
concept of a point cloud using a time-of-flight calculation. A time-of-flight analysis consists of:

• Computing/measuring the total return time of a transmitted signal:

t tot
= t1 + t2 =

d1

v
+

d2

v
. (1.1)

• Isolating the time to encounter the scatterer:

t1 =
d1

v
= t tot

− t2 = t tot
−

d2

v
= t tot

−
L

v sin θ
, (1.2)

where θ = cos−1
(
−

v1·v2
∥v1∥∥v2∥

)
.

• Calculating the distance d1 (∥v1∥ = ∥v2∥ = v) from the emitter/camera to yield:

d1 = vt tot
− vt2 = vt tot

−
vL

v sin θ
= vt tot

−
L

sin θ
. (1.3)

The wavelengths used are most commonly 600–1000 nm. However, 1550 nm devices are “eye safe” (for large
surface areas), but less accurate (this requires the use of gallium-arsenide, which is costly). Typical airborne
topographic lasers operate at 1069 nm. Historically, they enjoy widespread use in agriculture, archaeology, etc.
coupled with unmanned autonomous vehicles. This ranges from (1) Profiling Lidar, where an individual pulse is
placed in a single line (2) Small footprint Lidar scans at 20 degrees back and forth (3) Large-footprint Lidar, which
pulses an entire area (3) Topographical Lidar uses near infrared (4) Bathymetric Lidar, which is water penetrating
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Fig. 1. Left: A phased array producing a flash pulse. Right: For mathematical analyses, a flash pulse comprised of rays, with a schematic
of the hypothetical trajectory of one of the rays within the pulse.

green light to measure seafloor and riverbed elevations (5) Ground-based Lidar, where a tripod unit scans a hemi-
sphere. The components can entail (1) Lidar sensors which scan from side to side: green light or infrared (2) GPS
receivers track the altitude of the plane or UAV (3) Inertial measurements (IMU) track the tilt of the plane or UAV
and (4) Computers/data recorders. There are usually two forms of signal storage: (1) Discrete Lidar stores peak
return signals and (2) Full wave Lidar stores everything.

1.2. Flash lidar

Recently, because of demands for rapid scanning, “flash” methods which use a single flash pulse have started
to become popular. This may require the use of phased arrays (Fig. 1), which are a collection of many individual
antennas—they are inexpensive, but last about 1000–2000 h, as opposed to 100,000 h from a solid state (expensive)
laser. Often, a point-cloud is generated as a result of the return signal, which comprises a set of data points
in space that indicate the computed profile of the object to be scanned. This is closely related to the field of
Computer Vision, which deals with how computers can be made to gain high level understanding from digital images
involving topographical modeling methods for acquiring processing and analyzing digital images (a form of AI)
and extraction of edges, inference, shape recognition, etc. Application examples range from automatic inspection,
assisting humans, in identification, controlling processes, detecting events, computer–human interactions, navigation,
object classification, medical image analysis and body scanning. Flash-type cameras/scanners have an advantage
over more sophisticated methods because:

• The systems are simple, since they do not have moving parts associated with a scanner, and can thus be made
very compact.

• The systems measure the entire surface in a single pulse, hence they are fast and can be used in real time and
• The systems do not require sophisticated post-processing units and are therefore inexpensive.

However, the greatest problems arise from multiple reflections of a pulse (Fig. 2) which can ruin time-of-flight
calculations and other subsequent post processing. In this paper we construct a fast computational framework to
simulate a time-of-flight flash camera and discuss the sources of error associated with multiple reflections that
computational methods can help identify and possibly alleviate. The utility of this is that it allows one to rapidly
identify the regions where the signal will be erroneous and to determine those regions which will need to be
reconstructed by other means (this is called “registration”), and which may need to be scanned from another angle
and combined with data from other scans.
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Fig. 2. Corruption of a time-of-flight signal by multiple reflections.

