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Abstract
The pandemic of 2019 has led to an enormous interest in all aspects of modeling and simulation of infectious diseases. One 
central issue is the redesign and deployment of ventilation systems to mitigate the transmission of infectious diseases, pro-
duced by respiratory emissions such as coughs. This work seeks to develop a combined Digital-Twin and Machine-Learning 
framework to optimize ventilation systems by building on rapidly computable respiratory emission models developed in 
Zohdi (Comput Mech 64:1025–1034, 2020). This framework ascertains the placement and flow rates of multiple ventilation 
units, in order to optimally sequester particles released from respiratory emissions such as coughs, sneezes, etc. Numerical 
examples are provided to illustrate the framework.

1 Introduction

The pandemic of 2019, due to SARS-CoV-2, named COVID-
19 and referred to as coronavirus, has been responsible for 
nearly two million of deaths worldwide in 2020 alone. It 
is well-established that this virus primarily spreads from 
person-to-person contact by respiratory droplets produced 
when an infected person coughs or sneezes. Subsequently, 
the droplets come into contact with the eyes, nose or mouth 
of a nearby person or when a person touches an infected 
surface, then makes contact with their eyes, nose or mouth. 
Since the virus is small, 0.06–0.14 microns in diameter, it 
can be contained in or attached to such emitted droplets. 
Droplets as small as one micron can carry enough viral load 
to cause an infection. A particular concern is the interaction 
of droplets with ventilation systems, which can capture emit-
ted pathogens, but can also potentially could enhance their 
propagation. This has implications on situation-specific safe 
distancing and the design of building filtration systems, air 
distribution, heating, air-conditioning and decontamination 
systems, for example using UV-c and related technologies. 

In order to facilitate such system redesigns, fundamental 
analysis tools are needed that are easy to use. Accordingly, 
this work develops a combined Digital-Twin and Machine-
Learning framework to optimize ventilation systems by 
building on rapidly computable respiratory emission mod-
els developed in Zohdi [1]. This framework ascertains the 
placement and flow rates of multiple mobile ventilation 
units, in order to optimally sequester particles released from 
respiratory emissions such as coughs, sneezes, etc. There 
have been dramatic advances in technologies associated with 
automation across many industries, which have the potential 
to drastically improve system efficiency, quality and safety. 
Some approaches are methodical and systematic, while some 
are ad-hoc and haphazard. In the world of systems engineer-
ing, increasingly sophisticated and integrated approaches 
for digital systems are appearing at a rapid rate. One key 
component to advancements in this areas are Digital-Twins, 
which are digital replicas of complex physical systems that 
can be safely manipulated and optimized in a virtual world 
and deployed in the physical world afterwards, reducing 
costs of experiments and accelerating development of new 
technologies. Digital-Twins blend AI, machine learning, 
software analytics and data to create living digital computer 
models that can update and change in tandem with their 
physical counterparts-and ultimately control them in real 
time. Updates to the Digital-Twin are made continuously in 
real-time, which necessitates technologies like rapid wire-
less communication, hyperspectral cameras, sensor fusion 
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and fast simulations of process behavior. Today, there is no 
shortage of general simulation software; however, the funda-
mental limitations are ease-of-use and integration of models 
with in-field data and easy deployment for researchers. A 
core issue across all domains is the ability of a system to 
adapt to rapid changes in the environment and system capa-
bilities by autonomously modifying operation-with humans 
in the loop. By developing these tools for food systems 
researchers, we believe that we can enhance the ability of 
industry to conduct research that inevitably involve Digital 
Twins, as well as benefiting society and industry.

The presented work also involves blending Machine-
learning with Digital Twins, whereby simulations iteratively 
learn from their mistakes and constantly evolve to improve 
and optimize the model, safely in a virtual environment. 
This rapid simulation should be designed to run rapidly in 
tandem with a real system. Accordingly, the Digital-Twin 
and Machine-Learning in this framework combines these 
rapidly computable models with genomic Machine-Learning 
methods to ascertain the placement and flow rates of multi-
ple mobile ventilation units, in order to optimally sequester 
particles released from respiratory emissions such as coughs, 
sneezes, etc. Specifically:

• A model is developed for the propagation of emitted par-
ticles that is rapidly computable,

• A qualitative analysis of the model is discussed,
• A numerical discretization for the flow of the distribution 

of particles is constructed,
• A genomic-based Machine-Learning algorithm to opti-

mize the mobile ventilation systems is developed and
• Numerical examples are provided.

