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Abstract

Shotguns have increasingly used case-hardened steel pellets, as opposed to “classical” lead, owing to food safety and envi-

ronmental concerns. Correspondingly, there is increasing concern about unintended ricochet of pellets and subsequent

bodily harm, such as eye damage. Correspondingly, this paper focuses on the impact of pellets with a surface and the

post-impact ricochet range. Equations for general three-dimensional inelastic impact with unilateral stick–slip conditions

are derived for pellets and a post-impact trajectory analysis is performed. Qualitatively, with increasing friction, ranges

of ricochet decrease because most of the pre-impact translational energy of the pellets is converted upon impact into

rotational energy, which reduces the post-impact ricochet range. For slippery surfaces, wide ranging trajectory distribu-

tions occur owing to the mix of stick and slip conditions among the pellets. In the case of slip, the pellets retain much of

their translational energy and the post-impact linear velocities are greater than high-friction cases, which leads to much

larger post-impact trajectory ranges. The model enables analysts to make more quantitative decisions on the choices of

parameters associated with shotgun use and can reduce trial-and-error procedures in testing.
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1. Introduction

Worldwide, there is extensive use of shotguns for hunting, target practice, etc. A shotgun shell is used to house
the pellets before firing, and usually consists of a plastic or paper tube mounted on a brass cylinder that holds
the powder (Figure 1). A wad is placed over the powder to avoid mixing the pellets and powder, and to provide
a seal so that the expanding gas does not blow through the pellets. While, historically, lead was used for pellets,
environmental (lead toxicity) safety concerns has reduced its usage. In the mid 1950s, there was a push towards
phasing out lead shot. By the 1970s, the US Fish and Wildlife Service designated exclusively steel shot for
waterfowl hunting. Shot pellets are usually made by cutting wrought carbon steel wire and rolling the bits into
hard spheres.1 Smooth hard spheres (pellets) are used, because they do not usually break owing to their case-
hardened exterior, thus producing no sharp edges. Thus, although steel pellets are now widely used, concerns
over ricochet and possible accidental harm to bystanders persist (see [1–5]). This paper focuses on modeling of
the impact of pellets with a surface and the post-impact ranges (Figure 2) utilizing a discrete element method
(DEM) approach, which is ideally suited to the analysis of shotgun pellets. The method’s usage has become
widespread for physical systems where particles represent a physical unit in granular media, particulate flows,
plasmas, swarms, etc.
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Figure 1. A typical shotgun shell. Depending on the gauge and pellet sizes, there are approximately between 100 and 450 pellets.

Diameters of pellets range from 0.00203 to 0.00559 m.

Figure 2. Schematic of a shotgun blast impinging on a target surface and potential rebound with unintended surfaces.

Figure 3. A three-dimensional view of an inelastic pre-impact and post-impact of a pellet on a surface.

Remark 1. Physically, a shotgun blast is similar to the physical process of shot-peening in manufacturing,
whose objective is to induce compressive inelastic stresses in the surface of industrial components, such as
turbine blades, gears, and cam shafts, in order to suppress failure mechanisms, which are usually driven by
tensile stresses, such as crack propagation and fatigue. While this topic is outside of the scope of this paper, we
refer the interested reader to [6–10] for the finite-element analysis of the response of the substrate of a shot-
peened solid and recently to [11] for rapid computation of multiple contacting bodies on substrates for additive
manufacturing processes.

2. Frictional impact model

We formulate a three-dimensional impact scenario as shown in Figure 3. The formulation is capable of describ-
ing impact cases of a pellet also with incoming spin, although it is usually minimal in the pre-impact state. We
assume that the target surface, which is massive relative to the pellet, does not move.

The impulse in the normal direction for the center of mass, located at point c, is governed by a balance of
linear momentum in the normal (en) direction2

mvc,n(t) + (N − mg)δt = mvc,n(t + δt) ⇒ N = m

(

vc,n(t + δt) − vc,n(t)
)

δt
+ mg, (1)
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where m is the mass of the pellet, vc,n(t) is the normal component of the velocity of point c before impact, N is
the normal contact force, δt is the impact duration time, g is gravity (assumed in the direction of the normal),
and vc,n(t + δt) is the normal component of the velocity of point c after impact. A balance of momentum along
the direction of the induced friction force provides a means by which one can compute the friction force

mvc,t(t) + f δt = mvc,t(t + δt) ⇒ f = m

(

vc,t(t + δt) − vc,t(t)
)