2. Objectives

In order to enable the ability to rapidly simulate a flash-Lidar-type system, we develop a discrete-ray model
for the characterization of the response of a point-cloud surface to a coherent pulse of high-frequency energy.
Specifically, the interest here is on the behavior of an initially coherent pulse (Fig. 1), represented by multiple
collimated (parallel) rays (initially forming a planar wave front), where each ray is a vector in the direction of the
flow of optical energy (the rays are parallel to the initial wave’s propagation vector). It is assumed that the features
of the surface to be scanned are at least an order of magnitude larger than the wavelength of the incident radiation
(essentially specular surfaces), therefore “geometrical” ray tracing theory is applicable, and is well-suited for the
systems of interest. Ray-tracing is a method that is employed to produce rapid approximate solutions to wave-
equations for high-frequency/small-wavelength applications where the primary interest is in the overall propagation
of energy.1 Essentially, ray-tracing methods proceed by initially representing wave fronts by an array of discrete
rays. Thereafter, the problem becomes one of a primarily geometric character, where one tracks the changing
trajectories and magnitudes of individual rays which are dictated by the reflectivity and the Fresnel conditions
(if a ray encounters a material interface). Ray-tracing methods are well-suited for computation of scattering in
complex systems that are difficult to mesh/discretize, relative to procedures such as the Finite Difference Time
Domain Method or the Finite Element Method. For review of the state-of-the-art in industrially-oriented optics,
see Gross [19]. In the approach taken in this work, the beam is discretized into a set of rays (Fig. 1). Even in the
case where this clear separation of length scales is not present, this model still provides valuable information on
the propagation of the beam and the reflected response of the dispersed system.2 An efficient discrete ray-tracking
algorithm is developed to track the propagation of rays into the system. Quantitative examples are given, focusing
on concentrated optical pulses, their subsequent propagation and reflection.

Remark. The regimes of validity of such a model are where the surface features are larger than visible light rays:
3.8 × 10−7 m ≤ λ ≤ 7.2 × 10−7 m. The features in this analysis are assumed to possess length-scales larger
than approximately 10−5 m (10 microns). For systems with length-scales smaller than this, one can interpret the
results of the model in a qualitative manner, although the range of applicability is not limited to visible frequencies.
Other high frequency applications where the developed model could potentially be employed include UV-rays
(10−9 m ≤ λ ≤ 10−8 m), X-rays (10−11 m ≤ λ ≤ 10−9 m) and gamma rays (10−12 m ≤ λ ≤ 10−11 m),
provided that the scattering target has the appropriate (larger) length-scale.

3. Propagation of electromagnetic energy

3.1. Decomposition of a beam into a set of rays

In order to connect the concept of a ray with a pulse/beam, since Ī is the energy per unit area per unit time, we
obtain the energy associated with an entire pulse/beam by multiplying the irradiance by the cross-sectional area of

1 Resolving diffraction (which ray theory is incapable of describing) is unimportant for the applications of interest.
2 It is important to emphasize the regimes of validity of such a model are where the surface features are larger than the optical wavelengths.

For example, if we were to use visible light (wavelengths between 3.8 × 10−7 m ≤ λ ≤ 7.2 × 10−7 m) the features in this analysis would
be assumed to possess scales larger than approximately 10−5 m (10 microns). For systems containing features smaller than this, one can
simply use the model as a qualitative guide.
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Fig. 3. An electromagnetic pulse applied to a surface.

an initially coherent beam, Ī Ab, where Ab is the cross-sectional area of the beam (comprising all of the rays). The
energy per unit time (power) for a ray in the pulse/beam is then given by

I = Ī Ar
= Ī Ab/Nr , (3.1)

where Nr is the number of rays in the beam (Fig. 3) and Ar can be considered the area associated with a ray.
Essentially, rays are a mathematical construction/discretization of a pulse/beam. We refer the reader to Gross [19],
Zohdi [20–25] for details.