Remark 1 It is now widely accepted that masks are an inte-
gral part of controlling the spread of infectious diseases, 
such as COVID19. There are three general categories of 
face masks: (1) Cloth Masks (for the general public), which 
provides some protection to the wearer, but mainly serves 
to stop the spread of viruses (2) Surgical Masks (for health-
care workers and the general public), which provides partial 
protection and (3) N95 Respirators (primarily for healthcare 
workers), which provides high level of protection and use 
charged fibers (electrets) to attract particles of all sizes. N95 
masks are excellent at trapping very small particles (below 
0.1 micron), since their motion is random (Brownian), due to 
collisions with other particles, air molecules, etc., which will 
force them to collide with an electrically charged “sticky” 
fiber. It is also excellent in trapping large particles (above 
0.3 microns) , since their motion is effectively linear across 
the mask(because of their inertia) and will collide with a 
fiber. It has more difficulty trapping medium-sized parti-
cles (0.1 microns-0.3 microns), which travel with airflow 

patterns. N95 means that it traps at least 95% of the parti-
cles. However, there are problems, due to mask ill-fitting, 
re-use due to shortages, use of alcohols and solvents for 
mask cleaning, etc., which may damage the mask or neu-
tralize the fiber charge. Furthermore, the proper donning 
and doffing (removal from face) of a mask is nontrivial, 
due to strap elongation, facial hair, etc. Therefore, one must 
assume that some particles get through, regardless of the 
mask type. Accordingly, in workplaces, some type ventila-
tion is needed, generally involving HEPA (High Efficiency 
Particulate Absorbing) grade filters, which remove 99.95% 
of the particles equal to 0.3 microns in size, with efficiency 
increasing for particles larger or smaller than this size. Such 
filters were started by the German military in WWII for gas 
masks, whereby increases in mask efficiency were noted by 
simply adding a piece of paper (cellulose) to the mask. Such 
systems started commercially in the 1950s for decontamina-
tion control in hospitals, nuclear facilities, homes vehicles, 
etc. They are comprised of randomly arranged fiberglass 
fibers between 0.5 and 2.0 microns. As with N95 masks, 
they are designed to capture a range of particles by simi-
lar mechanisms. Another common term is ‘MERV’ Mini-
mum Efficiency Reporting Value (1987 ASHRAE), which 
is designed to report the worst case performance of a filter, 
ranging 0.3–10 microns, with a scale rating of from 1–16 
(highest at 95% ). It is essential, that ventilation systems be 
given much more attention than ever before.

Remark 2 We remark that some systems also employ UV-c 
light for further decontamination, in combination with 
the ventilation system. A dosage of 1 J∕cm2 is considered 
adequate to destroy COVID19. Many commercial mobile 
UV-c light systems now exist. UV-c light 254–265 nm is 
considered optimal. Wavelengths above this range are not 
effective, while wavelengths below produce ozone, which is 
dangerous (Zohdi [2]). Heating contaminated at 70 °C for 60 
min is effective, but impractical in a large workplace setting 
with sensitive equipment and people. For example, decon-
tamination based on UV technology has become ubiquitous, 
with many variants now being proposed. UV light varies in 
wavelength from 10 to 400 nm, thus making it shorter that 
visible wavelengths and larger than X-rays. Short wave UV 
light (UV-c) can damage DNA and sterilize surfaces mak-
ing in useful in the medical industry. This was first noted 
in 1878 (Downes and Blunt [3]) when the effect of short-
wavelength light killing bacteria was discovered. By 1903 
it was known the most effective wavelengths were around 
250 nm (UV-c), for which Niels Finsen won a Nobel Prize 
(for skin-based tuberculosis eradication using UV light). 
Contaminants in the indoor environment are almost entirely 
organic carbon-based compounds, which break down when 
exposed to high-intensity UV at 240–280 nm. Despite the 
attractiveness of using UV-c light, the literature has shown 
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that it is difficult to ensure that all surfaces are completely 
decontaminated due to shadowing effects. Thus, the use of 
ultraviolet germicidal irradiation (UVGI) is effective only 
as a component in a multistage process-it alone carries the 
risk of residual contamination. Thus, purely UV-c protocols 
should be adopted if there is no other choice. However, they 
can be an integral part of a multistage process involving a 
combination of (a) gas vapors and (b) heat and humidity. The 
topic of decontamination technologies is of paramount inter-
est (see references Anderson et al. [4], Battelle [5], Boyce et. 
al. [6], Card et al. [7], Heimbuch and Harish [8], Heimbuch 
et al. [9], Ito and Ito [10], Lin et al. [11], Kanemitsu [12], 
Lindsley et al. [13], Lore et al. [14], Marra et al. [15], Mills 
et al. [16] and Nerandzic et al. [17]), and the corresponding 
simulation of such processes has recently been undertaken 
in Zohdi [1] and is a topic of ongoing research.