δt
, (2)

where vc,t(t) is the tangential component of the velocity of point c before impact, f is the friction contact force
and vc,t(t + δt) is the tangential component of the velocity of point c after impact. The direction of the line of
action is given by the initial relative tangential velocity at point p

et =
vp,t(t)

‖vp,t(t)‖
, (3)

where the tangential velocity of the pellet is

vp,t(t) = vp(t) − (vp(t) · en(t))en. (4)

We note that en is invariant for a sphere and plane, and we assume that et is the tangent vector during the impact
event. If the pellet slips, then direction of friction is

f = −f et. (5)

The velocities of points c and p are related by

vc = vp + ω × rp→c ⇒ vp = vc + ω × rc→p, (6)

where ‖rp→c‖ = ‖rc→p‖ = R is the sphere radius. We employ a normal coefficient of restitution that provides
information on the velocities of surfaces before and after impact, in the normal direction between the contact
point p and the surface3:

E =
vp,n(t + δt) − 0

0 − vp,n(t)
, (7)

where 0 ≤ E ≤ 1. Thus,
vp,n(t + δt) = −Evp,n(t). (8)

In addition, the normal components of p and c are related by

vp,n = vp · en = (vc + ω × rc→p) · en = vc,n, (9)

where en is the unit vector in the normal direction. Thus, vc,n(t +δt) = vp,n(t +δt) and the normal force becomes

N = m
vc,n(t + δt) − vc,n(t)

δt
+ mg = −mvc,n(t)

(1 + E)

δt
+ mg. (10)

The tangential components are related by

vp,t = vp · et = (vc + ω × rc→p) · et = vc,t + (ω × rc→p) · et (11)

where et is the unit vector in the tangential direction. Thus,

vc,t(t + δt) = vp,t(t + δt) − (ω(t + δt) × rc→p) · et. (12)

An orthogonal direction to the plane of normal and friction forces is given by

eo = et × en (13)

and because there are no forces acting in that direction during impact, the velocity components in that direction
remain unchanged

vc(t) · eo = vc(t + δt) · eo. (14)

The total velocity of point c is given by summing the velocities in the three orthogonal directions

vc(t + δt) = vc,t(t + δt)et + vc,n(t + δt)en + vc,o(t + δt)eo. (15)
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2.1. Stick–slip friction

Using the preceding relations, the friction force is thus given by

f = m

(

(

vp,t(t + δt) − (ω(t + δt) × rc→p) · et

)

− vc,t(t)

δt

)

. (16)

Computing the angular momentum about point c, yields ω(t + δt)

I · ω(t) + rc→p × f δt = I · ω(t + δt) ⇒ ω(t + δt) = ω(t) +
(rc→p × f )δt

I
, (17)

where I = I1, where I = 2
5
mR2 for a solid sphere. Substituting Equation (16) into Equation (17) yields the

following for the friction force

f = −
mĪ

δt(Ī + mR2)

(

vp,t(t + δt) − (ω(t) × rc→p) · et − vc,t(t)
)

. (18)

We must subsequently check two cases: (1) tangential stick and (2) possible slip.

2.2. Case 1: no tangential slip

If we assume no tangential slip, thus vpt(t + δt) = 0, leading to

f =
mĪ

δt(Ī + mR2)

(

(ω(t) × rc→p) · et + vc,t(t)
)

, (19)

where N = −
mvc,n(t)

δt
(1 + E) + mg, where

ω(t + δt) = ω(t) +
(rc→p × f )δt

I
= ω(t) −

fRδt

I
eo, (20)

and

vc,t(t + δt) = vc,t(t) −
f δt

m
(21)

Slipping occurs if the Coulomb friction limit is exceeded.

2.3. Case 2: slipping

If the Coulomb friction limit is exceeded

|f | > µs|N |, (22)

this implies that the no slip assumption is incorrect, then

f = −µdNet = µd

(m

δt
(1 + E)vc,n(t) − mg

)

et, (23)

where we note that vc,n(t) is negative. Thus,

ω(t + δt) = ω(t) +
(rc→p × f )δt

I
= ω(t) −

µdNRδt

I
eo (24)

= ω(t) +
µd

(

m(1 + E)vc,n(t) − mgδt
)

R

I
eo,
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Figure 4. Purely planar impact scenario.

and

vc,t(t + δt) = vc,t(t) −
f δt

m
= vc,t(t) −

µdNδt

m
= vc,t(t) − µd(1 + E)vc,n(t) + µdgδt. (25)

Remark 2: In order to determine post-impact trajectories one can post-process the post-impact velocity vector
and unit vector (d(t + δt)):

d(t + δt)
def
=

v(t + δt)

||v(t + δt)||
. (26)

We also note that the time-averaged impulses are N∗ def
= Nδt and f ∗ def

= f δt are independent of δt.

