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Abstract
This work develops a computational Digital-Twin framework to track and optimize the flow of solar power through complex,
multipurpose, solar farm facilities, such as Agrophotovoltaic (APV) systems. APV systems symbiotically cohabitate power-
generation facilities and agricultural production systems. In this work, solar power flow is rapidly computed with a reduced
order model of Maxwell’s equations, based on a high-frequency decomposition of the irradiance into multiple rays, which are
propagated forward in time to ascertain multiple reflections and absorption for various source-system configurations, varying
multi-panel inclination, panel refractive indices, sizes, shapes, heights, ground refractive properties, etc. The method allows
for a solar installation to be tested from multiple source directions quickly and uses a genomic-based Machine-Learning
Algorithm to optimize the system. This is particularly useful for planning of complex next-generation solar farm systems
involving bifacial (double-sided) panelling, which are capable of capturing ground albedo reflection, exemplified by APV
systems. Numerical examples are provided to illustrate the results, with the overall goal being to provide a computational
framework to rapidly design and deploy complex APV systems.

Keywords Agrophotovoltaics · Digital-twin · Machine-learning

1 Introduction

Theoretically, if properly harnessed, solar energy is the most
plentiful energy source available to society. A rough calcu-
lation (Fig. 1) to ascertain the amount of worldwide solar
power available combines (a) The Earth’s radius: R ≈
6,400,000 m, (b) The Earth’s surface area: A ≈ 4πR2, (c)
The peak solar power per unit area: p ≈1300 Watts/m2 and
(d) The assumption that roughly 1/2 of the Earth is illu-
minated at any given time and that, on average, the overall
surface achieves 1/2 peak illumination. This yields an esti-
mate of P = Ap

4 ≈167,358 terawatts. The actual number is
approximately 173,000 terawatts (NREL [1]), which is still
approximately 10,000 times the worldwide power usage in
2019. Solar power can be harnessed in a variety of ways
(a) photovoltaics (largest use), (b) solar heating (primarily
water heating), (c) solar-thermal technologies (usingmirrors,
concentrators and steam turbines), (d) molten salt technolo-
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gies to store heat and redeploy to run steam turbines, (e)
artificial photosynthesis (biomimicry of plants), etc. Photo-
voltaic systems are the most widely used solar conversion
systems. They employ the semi-conducting materials that
exhibit the photovoltaic effect. With dramatic price drops
and readily available silicon, such systems have come to
dominate solar energy conversion systems. The first prac-
tical solar cell was built in 1954 at Bell Labs, with the space
industry being an early adopter, driven by power limitations
in space for satellites. In the US alone, installed solar energy
use has increased by a factor of 20 in the last decade. Issues
around the technology now focus on large-scale deploy-
ment and integration with other societal infrastructure in
urban and rural settings (NREL [1]), such as agricultural pro-
duction systems. However, placement of such facilities has
become increasingly harder in both urban and rural areas.
Next generation facilities need to be blended with other
societal structures. Such ‘blended’ systems are exemplified
by Agrophotovoltaic (APV) systems, which symbiotically
cohabitate power-generation facilities and agricultural pro-
duction systems. APV systems have become increasingly
popular to help reduce tensions between pure solar farms
and large-scale agriculture over desirable land.
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Fig. 1 Illumination of Earth for worldwide power estimates, an overall system and an APV unit

APV systems were pioneered in the 1980s (Goetzberger
andZastrow [2]) and have steadily grown as photovoltaic sys-
tems have becomemore robust and inexpensive.We refer the
reader to [2–25] for a broad survey of such systems.1 Regard-
less of the exact type of blended system, there is a necessity to
optimize these complex multiobjective systems so that they
operate properly. If configurations are properly optimized
the approach can yield the best of both worlds, yielding
energy and abundant agriculture. The approach allows for
agricultural use of land in areas that would otherwise have
been impossible to utilize. A common theme in these new
paradigms is optimal system deployment. For a next gen-
eration solar farm designer, there are multiple surfaces to
track, such the panel front, panel back, panel sides and the
ground, and therefore a tool that keeps track of the absorption
by each is advantageous. Accordingly, this work develops a
computationalDigital-Twin framework to track and optimize
the flow of solar power through complex multipurpose solar
farm facilities, such APV systems. Specifically, solar power
flow is rapidly computed with a reduced order model of
Maxwell’s equations, based on a high-frequency decomposi-
tion of the irradiance intomultiple rays,which are propagated
forward in time to ascertain multiple reflections and absorp-
tion for various system configurations, varying multi-panel
inclination, panel refractive indices, sizes, shapes, heights,
ground refractive properties, etc. The method allows for a
solar installation to be tested from multiple source direc-
tions quickly and uses a genomic-based Machine-Learning
Algorithm to optimize the system. This is particularly useful
for planning of complex next-generation solar farm systems
involving bifacial (double-sided) panelling, which are capa-
ble of capturing ground albedo reflection, exemplified by
APV systems (Fig. 1). A key to the presented approach is
the ‘Digital-Twin’ paradigm of physical reality, i.e., digital
replicas of complex systems that can then be inexpensively
and safely manipulated, improved and optimized in a vir-