2  Reduced Order Particle‑Fluid Interaction 
Model

In its most basic form, a cough can be considered as a 
high-velocity release of a random distribution of particles 
of various sizes, into an ambient atmosphere (Fig. 1). We 
refer the reader to Wei and Li [18], Duguid [19], Papineni 
and Rosenthal [20], Wei and Li [21], Zhu et al. [22], Chao 
et al. [23], Morawska et al. [24], VanSciver et al. [25], 
Kwon et al. [26], Tang et al. [27], Xie et al. [28], Gupta 
et al. [29], Wan et al. [30], Villafruela et al. [31], Nielson 
[32] Zhang and Li [33], Lindsley et. al. [34] and Burridge 

et al. [35] for extensive reviews of coughs and other res-
piratory emissions. We will consider the model problem 
in Fig. 1.

2.1  Assumptions

Following formulations for physically similar problems 
associated with particulate dynamics from the fields of 
blasts, explosions and fire embers (Zohdi [36–39]), we 
make the following assumptions (Zohdi [1]):

• We assume the same initial velocity magnitude for all 
particles under consideration, with a random distri-
bution of outward directions away from the source of 
the cough. This implies that a particle non-interaction 
approximation is appropriate. Thus, the inter-particle 
collisions are negligible. This has been repeatedly veri-
fied by “brute-force” collision calculations using for-
mulations found in Zohdi [40–43].

• We assume that the particles are spherical with a ran-
dom distribution of radii Ri , i = 1, 2, 3...Pn , where Pn is 
the total number of particles. The masses are given by 
mi = �i

4

3
�R3

i
 , where �i is the density of the particles.

• We assume that the cough particles are quite small and 
that the amount of rotation, if any, contributes negligi-
bly to the overall trajectory of the particles. The equa-
tion of motion for the ith particle in the system is 

(2.1)miv̇i = �
grav

i
+�

drag

i
+�

mask
i

,

Fig. 1  Left: The model problem studied in this work with hypothetical ventilation unit locations (which will be optimized in this work). Right: 
Zoom: The release of cough particles-color coded by size (Zohdi [1])
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 with initial velocity vi(0) and initial position ri(0) . 
The gravitational force is �grav

i
= mig ,  where 

g = (gx, gy, gz) = (0, 0,−9.81)m∕s2.
• For the drag, we will employ a general phenomenological 

model 

 where CD is the drag coefficient, Ai is the reference area, 
which for a sphere is Ai = �R2

i
 , �a is the density of the 

ambient fluid environment and vf  is the velocity of the 
surrounding medium which, in the case of interest, is 
air. We will assume that the velocity of the surrounding 
fluid medium ( vf  ) is given, implicitly assuming that the 
dynamics of the surrounding medium are unaffected by 
the particles. We will discuss these assumptions further, 
later in the work.

2.2  Qualitative Behavior of the Simplified Model

A simplified Stokesian model, which can be solved analyti-
cally provides some physical insight, is discussed in Zohdi 
[1]. A summary of that analysis is as follows. For a (low 
Reynolds number) Stokesian model, the differential equation 
for each particle is

where ci = �f 6�Ri , where �f  is the viscosity of the surround-
ing fluid (air) and the local Reynolds number for a particle 
is Re

def
=

2Ri�a||vf−vi||
�f

 and �f  is the fluid viscosity. The trends are

• As Ri → 0 , then vi(∞) → vf ,
• As vf

i
→ � , then vi(∞) →

2�R2

i

9�f

g.

In summary

• Large particles travel far and settle quickly and
• Small particles do not travel far and settle slowly.

Remark 3 The ratio of the Stokesian drag force to gravity is

which indicates that for very small particles, drag will domi-
nate the settling process and for larger particles, gravity will 
dominate.

(2.2)�
drag

i
=

1

2
�aCD||vf − vi||(vf − vi)Ai,

(2.3)mi

dvi

dt
= mig + ci(v

f − vi)

(2.4)
||�drag,Stokesian||

||�grav|| =
9�f ||vf − vi||

2�iR
2

i
g

,

3  Simulation of the Model: Cough Particle 
Generation and Propagation

For the general model, in order to more accurately model the 
effects of drag, one can take into account that the empirical 
drag coefficient varies with Reynolds number. For example, 
consider the following piecewise relation (Chow [23]):

• For 0 < Re ≤ 1 , CD =
24

Re
,

• For 1 < Re ≤ 400 , CD =
24

Re0.646
,

• For 400 < Re ≤ 3 × 105 , CD = 0.5,
• For 3 × 105 < Re ≤ 2 × 106 , CD = 0.000366Re0.4275 and
• For 2 × 106 < Re < ∞ , CD = 0.18,

where, as in the previous section, the local Reynolds number 
for a particle is Re

def
=

2Ri�a||vf−vi||
�f

 and �f  is the fluid viscosity.1 

We note that in the zero Reynolds number limit, the drag is 
Stokesian. In order to solve the governing equation,

3.1  An Example

To illustrate the model, we utilize an example from Zohdi 
[1], without a mask.