2.4. Special case: purely planar (two-dimensional) impact

More insight can be obtained from considering the special case of purely planar impact (Figure 4), with ω(t) =

ω(t)eo.

Case 1: no tangential slip. If we assume no tangential slip, thus vpt(t + δt) = 0, leading to

f =
mĪ

δt(Ī + mR2)

(

ω(t)R + vc,t(t)
)

, (27)

where N = −
mvc,n(t)

δt
(1 + E) + mg, and

ω(t + δt) = ω(t) −

(

mR

Ī + mR2

)

(

ω(t)R + vc,t(t)
)

(28)

and

vc,t(t + δt) = vc,t(t) −

(

Ī

Ī + mR2

)

(

ω(t)R + vc,t(t)
)

(29)

and, as previously,

vc,n(t + δt) = −Evc,n(t). (30)

2.5. Case 2: slipping

As previously, if the Coulomb friction limit is exceeded, this implies that the no slip assumption is incorrect,
then friction acts in the opposite et direction with magnitude

f = µdN = −
mµd

δt
(1 + E)vc,n(t) + µdmg, (31)



6 Mathematics and Mechanics of Solids 00(0)

Figure 5. Impact trajectories for a single pellet with varying friction.

Figure 6. Starting configuration of the pellets. See Figure 7 for the impact sequence.

where we note that vc,n(t) is negative, and

ω(t + δt) = ω(t) +
(mµd(1 + E)vc,n(t) − mgδt)R

I
, (32)

and

vc,t(t + δt) = vc,t(t) −
µdNδt

m
= vc,t(t) − µd(1 + E)vc,n(t) + µdgδt (33)

and, as previously,
vc,n(t + δt) = −Evc,n(t). (34)

Remark 3: In either case, the trajectory of the post-impact angle is

θ(t + δt) = tan−1

(

vc,n(t + δt)

vc,t(t + δt)

)

, (35)

and because vc,t(t + δt) will generally decrease for greater friction, a more vertical trajectory occurs, however,
with less translational energy. A schematic of the expected differences in the trajectory of a post-impact pellet
with varying friction are depicted in Figure 5.

3. Three-dimensional multi-pellet impact study

3.1. System parameters

The following system parameters are considered, corresponding closely to those of a small-scale shotgun pellet.

• A total of 450 pellets in the system (normal 12-gauge shotgun shells have between approximately 100 and
450 pellets).
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• Pellet diameter: D = 2R = 0.0025 m (typical pellets ranges from 0.00203 and 0.00559 m).
• Incoming distribution of pellets within a starting radius spherical envelope (Figure 6): Re = 0.025 m.
• Density of pellets: ρ = 7000 kg/m3, thus the mass is mp = ρ 4

3
πR3.

• Initial pellet velocities: vo = (vxo, vyo, vzo), where ‖vo‖ = 1350ft/s = 411.46 m/s.

• Initial pellet directions: n =
d

‖d‖
, d = (1 ± 0.1, −1 ± 0.1, 0 ± 0.1).

• Initial pellet angular velocities (zero): ω = (ωxo, ωyo, ωzo) = (0, 0, 0) rad/s.
• Normal coefficient of restitution (appropriate for steel on hard plastic): E = 0.01.

We vary the key system parameter, namely the static friction coefficient, in the range 0 ≤ µs ≤ 0.5 and the
corresponding dynamic friction coefficient as µd = 0.9µs. The following quantities are important.

• Pre-impact ensemble tangential velocity: 〈vc,t(t)〉N
def
= 1

N

∑N
i=1 vc,t,i(t).

• Post-impact ensemble tangential velocity: 〈vc,t(t + δt)〉N
def
= 1

N

∑N
i=1 vc,t,i(t + δt).

• Pre-impact ensemble normal velocity: 〈vc,n,i(t)〉N
def
= 1

N

∑N
i=1 vc,n,i(t).

• Post-impact ensemble normal velocity: 〈vc,n,i(t + δt)〉N
def
= 1

N

∑N
i=1 vc,n,i(t + δt).

• Pre-impact ensemble normal translational energies: 〈WT ,i(t)〉N
def
= 1

N

∑N
i=1

1
2
mivi(t) · vi(t).