3.2. Reflection and absorption of rays

Following a framework found in Zohdi [20–24] for details, we consider a ray of light incident upon a material
interface which produces a reflected ray and a transmitted/absorbed (refracted) ray (Fig. 3), the amount of incident
electromagnetic energy per unit time, power (Ii ), that is reflected (Ir ) is given by the total reflectance IR def

=
Ir
Ii

,
where 0 ≤ IR ≤ 1. IR is given by Eq. (3.3), for unpolarized electromagnetic radiation. The angle between the
point of contact of a ray (Fig. 3) and the outward normal to the surface at that point is the angle of incidence, θi .
The classical reflection law states that the angle at which a ray is reflected is the same as the angle of incidence and
that the incoming (incident, θi ) and outgoing (reflected, θr ) ray lays in the same plane, and θi = θr . Furthermore,
refraction law states that, if the ray passes from one medium into a second one (with a different index of refraction),
and, if the index of refraction of the second medium is less than that of the first, the angle the ray makes with
the normal to the interface is always less than the angle of incidence, where n̂ def

=
vi
va

=

√
ϵaµa
ϵi µi

=
sin θi
sin θa

, θa

being the angle of the absorbed ray (Fig. 3), va is the propagation speed in the absorbing medium, vi is the
propagation speed in the incident medium, ϵa is the electric permittivity of the absorbing medium, µa is the
magnetic permeability of the absorbing medium, ϵi is the electric permittivity in the incident medium and µi is
the magnetic permeability in the incident medium. Recall, all electromagnetic radiation travels, in a vacuum, at the
speed c ≈ 2.99792458 × 108

± 1.1 m/s. In any another medium v =
1

√
ϵµ

for electromagnetic waves.3 We define n̂
as the ratio of the refractive indices of the ambient (incident) medium (ni ) and absorbing medium (na), n̂ = na/ni ,
where µ̂ is the ratio of the magnetic permeabilities of the surrounding incident medium (µi ) and scattering/absorbing
medium (µa), µ̂ = µa/µi . Thus, we have

n̂ =
na

ni
=

√
ϵaµa

ϵiµi
⇒ ϵaµa = (n̂)2ϵiµi . (3.2)

3 The free space electric permittivity is ϵo =
1

c2µo
= 8.8542 × 10−12 C N−1 m−1 and the free space magnetic permeability is

µo = 4π × 10−7 Wb A−1 m−1
= 1.2566 × 10−6 Wb A−1 m−1.
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For a pulse of light, the reflectivity IR can be shown to be (see [19] for example)

IR =
Ir
Ii

=
1
2

⎛⎝( n̂2
µ̂

cos θi −(n̂2
−sin2 θi )

1
2

n̂2
µ̂

cos θi +(n̂2−sin2 θi )
1
2

)2

+

(
cos θi −

1
µ̂

(n̂2
−sin2 θi )

1
2

cos θi +
1
µ̂

(n̂2−sin2 θi )
1
2

)2
⎞⎠ , (3.3)

where Ii is the incoming irradiance, Ir is the reflected irradiance, n̂ is the ratio of the refractive indices of the of
absorbing (na) and incident media (ni ), where the refractive index is defined as the ratio of the speed of light in
a vacuum (c) to that of the medium (v), where the speed of electromagnetic waves is c =

1
√

ϵoµo
, where ϵ is the

electric permittivity and µ is the magnetic permeability. We consider applications with non-magnetic media and
optical frequencies where the magnetic permeability is virtually the same for both the incident medium (usually
the atmosphere) and the scattering/absorbing medium. Thus, for the remainder of the work, we shall take µ̂ = 1
(µo = µi = µa), thus

n̂ =
na

ni
=

√
ϵaµa

ϵiµi
⇒ ϵaµa = (n̂)2ϵiµi ⇒ ϵa = (n̂)2ϵi . (3.4)

This yields

IR =
Ir
Ii

=
1
2

((
n̂2 cos θi −(n̂2

−sin2 θi )
1
2

n̂2 cos θi +(n̂2−sin2 θi )
1
2

)2

+

(
cos θi −(n̂2

−sin2 θi )
1
2

cos θi +(n̂2−sin2 θi )
1
2

)2
)

. (3.5)

Notice that as n̂ → 1 we have complete absorption, while as n̂ → ∞ we have complete reflection. The total amount
of absorbed power by the material is (1−IR)Ii . The next section supplies the theory underpinning electromagnetic
wave propagation and rays.