As an example, a mean particle radius was chosen to be 
R̄ = 0.0001m with variations according to

where A = 0.9975 and a random variable −1 ≤ �i ≤ 1 . The 
algorithm used for particle generation was:

• M = 0
• Start loop: i = 1,Pn

• Ri = R̄ × (1 + A × 𝜁i),
• M = M + mi = M + �i

4

3
�R3

i

• If M ≥ MTotal then stop (determines Pn = particles)
• End loop

The initial trajectories were determined from the following 
algorithm

• Specify relative direction ’cone’ parameters: 
Nc = (Nc

x
,Nc

y
,Nc

z
),

• For each particle, i = 1, 2, 3, ...,Pn , construct a (per-
turbed) trajectory vector: 

(3.1)
miv̇i = �

grav

i
+�

drag

i
+�

mask
i

= mig +
1

2
𝜌aCD||vf − vi||(vf − vi)Ai +�

mask
i

.

(3.2)Ri = R̄ × (1 + A × 𝜁i),

1 The viscosity coefficient for air is �f = 0.000018 Pa-s.
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 where −1 ≤ �ix ≤ 1 , 0 ≤ �iy ≤ 1 and −1 ≤ �iz ≤ 1.
• For each particle, normalize the trajectory vector: 

• For each particle, the velocity vector is constructed by a 
projection onto the normal vector: 

Following Zohdi [1], we integrate the velocity numerically

The position is the obtained by integrating again:

This approach has been used repeatedly for a variety of phys-
ically similar drift-type problems in Zohdi [36–39]. In order 
to illustrate the model, the following simulation parameters 
were chosen:

• Starting height of 2 meters,
• Total simulation duration, 4 s,
• The time step size, Δt = 10−6 s,
• The cough velocity, Vc(t = 0) = 30m∕s (taken from the 

literature which indicates 10m∕s ≤ Vc ≤ 50m∕s),
• Density of particles, �i = 1000 kg∕m3,
• Density of air, �a = 1.225 kg∕m3 and
• Total mass, MTotal =

∑Pn

i=1
mi = 0.0005 kg.

An extremely small (relative to the total simulation time) 
time-step size of Δt = 10−6 seconds was used. Further reduc-
tions of the time-step size produced no noticeable changes in 
the results, thus the solutions generated can be considered to 
have negligible numerical error. The simulations took under 
10 seconds on a standard laptop. The algorithm generated 
59941 particles ranging from 2.5 × 10−7m ≤ Ri ≤ 2 × 10−4 
m (i.e. 0.25microns ≤ Ri ≤ 200microns ). We used a trajec-
tory cone of Nc = (0, 1, 0) and Ac = (1, 0.5, 1) in the exam-
ple given. Figure 2 illustrates the results for the parameters 
above (for vfy = 0 ). We refer the reader to Zohdi [1] for more 
details.

(3.3)

Ni = (Nc
x
+ Ac

x
× �ix,N

c
y
+ Ac

y
× �iy,N

c
z
+ Ac

z
+ ×�iz)

= (Nix,Niy,Niz),

(3.4)ni =
1

||Ni|| (Nix,Niy,Niz).

(3.5)vi = Vcni.

(3.6)
vi(t + Δt) =vi(t) +

1

mi
∫

t+Δt

t

(�
grav

i
+�

drag

i
) dt ≈ vi(t)

+
Δt

mi

(
�

grav

i
(t) +�

drag

i
(t)
)
.

(3.7)ri(t + Δt) = ri(t) + ∫
t+Δt

t

vi(t) dt ≈ ri(t) + Δtvi(t).

3.2  Model Enhancements

The mask model will include an extra term in the drag resist-
ance for particles in the domain of the mask ahead of the 
face:

where As = 4�R2 . To account for multiple interacting vents 
assume a radial distance decay model for flow field from 
each vent, j = 1, 2, ...N of the form:

where rv
j
 is the position of the jth vent and d is a decay factor. 