• Post-impact ensemble normal translational energies: 〈WT ,i(t + δt)〉N
def
= 1

N

∑N
i=1

1
2
mivi(t + δt) · vi(t + δt).

• Pre-impact ensemble rotational energies: 〈WR,i(t)〉N
def
= 1

N

∑N
i=1

1
2
ωi(t) · Ī i · ωi(t).

• Post-impact ensemble rotational energies: 〈WR,i(t + δt)〉N
def
= 1

N

∑N
i=1

1
2
ωi(t + δt) · Ī i · ωi(t + δt).

• Ratios of post-impact and pre-impact ensemble energies:
WT ,i(t) + WR,i(t)

WT ,i(t + δt) + WR,i(t + δt)
.

As Tables 1–3 illustrate, with decreasing friction the trajectory decreases (shallower rebound relative to the
impact plane) and the pre-impact and post-impact translational and rotational kinetic energies. Above a friction
coefficient of µs = 0.1, the pellets in the system uniformly stick. The subsequent post-impact spin is also
substantial owing to the “jolt” from friction, combined with the fact that the pellets are small. In the high-
friction cases µs > 0.1, significantly more translational kinetic energy is converted into rotational energy.
When slipping occurs, then a significant amount of translational energy is retained in the post-impact stage, and
the ranges of the pellets will be much greater, as shown next.

3.2. Post-impact trajectories-projectile travel

Post-impact computational of the pellets are shown in Figures 6 and 7. The position of a pellet is given by

r(t) = r(t = 0) + v(t = 0) +
1

2
gt2. (36)

In the special case of g = (0, −g, 0), we have for the first (x1 = x) component, which is parallel to the plane of
contact:

r1(t) = r1(0) + v1(0)t (37)

and for the (x2 = y) component, which is perpendicular to the plane of contact (aligned with gravity)

r2(t) = r2(0) + v2(t = 0)t −
1

2
gt2 (38)

and for the third (x3 = z) component which is parallel to the plane of contact:

r3(t) = r3(0) + v3(0)t. (39)

The time aloft after impact is determined by computing the time to reach the peak of r2(t) (normal direction)
and to return to ground:

t∗ =

√

2v2(0)

g
+

√

2v2(0)

g
= 2

√

2v2(0)

g
. (40)
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Table 1. Pre- and post-impact velocities.

µs Time 〈vc,t〉N (m/s) 〈vc,n〉N (m/s) ‖〈ω〉N‖ (rad/s)

0.500 0.000 290.454 −290.959 0.000

0.500 0.010 36.950 2.892 29,880.239

0.450 0.000 290.454 −290.959 0.000

0.450 0.010 36.950 2.892 29,880.239

0.400 0.000 290.454 −290.959 0.000

0.400 0.010 36.950 2.892 29,880.239

0.350 0.000 290.454 −290.959 0.000

0.350 0.010 36.950 2.892 29,880.239

0.300 0.000 290.454 −290.959 0.000

0.300 0.010 36.950 2.892 29,880.239

0.250 0.000 290.454 −290.959 0.000

0.250 0.010 36.950 2.892 29,880.239

0.200 0.000 290.454 −290.959 0.000

0.200 0.010 36.950 2.892 29,880.239

0.150 0.000 290.454 −290.959 0.000

0.150 0.010 36.950 2.892 29,880.239

0.100 0.000 290.454 −290.959 0.000

0.100 0.010 36.950 2.892 29,880.239

0.050 0.000 290.454 −290.959 0.000

0.050 0.010 158.212 2.892 26,223.662

0.000 0.000 290.454 −290.959 0.000

0.000 0.010 290.454 2.892 0.000

In the tangential plane of impact (vt =

√

v2
1 + v2

3)

rt(t
∗) = rt(0) + vt(0)t∗. (41)

The radius of spread is given by

L = rt(t
∗) − rt(0) = vt(0)t∗ = 2

√

(v1(0)2 + v3(0)2)
2v2(0)

g
. (42)

For the distribution of the pellets in a blast, with increasingly less friction, we see that the second to last
parameter group (Tables 1–3, µs = 0.05) exhibits partial slip, and the final parameter group (µs = 0.0)
exhibits complete slip. The distribution of the pellets within each regime is due to the initial directional
distribution (d) in the pre-impact blast envelope. Tabulated are L− ≤ Range = L ≤ L+ and the ensem-

ble average is 〈L〉N
def
= 1

N

∑N
i=1 Li. When there is no slip, the variation of the spread of pellets in between

17.00 m ≤ L ≤ 21.88 m, which for the transitional stick–slip system it is 17.00 m ≤ L ≤ 164.91 m and for the
complete slip system 169.30 m ≤ L ≤ 172.58 m and for the complete slip system. The two key trends are as
follows.