4. Theory underpinning electromagnetic wave propagation and rays

Following a framework found in Zohdi [20–24], the propagation of electromagnetic waves in free space can be
described by a simplified form of Maxwell’s equations (see Jackson [26], Zohdi [22])

∇ × E = −µo
∂H
∂t , and ∇ × H = ϵo

∂E
∂t , (4.1)

where ∇ · H = 0, ∇ · E = 0, E is the electric field, H is the magnetic field, ϵo is the free space permittivity and
µo is the free space permeability. Using standard vector identities, one can show that

∇ × (∇ × E) = −µoϵo
∂2E
∂t2 , and ∇ × (∇ × H) = −µoϵo

∂2H
∂t2 , (4.2)

and that

∇
2E =

1
c2

∂2E
∂t2 , and ∇

2H =
1
c2

∂2H
∂t2 , (4.3)

where the speed of electromagnetic waves is c =
1

√
ϵoµo

. All electromagnetic radiation travels, in a vacuum, at the
speed c ≈ 2.99792458 × 108

± 1.1 m/s. In any another medium, for electromagnetic waves, the propagation speed
is v =

1
√

ϵµ
, where ϵ and µ are the electric permittivity and magnetic permeability of that medium, respectively.4

4.1. Plane harmonic wave fronts

Now consider the special case of plane harmonic waves, for example of the form

E = Eo cos(k · x − ωt) and H = Ho cos(k · x − ωt), (4.4)

where x is an initial position vector to the wave front, where k is the direction of propagation. We refer to the phase
as φ = k · x − ωt , and ω =

2π
τ

as the angular frequency, where τ is the period. For plane waves, the wave front

4 The free space electric permittivity is ϵo =
1

c2µo
= 8.8542 × 10−12 C N−1 m−1 and the free space magnetic permeability is

µo = 4π × 10−7 Wb A−1 m−1
= 1.2566 × 10−6 Wb A−1 m−1.
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is a plane on which φ is constant, which is orthogonal to the direction of propagation, characterized by k. In the
case of harmonic waves, we have

k × E = µoωH and k × H = −ϵoωE, (4.5)

and k · E = 0 and k · H = 0. The three vectors, k, E and H constitute a mutually orthogonal triad.5 The direction of
wave propagation is given by E×H

∥E×H∥
. Electromagnetic waves traveling through space carry electromagnetic energy

which flows in the direction of wave propagation. The energy per unit area per unit time flowing perpendicularly
into a surface in free space is given by the Poynting vector S = E × H.

4.2. Special case: natural (random) electromagnetic energy propagation

Since at high-frequencies E, H and S oscillate rapidly, it is impractical to measure instantaneous values of S
directly. Consider the harmonic representations in Eq. (4.4) which leads to S = Eo × Ho cos2(k · x − ωt), and
consequently the average value over a longer time interval (T ) than the time scale of rapid random oscillation,

⟨S⟩T = Eo × Ho⟨cos2(k · x − ωt)⟩T =
1
2 Eo × Ho, (4.6)

leading to the definition of the irradiance

I def
= ⟨∥S∥⟩T =

1
2∥Eo × Ho∥ =

1
2

√
ϵo
µo

∥Eo∥
2. (4.7)

Thus, the rate of flow of energy is proportional to the square of the amplitude of the electric field.

4.3. Reflection and absorption of energy-Fresnel relations

We consider a plane harmonic wave incident upon a plane boundary separating two different materials,
specifically vacuum and surface, which produces a reflected wave and an absorbed (refracted) wave (Fig. 3). Two
cases for the electric field vector are considered: (1) electric field vectors that are parallel (∥) to the plane of incidence
and (2) electric field vectors that are perpendicular (⊥) to the plane of incidence. In either case, the tangential
components of the electric and magnetic fields are required to be continuous across the interface. Consider case
(1). We have the following general vectorial representations:

E∥ = E∥ cos(k · x − ωt) e1 and H∥ = H∥ cos(k · x − ωt) e2, (4.8)

where e1 and e2 are orthogonal to the propagation direction k. By employing the law of refraction (ni sin θi =

na sin θa) we obtain the following conditions relating the incident, reflected and absorbed components of the electric
field quantities:

E∥i cos θi − E∥r cos θr = E∥a cos θa and H⊥i + H⊥r = H⊥a . (4.9)

Since, for plane harmonic waves, the magnetic and electric field amplitudes are related by H =
E
vµ