Figure 3 illustrates the flow patterns with this model for 4 
randomly placed vents. These will be optimized later in the 
work. In summary, the overall model is:

Remark 4 A fully resolved two-way coupled system of 
particles and surrounding fluid would require a fine spatio-
temporal discretization involving Finite Element, Finite 
Difference or Finite Volume methods of the Navier-Stokes 
equations for the surrounding fluid

where �(x) is the density field of the fluid, v(x) is the fluid 
velocity field, �(x) is the fluid stress field, D(x) is the fluid 
velocity gradient field, f (x) is the body force field, P(x) is 
the fluid pressure field, �(x) and �(x) are fluid material prop-
erty fields.2 Additionally, the first law of thermodynamics 
could be included (along with equations for various chemical 
reactions), which reads as

(3.8)�
mask
i

= −RviA
s
i
,

(3.9)v
f

j
= vo

j
e
−d||rv

f
−ri|| (r

v
i
− ri)

||rv
i
− ri|| ,

(3.10)
miv̇i = �

grav

i
+�

drag

i
+�

mask
i

= mig +
1

2
𝜌aCD||vf − vi||(vf − vi)Ai −RviA

s
i
.

(3.11)

Balance of mass ∶
��

�t
= −∇x� ⋅ v − �∇x ⋅ v,

Balance of momentum ∶ �

(
�v

�t
+ (∇xv) ⋅ v

)
= ∇x ⋅ � + f ,

Constitutive Law ∶ � = −P� + �trD� + 2�D

= −P� + 3�
trD

3
� + 2�D�

,

(3.12)𝜌ẇ − � ∶ ∇xv + ∇x ⋅ q − 𝜌z = 0,

2 It is customary to specify v and P on the boundary, and to deter-
mine � on the boundary through the Equation of State. P is given by 
an Equation of State.
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Fig. 2  Cough simulation (from a starting height of 2 meters, for vf = (0, 0, 0) ): successive frames indicating the spread of particles. a Large par-
ticles travel far and settle quickly and b Small particles do not travel far and settle slowly (Zohdi [1])
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where w(x) is the stored energy in the fluid, q(x) is the heat 
flux field, z is the heat source field per unit mass. This is 
discussed further at the end of this work.

4  Genomic Machine‑Learning Ventilation 
Optimization

The rapid rate at which these simulations can be completed 
enables the ability to explore inverse problems seeking 
to determine what parameter combinations can deliver a 
desired result (Fig. 4). In order to cast the objective math-
ematically, we set the problem up as a Machine Learning 
Algorithm (MLA); specifically a Genetic Algorithm (GA) 
variant, which is well-suited for nonconvex optimization. 
Following Zohdi [44–47, 39] , we formulate the objective 
as a cost function minimization problem that seeks system 
parameters that match a desired response

We systematically minimize Eq.  4.1, minΛΠ , by vary-
ing the design parameters: �idef={Λi

1
,Λi

2
,Λi

3
, ...,Λi

N
}

def
={panel size, spacing, angles...} . The system param-
eter search is conducted within the constrained ranges of 
Λ

(−)

1
≤ Λ1 ≤ Λ

(+)

1
 , Λ(−)

2
≤ Λ2 ≤ Λ

(+)

2
 and Λ(−)

3
≤ Λ3 ≤ Λ

(+)

3
 , 

etc. These upper and lower limits would, in general, be dic-
tated by what is physically feasible.

4.1  System Parameter Search: Machine Learning 
Algorithm (MLA)

Here we follow Zohdi [45–47, 39] in order to minimize 
Eq. 4.1, which we will refer to as a “cost function”. Cost 
functions such as Eq. 4.1 are nonconvex in design parameter 
space and often nonsmooth. Their minimization is usually 
difficult with direct application of gradient methods. This 

(4.1)Π(Λ1, ...Λ16) =
PARTICLES REMAINING

TOTAL PARTICLES RELEASED
.

Fig. 3  Flow patterns with the model. Left: flow velocity magnitude. Right: flow velocity magnitude with streamlines

Fig. 4  The basic action of a 
MLA/GA-Machine Learning 
Algorithm/Genetic Algorithm. 
Zohdi [45–47, 39]

GENERATIONS

��

�

� STOP

SET THE FLOW PARAMETER GENE

RUN VENTILATION SIMULATION

STORE PERFORMANCE

REPEAT FOR NEXT GENE

RANK GENES

IF COST FUNCTION     < TOL

POPULATION

�

� CHILDREN
SUCCESSIVE
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motivates derivative-free search methods, for example those 
found in Machine Learning Algorithms (MLA’s). One of the 
most basic subsets of MLA’s are so-called Genetic Algo-
rithms (GA’s). Typically, one will use a GA first in order to 
isolate multiple local minima, and then use a gradient-based 
algorithm in these locally convex regions or reset the GA to 
concentrate its search over these more constrained regions. 
GA’s are typically the simplest scheme to start the analysis, 
and one can, of course, use more sophisticated methods if 
warranted. For a review of GA’s, see the pioneering work 
of John Holland ([48, 49]), as well as Goldberg [50], Davis 
[51], Onwubiko [52] and Goldberg and Deb [53].