1 APV systems can involve a variety of aspects, even utilizing pollinat-
ing insects, such as bees, to ‘solar grazing’ systems.

tual setting. The system can then be deployed in the physical
world afterwards, reducing the potential costs of experiments
and accelerating development of new technologies. By creat-
ing Digital-Twins of complex, symbiotic APV systems, one
can safely and efficiently manipulate, improve, and optimize
agriculture, careful water use, and integrated solar energy
in virtual settings, before deploying them in the physical
world. We formulate a multiobjective optimization problem
whose goal is to maximize power absorbed by the panels and
which also simultaneously matches the power absorbed by
the ground for agriculture. The approach can yield the best of
both worlds, delivering energy and abundant agriculture. The
approach allows planners to utilize and optimize land use in
complex regions that would otherwise have been impossible.

2 Digital-twin structure and reduced-order
model

2.1 Assumptions for reduced order model

The interest here is on the absorption of an initially (test)
coherent pulse (Fig. 2), represented by multiple collimated
(parallel) rays (initially forming a planar wave front), where
each ray is a vector in the direction of the flow of power (the
rays are parallel to the initial wave’s propagation vector). We
make the following observations:

• It is assumed that the features of the surface to be irra-
diated are at least an order of magnitude larger than the
wavelength of the incident radiation (essentially specular
(non-diffusive) optical surfaces), therefore “geometri-
cal” ray tracing theory is applicable, and is well-suited
for the systems of interest. It is important to empha-
size the regimes of validity of such a model are where
the surface features are larger than the optical wave-
lengths. For example, if we were to use rays (10−8 m
≤ λ ≤ 4 × 10−7 m), the features in this analysis would
be assumed to possess scales larger than approximately
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Fig. 2 Left: an overall system. Right: an electromagnetic pulse applied to a surface and a reduced order ray model

4×10−6 m. For systems containing features smaller than
this, one can simply use the model as a qualitative guide.

• Ray-tracing is a method that is employed to produce
rapid approximate solutions to wave-equations for high-
frequency/small-wavelength applications where the pri-
mary interest is in the overall propagation of power.2

• Ray-tracing methods proceed by initially representing
wave fronts by an array of discrete rays. Thereafter, the
problem becomes one of a primarily geometric char-
acter, where one tracks the changing trajectories and
magnitudes of individual rays which are dictated by the
reflectivity and the Fresnel conditions (if a ray encounters
a material interface).

• Ray-tracing methods are well-suited for computation
of scattering in complex systems that are difficult to
mesh/discretize, relative to procedures such as the Finite
Difference Time Domain Method or the Finite Element
Method.

• Other high frequency irradiation regimes can also be con-
sidered in the same manner, such as UV, X-rays and
gamma rays, provided that the scattering target has the
appropriate (larger) length-scale. Even in the case where
this clear separation of length scales is not present, this
model still provides valuable information on the prop-
agation of the beam and the reflected response of the
dispersed system.

Note the connectionof the concept of a raywith a pulse/beam:

• We define Ī as the power per unit area, and we obtain the
power of the entire pulse/beam by multiplying the irradi-
ance by the cross-sectional area of an initially coherent
beam, Ī Ab, where Ab is the cross-sectional area of the
beam (comprising all of the rays).

2 Resolving diffraction (which ray theory is incapable of describing)
is unimportant for the applications of interest.

• The power for a ray in the pulse/beam is then given by
I = Ī Ar = Ī Ab/Nr , where Nr is the number of rays
in the beam (Fig. 2) and Ar can be considered the area
associated with a ray.

• Fresnel reflection relations can then be used to compute
changes in the magnitude of the reflected rays (and the
amount absorbed), with directional changes given by the
laws of reflection.

Essentially, rays are a mathematical construction/discreti-
zation of a pulse/beam. We refer the reader to Gross [26] and
Zohdi [28–34] for details. From this point forth, we assume
that the ambient medium behaves as a vacuum. Accordingly,
there are no energetic losses as the rays move through the
surrounding medium.