, we have

E∥i + E∥r =
µi

µa

vi

va
E∥a =

µi

µa

na

ni
E∥a

def
=

n̂
µ̂

E∥a, (4.10)

where µ̂
def
=

µa
µi

, n̂ def
=

na
ni

and where vi , vr and va are the values of the velocity in the incident, reflected and absorbed
directions.6 By again employing the law of refraction, we obtain the Fresnel reflection and transmission/absorption
coefficients, generalized for the case of unequal magnetic permeabilities

r∥ =
E∥r
E∥i

=

n̂
µ̂

cos θi −cos θa

n̂
µ̂

cos θi +cos θa
and a∥ =

E∥a
E∥i

=
2 cos θi

cos θa+
n̂
µ̂

cos θi
. (4.11)

Following the same procedure for case (2), where the components of E are perpendicular to the plane of incidence,
we have

r⊥ =
E⊥r
E⊥i

=
cos θi −

n̂
µ̂

cos θa

cos θi +
n̂
µ̂

cos θa
and a⊥ =

E⊥a
E⊥i

=
2 cos θi

cos θi +
n̂
µ̂

cos θa
. (4.12)

5 By combining the relations in Eq. (4.5) one obtains ∥k∥ =
ω
c .

6 Throughout the analysis we assume that n̂ ≥ 1.
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Our primary interest is in the reflections. We define the reflectances as

IR∥

def
= r2

∥
and IR⊥

def
= r2

⊥
. (4.13)

Particularly convenient forms for the reflections are

r∥ =

n̂2
µ̂

cos θi −(n̂2
−sin2 θi )

1
2

n̂2
µ̂

cos θi +(n̂2−sin2 θi )
1
2

and r⊥ =
cos θi −

1
µ̂

(n̂2
−sin2 θi )

1
2

cos θi +
1
µ̂

(n̂2−sin2 θi )
1
2
. (4.14)

Thus, the total energy reflected can be characterized by

IR def
=

(
Er

Ei

)2

=
E2

⊥r + E2
∥r

E2
i

=
I∥r + I⊥r

Ii
. (4.15)

If the resultant plane of oscillation of the (polarized) wave makes an angle of γi with the plane of incidence, then

E∥i = Ei cos γi and E⊥i = Ei sin γi , (4.16)

and it follows from the previous definition of I that

I∥i = Ii cos2 γi and I⊥i = Ii sin2 γi . (4.17)

Substituting these expressions back into the expressions for the reflectances yields

IR =
I∥r

Ii
cos2 γi +

I⊥r

Ii
sin2 γi = IR∥ cos2 γi + IR⊥ sin2 γi . (4.18)

For natural or unpolarized electromagnetic radiation, the angle γi varies rapidly in a random manner, as does the
field amplitude. Thus, since

⟨cos2 γi (t)⟩T =
1
2 and ⟨sin2 γi (t)⟩T =

1
2 , (4.19)

and therefore for natural electromagnetic radiation

I∥i =
Ii
2 and I⊥i =

Ii
2 . (4.20)

and therefore

r2
∥

=
E2

∥r

E2
∥i

=
I∥r
I∥i

and r2
⊥

=
E2

⊥r
E2

⊥i
=

I⊥r
I⊥i

. (4.21)

Thus, the total reflectance becomes

IR =
1
2

(IR∥ + IR⊥) =
1
2

(r2
∥

+ r2
⊥

), (4.22)

where 0 ≤ IR ≤ 1. For the cases where sin θa =
sin θi

n̂ > 1, one may rewrite reflection relations as

r∥ =

n̂2
µ̂

cos θi − j(sin2 θi −n̂2)
1
2

n̂2
µ̂

cos θi + j(sin2 θi −n̂2)
1
2

and r⊥ =
cos θi −

1
µ̂

j(sin2 θi −n̂2)
1
2

cos θi +
1
µ̂

j(sin2 θi −n̂2)
1
2
, (4.23)

where j =
√

−1, and in this complex case7

IR∥

def
= r∥r̄∥ = 1, and IR⊥

def
= r⊥r̄⊥ = 1, (4.24)

where r̄∥ and r̄⊥ are complex conjugates. Thus, for angles above the critical angle θ∗

i , all of the energy is reflected.
Notice that as n̂ → 1 we have complete absorption, while as n̂ → ∞ we have complete reflection. The amount of
absorbed irradiance by the surface is Ia = (1 − IR)Ii .