4.2  Generalities

The MLA/GA approach is extremely well-suited for noncon-
vex, nonsmooth, multicomponent, multistage systems and, 
broadly speaking, involves the following essential concepts: 

1. Population generation: Generate a parameter popula-
tion of genetic strings: �i

2. Performance evaluation: Compute performance of 
each genetic string: Π(�i)

3. Rank strings: Rank them �i , i = 1, ..., S

4. Mating process: Mate pairs/produce offspring
5. Gene elimination: Eliminate poorly performing genetic 

strings
6. Population regeneration: Repeat process with updated 

gene pool and new random genetic strings
7. Solution post-processing: Employ gradient-based 

methods afterwards in local “valleys”-if smooth enough

4.2.1  Specifics

Following Zohdi [54, 45–47], the algorithm is as follows:

• Step   1:   Randomly generate a population of S starting 
genetic strings, �i

, (i = 1, 2, 3, ..., S) ∶

• Step   2:   Compute fitness of each string Π(�i) , (i = 1, 
..., S)

• Step   3:   Rank genetic strings: �i , (i = 1, ..., S)
• Step   4:   Mate nearest pairs and produce two offspring, 

(i=1, ..., S): 

(4.2)�
idef=

⎧
⎪⎪⎨⎪⎪⎩

Λi
1

Λi
2

Λi
3

...

Λi
N

⎫⎪⎪⎬⎪⎪⎭

 and 

 where for this operation, the �i and �i are random num-
bers, such that 0 ≤ �i ≤ 1 , 0 ≤ �i ≤ 1 , which are different 
for each component of each genetic string

• Step    5:    Eliminate the bottom M strings and keep 
top K parents and their K offspring (K offspring+K 
parents+M=S)

• Step   6:   Repeat STEPS 1-6 with top gene pool (K off-
spring and K parents), plus M new, randomly generated, 
strings

• Important option:   Rescale and restart search around 
best performing parameter set every few generations

Remark 5 If one selects the mating parameter Φ to be greater 
than one and/or less than zero, one can induce “mutations”, 
i.e. characteristics that neither parent possesses. However, 
this is somewhat redundant with introduction of new random 
members of the population in the current algorithm.

Remark 6 If one does not retain the parents in the algorithm 
above, it is possible that inferior performing offspring may 
replace superior parents. Thus, top parents should be kept for 
the next generation. This guarantees a monotone reduction 
in the cost function. Furthermore, retained parents do not 
need to be reevaluated, making the algorithm less compu-
tationally expensive, since these parameter sets do not have 
to be reevaluated (or ranked) in the next generation. Numer-
ous studies of the author have shown that the advantages of 
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parent retention outweighs inbreeding, for sufficiently large 
population sizes. Finally, we remark that this algorithm is 
easily parallelizable.

Remark 7 After application of such a global search algo-
rithm, one can apply a gradient-based method, if the cost 
function is sufficiently smooth in that region of the param-
eter space. In other words, if one has located a convex por-
tion of the parameter space with a global genetic search, one 
can employ gradient-based procedures locally to minimize 
the objective function further, since they are generally much 
more efficient for convex optimization of smooth functions. 
An exhaustive review of these methods can be found in the 
texts of Luenberger [55] and Gill, Murray and Wright [56].

5  Model Problem

The system was optimized, Eq. 4.1, varying the following 
(16) parameters:

• Ventilation locations: 4 vents, each with 3 (x1, x2, x3) 
locations =12 variables and

• Ventilation flow rates : 4 vents, each with 1 flow rate = 
4 variables.

Specifically, the system optimized varying 16 parameters: 
4 vents each with 3 (x1, x2, x3) locations, each with 1 flow 
rate:

• Flow rate of vent 1:v−
1
= 0 ≤ v1 ≤ v+

1
= 1.0,

• Flow rate of vent 2: v−
2
= 0.5 ≤ v2 ≤ v+

2
= 1.5,

• Flow rate of vent 3:v−
3
= 0.0 ≤ v3 ≤ v+

3
= 1.0,

• Flow rate of vent 4:v−
4
= 0.5 ≤ v4 ≤ v+

4
= 1.5,

• Position of vent 1: (x
1
, x

2
, x

3
)− = (−0.5, 1.0, 2.0) ≤

(x
1
, x

2
, x

3
) ≤ (x

1
, x

2
, x

3
)
+

= (1.5, 3.0, 4.0),
• Position of vent 2: (x

1
, x

2
, x

3
)− = (−1.5, 2.0, 2.0) ≤

(x
1
, x

2
, x

3
) ≤ (x

1
, x

2
, x

3
)
+

= (0.5, 4.0, 4.0),
• Position of vent 3: (x

1
, x

2
, x

3
)− = (−1.5, 1.0,−1.0)

≤ (x
1
, x

2
, x

3
) ≤ (x

1
, x

2
, x

3
)
+

= (1.0, 3.0, 1.0) and
• Position of vent 4: (x

1
, x

2
, x

3
)− = (−0.5, 2.0,−1.0)

≤ (x
1
, x

2
, x

3
) ≤ (x

1
, x

2
, x

3
)
+

= (1.5, 4.0, 1.0).