• For increasing friction, translational energy gets converted to rotational energy and consequently provides
less post-impact energy available for translational motion.

• For increasing friction, the trajectory is steeper, but because of less post-impact energy available for
translational motion, the range of ricochet is significantly smaller than cases where slipping occurs.

4. Summary

The present work has focused on the building block of a shotgun blast, namely the oblique inelastic impact of
a pellet with a frictional surface. The governing equations for a general three-dimensional inelastic impact with
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Table 2. Spin and translational and rotational kinetic energies.

µs Time 〈WT 〉N µ (J) 〈WR〉N µ (J) 〈WT 〉N

〈W (t=0)〉N

〈WR〉N

〈W (t=0)〉N

0.500 0.000 4.843 0.000 1.000 0.000

0.500 0.010 0.039 0.015 0.008 0.003

0.450 0.000 4.843 0.000 1.000 0.000

0.450 0.010 0.039 0.015 0.008 0.003

0.400 0.000 4.843 0.000 1.000 0.000

0.400 0.010 0.039 0.015 0.008 0.003

0.350 0.000 4.843 0.000 1.000 0.000

0.350 0.010 0.039 0.015 0.008 0.003

0.300 0.000 4.843 0.000 1.000 0.000

0.300 0.010 0.039 0.015 0.008 0.003

0.250 0.000 4.843 0.000 1.000 0.000

0.250 0.010 0.039 0.015 0.008 0.003

0.200 0.000 4.843 0.000 1.000 0.000

0.200 0.010 0.039 0.015 0.008 0.003

0.150 0.000 4.843 0.000 1.000 0.000

0.150 0.010 0.039 0.015 0.008 0.003

0.100 0.000 4.843 0.000 1.000 0.000

0.100 0.010 0.039 0.015 0.008 0.003

0.050 0.000 4.843 0.000 1.000 0.000

0.050 0.010 1.040 0.012 0.215 0.002

0.000 0.000 4.843 0.000 1.000 0.000

0.000 0.010 2.419 0.000 0.499 0.000

Table 3. Post-impact ricochet ranges.

µs 〈L〉N (m) L+ (m) L− (m) Frictional case

0.500 21.888 27.595 17.001 All-stick

0.450 21.888 27.595 17.001 All-stick

0.400 21.888 27.595 17.001 All-stick

0.350 21.888 27.595 17.001 All-stick

0.300 21.888 27.595 17.001 All-stick

0.250 21.888 27.595 17.001 All-stick

0.200 21.888 27.595 17.001 All-stick

0.150 21.888 27.595 17.001 All-stick

0.100 21.888 27.595 17.001 All-stick

0.050 92.908 164.918 17.001 Mixed: stick+slip

0.000 172.016 172.584 169.308 All-slip

unilateral stick–slip conditions were derived, with the objective being to determine the relationship between
pre-impact and post-impact pellet trajectories and the post-impact range of travel. The analysis is useful to
researchers interested in ascertaining the potential danger in from ricochet in shotgun blasts. In this work, it
was implicitly assumed that the pellets do not collide with each other during the entire process. Investigation
of the degree of error introduced by this simplifying assumption is under current investigation by the author.
Specifically, the current work of the author is focused on more detailed impact analyses coupling multi-pellet
impact to the plastic deformation and damage of the impacted surface, utilizing DEM formulations for multiple
bodies in simultaneous contact, such as those found in [12–27].
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Figure 7. Top to bottom and left to right: Sequential impact trajectories for µs = 0.5 for 450 pellets. The colors indicate the norm

of the angular velocities.
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Notes

1. In a 12-gauge shotgun shell, there are approximately between 100 and 450 pellets, with pellet diameters ranging from 0.00203

to 0.00559 m.

2. We ignore any aerodynamic effects, such as drag and the Magnus effect, whereby a spinning pellet with angular velocity ω and

velocity vc creates unequal drag forces on the surface, because the points on the surface are traveling at unequal absolute speeds

(vp = vc + ω × rc→p). We concentrate only on the instants directly before and after the impact event itself.

3. If we assumed that the surface’s velocity was zero, we would obtain vp,n(t + δt) = −vp,n(t)E .
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