7 The limiting case
sin θ∗

i
n̂ = 1 is the critical angle (θ∗

i ) case.
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4.4. Reflectivity

To observe the dependency of IR on n̂ and θi we can explicitly write

IR =
1
2

⎛⎝( n̂2
µ̂

cos θi −(n̂2
−sin2 θi )

1
2

n̂2
µ̂

cos θi +(n̂2−sin2 θi )
1
2

)2

+

(
cos θi −

1
µ̂

(n̂2
−sin2 θi )

1
2

cos θi +
1
µ̂

(n̂2−sin2 θi )
1
2

)2
⎞⎠ . (4.25)

Clearly, as n̂ → ∞, IR → 1, no matter what the angle of incidence’s value. We note that as n̂ → 1, provided
that µ̂ = 1, IR → 0, i.e. all incident energy is absorbed (it is transparent). With increasing n̂, the angle for
minimum reflectance grows larger. As mentioned previously, for the remainder of the work, we shall take µ̂ = 1
(µo = µi = µa), thus

n̂ =
na

ni
=

√
ϵaµa

ϵiµi
⇒ ϵaµa = (n̂)2ϵiµi ⇒ ϵa = (n̂)2ϵi . (4.26)

This yields

IR =
Ir
Ii

=
1
2

((
n̂2 cos θi −(n̂2

−sin2 θi )
1
2

n̂2 cos θi +(n̂2−sin2 θi )
1
2

)2

+

(
cos θi −(n̂2

−sin2 θi )
1
2

cos θi +(n̂2−sin2 θi )
1
2

)2
)

. (4.27)

For more details, we refer the reader to the relatively recent treatise of Gross [19].

Remark. We now recall Eq. (3.1) that connects the concept of a ray with a pulse/beam. As mentioned before, since
Ī is the energy per unit area per unit time, we obtain the energy associated with an entire pulse/beam by multiplying
the irradiance by the cross-sectional area of an initially coherent beam, Ī Ab, where Ab is the cross-sectional area
of the beam (comprising all of the rays). The energy per unit time (power) for a ray in the pulse/beam is then given
by I = Ī Ar

= Ī Ab/Nr , where Nr is the number of rays in the beam (Fig. 3) and Ar can be considered the area
associated with a ray. The reflection relation, Eq. (4.25), can then be used to compute changes in the magnitude of
the reflected rays (and the amount absorbed), with directional changes given by the laws of reflection. We refer the
reader to Gross [19], Zohdi [20–25] for details.

5. Model problem and response trends

From this point forth, we assume that the ambient medium behaves as a vacuum. Accordingly, there are no
energetic losses as the rays move through the surrounding medium. Furthermore, we assume that the absorbed
portion of a ray that enters the surface is not re-emitted.

5.1. Tracking of beam decomposed rays

Starting at t = 0 and ending at t = T , the simple overall algorithm to track rays is as follows, at each time
increment:

1. Check for intersections of rays with surfaces (hence a reflection), and compute the ray magnitudes and
orientation if there are reflections (for all rays that are experiencing a reflection, I re f

j , j = 1, 2, . . . , Rays),
2. Increment all ray positions (r j (t + ∆t) = r j (t) + ∆tv j (t), j = 1, 2, . . . , Rays),
3. Increment time forward (t = t + ∆t) and repeat the process for the next time interval.