Figure 5 shows the reduction of the cost function for the 
16 parameter set. This cost function Π represents the frac-
tion of uncaptured particles. Shown are the best performing 
gene (design parameter set, in red) as a function of suc-
cessive generations, as well as the average performance of 
the entire population of the genes (designs, in green). The 
design parameters � = {Λ1,Λ2...ΛN} are optimized over the 
search intervals (16 variables): �−

i
≤ �i ≤ �

+
i
 , i = 1, 2, ...16 . 

We used the following MLA settings:

• Number of design variables: 16,
• Population size per generation: 24,
• Number of parents to keep in each generation: 6,
• Number of children created in each generation: 6,
• Number of completely new genes created in each genera-

tion: 12
• Number of generations for re-adaptation around a new 

search interval: 10 and
• Number of generations: 50.

Table 1 and Fig. 5 illustrate the results. The algorithm 
was automatically reset around the best gene every 10 gen-
erations. The entire 50 generation simulation, with 24 genes 
per evaluation (1200 total designs) took a few minutes on 
a laptop, making it ideal as a design tool. Shown are the 
optimization results for successively longer time limits of 
T = 1.75, 2.0, 2.25 and 2.5 s for the 16 parameter set. Shown 
are the best performing gene (design parameter set, in red) 
as a function of successive generations, as well as the aver-
age performance of the entire population of genes (design 
parameter set, in green). Successively allowing longer simu-
lations times allows the vents to trap more particles. We note 
that, for a given set of parameters, each complete simulation 
takes on the order of 0.25 s, several thousand parameters sets 
can be evaluated in well under an hour, without even exploit-
ing the inherent parallelism of the MLA/GA.

Remark 8 There are other possible Machine-Learning 
paradigms such as Artificial Neural Networks(ANNs) that 
could potentially be useful in such an analysis. ANNs are 
based on constructing simple input-output type models are 
essentially adaptive nonlinear regression fits of the form 
OUTPUT = B(INPUT ,w1,w2, ...wN) , where B (the Arti-
ficial Neural Network) is constructed from (a) synapses, 

Table 1  The top system parameter performers ( �
1
− �

16
 ) and the corresponding cost function for various overall time limits

Tlim �
1

�
2

�
3

�
4

�
5

�
6

�
7

�
8

�
9

�
10

�
11

�
12

�
13

�
14

�
15

�
16

Π

0.175 0.514 2.194 2.661 0.781 −0.286 3.419 2.411 1.369 −0.740 2.368 0.245 0.671 −3.543 2.057 0.689 1.485 0.365
2.000 0.728 2.184 2.712 0.746 −0.199 3.426 2.383 1.275 −0.772 2.434 0.228 0.731 −1.047 2.018 0.657 1.485 0.125
2.225 0.514 2.343 2.931 0.765 −0.263 3.307 2.429 1.205 −0.752 2.466 0.228 0.736 −3.903 2.057 0.669 1.494 0.025
2.500 0.491 2.219 2.800 0.832 −0.313 3.296 2.488 1.345 −0.718 2.343 0.233 0.722 −2.824 2.039 0.656 1.482 0.000



 T. I. Zohdi 

1 3

which multiply inputs by weights that represent the inputs’ 
relevance to the desired output, (b) neurons, which add 
outputs from all incoming synapses and applies activation 
functions and (c) training, which recalibrates the weights 
( wi, , i = 1, 2, ...N ) to achieve a desired overall output. Ulti-
mately, one constructs a system with optimized weights to 
mimic an artificial “input-output” brain. For extremely phys-
ically-complex systems, these techniques remain unproven, 
but are actively being investigated in a number of scientific 
fields.

6  Summary and Future Work

This work developed a combined Digital-Twin and Machine-
Learning framework to optimize ventilation systems by 
building on rapidly computable respiratory emission models 
developed in Zohdi [1]. This framework ascertains the place-
ment and flow rates of multiple ventilation units, in order 
to optimally sequester particles released from respiratory 
emissions such as coughs, sneezes, etc. Numerical exam-
ples are provided to illustrate the framework. An extension 
of the analysis is to consider cases where the change in the 

Fig. 5  Optimization for successively longer time limits of 
T = 1.75, 2.0, 2.25 and 2.5 s. Shown is the cost function values (the 
fraction of particles not trapped) at the end of each generation. The 
red plot is the cost function associated with the best performing gene 

and the green function is the average cost function of the entire popu-
lation. Successively allowing longer simulation times allows the vents 
to trap more particles
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surrounding fluid’s behavior, due to the motion of the par-
ticles and cough, may be important. The result is a system 
of coupled equations between the particles and the fluid, 
requiring spatio-temporal discretization, such as high-fidel-
ity Finite Element or Finite Difference methods, of the clas-
sical equations governing the surrounding fluid mechanics 
(Navier Stokes). Generally such models are computationally 
quite expensive and ineffective for rapid real-time use, but 
are useful for detailed offline background analyses, where a 
rapid response is a nonissue. The continuum discretization 
is usually combined with a Discrete Element Method for the 
particle dynamics. There are a variety of such approaches, 
for example, see Avci and Wriggers [57], Onate et al. [58, 
59], Leonardi et al. [60], Onate et al. [61], Bolintineanu et al. 
[62] and Zohdi [40, 43]. Such models are significantly more 
complex than the models used in the current work. Along 
these lines, in Zohdi [40, 43], more detailed, computation-
ally intensive models were developed to characterize the 
motion of small-scale particles embedded in a flowing fluid 
where the dynamics of the particles affects the dynamics of 
the fluid and vice-versa. In such a framework, a fully implicit 
Finite-Difference discretization of the Navier-Stokes equa-
tions was used for the fluid and a direct particle-dynamics 
discretization is performed for the particles. Because of the 
large computational difficulty and expense of a conforming 
spatial discretization needed for large numbers of embed-
ded particles, simplifying assumptions are made for the 
coupling, based on semi-analytical computation of drag-
coefficients, which allows for the use of coarser meshes. 
Even after these simplifications, the particle-fluid system 
was strongly-coupled. The approach taken in that work 
was to construct a sub-model for each primary physical 
process. In order to resolve the coupling, a recursive stag-
gering scheme was constructed, which was built on works 
found in Zohdi [40–43]. The procedure was as follows (at a 
given time increment): (1) each submodel equation (fluid or 
particle-system) is solved individually, “freezing” the other 
(coupled) fields in the system, allowing only the primary 
field to be active, (2) after the solution of each submodel, 
the associated field variable was updated, and the next sub-
model was solved and (3) the process is then repeated, until 
convergence. The time-steps were adjusted to control the 
rates of convergence, which is dictated by changes in the 
overall physics. Specifically, the approach was a staggered 
implicit time-stepping scheme, with an internal recursion 
that automatically adapted the time-step sizes to control 
the rates of convergence within a time-step. If the process 
did not converge (below an error tolerance) within a preset 
number of iterations, the time-step was adapted (reduced) 
by utilizing an estimate of the spectral radius of the coupled 
system. The developed approach can be incorporated within 
any standard computational fluid mechanics code based on 
finite difference, finite element, finite volume or discrete/

particle element discretization (see Labra and Onate [63], 
Onate et al. [58, 59], Rojek et al. [64] and Avci and Wrig-
gers [57]).

Appendix: Websites of General Interest

• Item 1: UV Light Uses:
• https:// en. wikip edia. org/ wiki/ Ultra violet
• https:// xenex. com/
• https:// aithe on. com/ medic al- robots
• Item 2: Masks and decontamination:
• https:// www. n95de con. org/
• https:// www. n95de con. org/ bibli ograp hy
• https:// en. wikip edia. org/ wiki/ Face_ masks_ during_ the_ 

COVID- 19_ pande mic
• https:// www. epa. gov/ pesti cide- regis trati on/ list-n- disin 

fecta nts- coron avirus- covid- 19
• Item 3:Coughs:
• https:// en. wikip edia. org/ wiki/ Cough
• https:// journ als. plos. org/ ploso ne/ artic le? id= 10. 1371/ 

journ al. pone. 01692 35
• https:// www. ncbi. nlm. nih. gov/ pmc/ artic les/ PMC46 

76262/
• Item 4: Filters:
• https:// en. wikip edia. org/ wiki/ HEPA
• https:// en. wikip edia. org/ wiki/ Minim um_ effic iency_ repor 

ting_ value
• Item 5: Macroscale disease propagation
• https:// en. wikip edia. org/ wiki/ Compa rtmen tal_ models_ 

in_ epide miolo gy
• https:// en. wikip edia. org/ wiki/ Agent- based_ model
• https:// en. wikip edia. org/ wiki/ Pande mic
• https:// www.r- ccs. riken. jp/ en/ fugaku/ resea rch/ covid- 19/ 

msg- en/
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