Observation. In order to capture all of the ray reflections that occur, the time step size ∆t is dictated by the offset
height of the scanner. A somewhat ad-hoc approach is to scale the time step size by the speed of ray propagation
according to ∆t = ξ H

∥v∥ , where H is the height of the scanner and 0.0001 ≤ ξ ≤ 0.01. Typically, the results are
insensitive to ξ that are smaller than this range. Although outside the scope of this work, one can also use this
algorithm to compute the thermal response by combining it with heat transfer equations via staggering schemes
(Zohdi [20,22]).
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5.2. Test surface: parametrization and surface normals

If we consider a surface to be scanned, F(x1, x2, x3) = 0, the outward surface normals, n, needed during
the scattering calculations, are easy to characterize by writing n =

∇F
∥∇F∥

. The components of the gradient are
∇F =

∂ F
∂x1

e1 +
∂ F
∂x2

e2 +
∂ F
∂x3

e3. It is advantageous to write the surface in parametric form:

F(x1, x2, x3) = G(x1, x2) − x3 = 0. (5.1)

which leads to

x3 = G(x1, x2). (5.2)

The gradient becomes

∇F =
∂G
∂x1

e1 +
∂G
∂x2

e2 − e3. (5.3)

Observation: It is convenient to determine whether a ray has made contact with a surface domain by checking
if the x3 position of a ray is less that x3 of the surface.

5.3. Material identification: refractive index reconstruction from the point-cloud

A starting guess for the value of n̂ that manifests the observed IR is possible for the θi = 0 expression for IR
(Eq. (3.5))

IR(θi = 0) = ( n̂−1
n̂+1 )2

⇒ n̂ =
IR1/2

−1
1+IR1/2 = n̂k=0. (5.4)

This provides an underestimate for the correct value of n̂, since in the θi ≥ 0 expressions, n̂ has to be greater to
compensate for the sines and cosines in the expression. Thus, from this initial estimate value, one can increase the
values of n̂k = n̂k−1 + δn̂ for k = 1, 2, . . . until the error between the computed value of IR and the analytical
expression for IR(n̂)

Ek = |IR −
1
2

((
n̂k

2 cos θi −(n̂k
2
−sin2 θi )

1
2

n̂k
2 cos θi +(n̂k

2
−sin2 θi )

1
2

)2

+

(
cos θi −(n̂k

2
−sin2 θi )

1
2

cos θi +(n̂k
2
−sin2 θi )

1
2

)2
)

|, (5.5)

is below an error tolerance (Ek ≤ tol). Once one ascertains n̂ for a point in the point-cloud, one can identify the
material property (n̂).

6. Numerical/quantitative examples

The discrete-ray approach is flexible enough to simulate a wide variety of systems. The initial velocity vector
for all initially collimated (parallel) rays comprising the beam was v = (c, 0, 0), where c = 3 × 108 m/s is the
speed of light in a vacuum. We used a parametrized test surface given by

x3 = 2 + A(sin
2ω1πx1

L1
) sin(

2ω2πx2

L2
), (6.1)

with L1 = L2 = 1, ω1 = 1.5 and ω2 = 0.75, where we vary A. We also used a parametrized test refractive index
ratio:

n̂ = N (x1, x2) = n̂o(1 + B sin(
2ω1πx1

L1
) sin(

2ω2πx2

L2
)), (6.2)

with n̂o = 5, where B = 0.25. We steadily increased the number of rays in the beam from Nr = 100, 200, etc
until the results were insensitive to further refinements. This approach indicated that between approximately
9500 ≤ Nr ≤ 10,000 parallel rays in the circular cross-sectional plane of the beam (randomly placed within
the beam, Figs. 3 and 4), corresponding to unpolarized incoming optical energy, yielded stable results across the
parameter study range.8 Therefore, we consider the responses to be, for all practical purposes, independent of the

8 We repeatedly refined the “ray density” up to 10,000 rays and found no significant difference beyond the 10,000 ray simulation results.
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Fig. 4. Left: schematic top view of the initial pulse. Right: the numerical model. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

ray density. This surface/ray system provided convergent results, i.e. increasing the number of rays in the beam
resulted in negligibly different overall system responses. The radius of the beam was 0.5L1 Rc. Fig. 5 shows a
sequence of frames of the detailed response of a surface to 10,000 rays. If there is no error, i.e. multiple reflections,
each ray will undergo one reflection. Thus, we define the error as

E R RO R =
(RE L E ASE D R AY S) − (V AL I D RET U RN R AY S)

(RE L E ASE D R AY S)
(6.3)

The colors of the surface indicate the reflectivity of the surface, which can then be post-processed to ascertain the
refractive index and the subsequent material via Eq. (5.5). Table 1 shows the increase in the error, while Figs. 5
and 6 give an easy to read graphical result, for example for A = 0.1. For reference, A = 0 is shown, which
produces no error (Fig. 7). The increase in error increases with amplitude of oscillation. Multiple reflections of a
ray indicate that the time of flight analysis will be inaccurate/inapplicable. Use of return signal data from multiple
reflections will lead to erroneous surface reconstruction (discontinuities). In these cases, those regions would need
to be interpolated from surrounding valid regions or scanned from other angles. They cannot be constructed directly
from a single flash-pulse point-cloud. This occurs at approximately A = 0.08. At approximately A = 0.64, the error
is maximized.

Remark. In such a direct numerical approach, one can easily introduce nonuniform beam profiles such as

I (d) = I (d = 0)e−ad , (6.4)

where d is the distance from the center of the initial beam line. In the case of a = 0 we recapture a flat beam,
I (d) = I (d = 0). We can set the total initial irradiance via

∑Nr
i=1 I inc

i (t = 0)Ar = P Watts.9

7. Summary and discussion

Because Lidar and other time-of-flight methods are becoming widely used in industry, with many variants being
proposed, fast computational analysis and design tools are needed. Accordingly, this work developed a discrete-ray
model to allow for propagation of optical energy encountering a surface. The approach provides a simpler alternative
to a direct computationally intensive discretization of a continuum description employing Maxwell’s equations.

9 To achieve this distribution, one would first place rays randomly in the plane, and then scale the individual I inc by e−ad and the
normalized average so that the total was P watts.
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Table 1
The increase in error with amplitude of oscillation. Multiple reflections
of a ray indicate that the time of flight analysis will be inaccu-
rate/inapplicable. Use of return signal data from multiple reflections
will lead to erroneous surface reconstruction (discontinuities). In these
cases, those regions would need to be interpolated from surrounding
valid regions or scanned from other angles. They cannot be constructed
directly from a single flash-pulse point-cloud.

A E R RO R

0.00 0.0000
0.01 0.0000
0.02 0.0000
0.04 0.0000
0.08 0.2032
0.16 0.7908
0.32 0.9555
0.64 0.9887

Fig. 5. Sequence of Lidar pulses for a surface with A = 0.1. The colors indicate the refractive index. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Sequence of point-cloud digital elevation model for a surface of A = 0.1. The colors indicate the computed refractive index. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Classical scanning Lidar produces thousands of narrow bandwidth pulses per second and scans a domain. This
scanning process can be time consuming. Flash Lidar uses a single “flash” pulse and attempts to extract information
from the resulting back-scatter signal, using a time-of-flight analyses. It is much faster, but there is potentially more
error due to possible multiple reflections that pollute the processing of the return signal. Because of complex surfaces
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Fig. 7. For comparative purposes, the resulting point-cloud digital elevation model for a surface of A = 0.0. The colors indicate the computed
refractive index (no error). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

and speed at which one needs results, this type of system is extremely difficult to simulate using continuum-based
methods, such as the Finite Difference Time Domain Method or the Finite Element Method. This paper developed
a fast computational method based on decomposition of the pulse into a group of rays, which are then tracked. This
allows one to rapidly identify the regions where the signal will be erroneous and serves as a guide for practitioners
to ascertain where problems may occur a priori to experiments. In those cases, the stereographic image would need
to be reconstructed by other means, and potentially scanned from another angle and combined with other scan data.

The presented approach allows one to parametrically study the changes in scattering behavior as a function of
changes in surface geometry. The simplified model captures the primary effects, reflection and absorption of optical
energy, via: (1) a discretization of a concentrated optical beam into rays, (2) a discrete ray-tracking algorithm is
developed to track the propagation of rays, (3) a point-cloud reproduction of the surface using time-of-flight analyses
and (4) a method for material identification via inversion of the relationship between the refractive index and the
measured reflectance. The simulations take on the order of one minute on a laptop. This type of approach is quite
suitable for use in conjunction with mobile 3D body scanners, whose objective is to capture the entire human body
quickly. This type of technology, coupled to mobile body-scanning devices, is a subject of current research by the
author with applications focussing on prosthetic designs, analysis of biomechanical movement and surface scans
for tumors.
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