2.2 Reflection and absorption of rays

Following a framework found in Zohdi [28–34] for details,
we consider a ray of light incident upon a material interface
which produces a reflected ray and a transmitted/absorbed
(refracted) ray (Fig. 2), the amount of incident electromag-
netic power (Ii ) that is reflected (Ir ) is given by the total

reflectance IR def= Ir
Ii
, where 0 ≤ IR ≤ 1. The next sec-

tion supplies the theory underpinning electromagnetic wave
propagation and rays.

2.3 Electromagnetic wave propagation and rays

Following a framework found in Zohdi [28–34], the propaga-
tion of electromagnetic waves in free space can be described
by a simplified form of Maxwell’s equations (see Jackson
[27], Zohdi [31])

∇ × E = −μo
∂H
∂t , and ∇ × H = εo

∂E
∂t , (1)
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where ∇ · H = 0, ∇ · E = 0, E is the electric field, H is
the magnetic field, εo is the free space permittivity and μo is
the free space permeability. Using standard vector identities,
one can show that

∇ × (∇ × E) = −μoεo
∂2E
∂t2

, and

∇ × (∇ × H) = −μoεo
∂2H
∂t2

, (2)

and that

∇2E = 1
c2

∂2E
∂t2

, and ∇2H = 1
c2

∂2H
∂t2

, (3)

where the speed of electromagnetic waves is c = 1√
εoμo

. All
electromagnetic radiation travels, in a vacuum, at the speed
c ≈ 2.99792458×108 ±1.1m/s. In any anothermedium, for
electromagnetic waves, the propagation speed is v = 1√

εμ
,

where ε and μ are the electric permittivity and magnetic
permeability of that medium, respectively.3

2.4 Plane harmonic wave fronts

Now consider the special case of plane harmonic waves, for
example of the form

E = Eocos(k · x − ωt) and

H = Hocos(k · x − ωt), (4)

where x is an initial position vector to the wave front, where
k is the direction of propagation. We refer to the phase as
φ = k · x −ωt , and ω = 2π

τ
as the angular frequency, where

τ is the period. For plane waves, the wave front is a plane
on which φ is constant, which is orthogonal to the direction
of propagation, characterized by k. In the case of harmonic
waves, we have

k × E = μoωH and k × H = −εoωE, (5)

and k · E = 0 and k · H = 0. The three vectors, k, E
and H constitute a mutually orthogonal triad.4 The direction
of wave propagation is given by E×H

||E×H|| . Electromagnetic
waves traveling through space carry electromagnetic power
which flows in the direction of wave propagation. The power
per unit area flowing perpendicularly into a surface in free
space is given by the Poynting vector S = E × H .

3 The free space electric permittivity is εo = 1
c2μo

= 8.8542×10−12 C

N−1 m−1 and the free space magnetic permeability is μo = 4π ×
10−7Wb A−1 m−1 = 1.2566 × 10−6 Wb A−1 m−1.
4 By combining the relations in Eq. 5 one obtains ||k|| = ω

c .

2.5 Natural (random) electromagnetic power
propagation

Since at high-frequencies E, H and S oscillate rapidly, it
is impractical to measure instantaneous values of S directly.
Consider the harmonic representations in Eq. 4 which leads
to S = Eo × Hocos2(k · x − ωt), and consequently the
average value over a longer time interval (T ) than the time
scale of rapid random oscillation,

〈S〉T = Eo × Ho〈cos2(k · x − ωt)〉T = 1
2 Eo × Ho, (6)

leading to the definition of the irradiance

I
def= 〈||S||〉T = 1

2 ||Eo × Ho|| = 1
2

√
εo
μo

||Eo||2. (7)

Thus, the power flow is proportional to the square of the
amplitude of the electric field.

2.6 Reflection and absorption of power-Fresnel
relations

We consider a plane harmonic wave incident upon a plane
boundary separating two differentmaterials, specifically vac-
uum and surface, which produces a reflected wave and an
absorbed (refracted) wave (Fig. 2). Two cases for the electric
field vector are considered:

(1) Electric field vectors that are parallel (||) to the plane of
incidence and

(2) Electric field vectors that are perpendicular (⊥) to the
plane of incidence.

In either case, the tangential components of the electric and
magnetic fields are required to be continuous across the
interface. Consider case (1). We have the following general
vectorial representations

E|| = E||cos(k · x − ωt) e1 and

H || = H||cos(k · x − ωt) e2, (8)

where e1 and e2 are orthogonal to the propagation direction
k. By employing the law of refraction (ni sinθi = nasinθa)
we obtain the following conditions relating the incident,
reflected and absorbed components of the electric field quan-
tities

E||i cosθi − E||r cosθr = E||acosθa and

H⊥i + H⊥r = H⊥a . (9)
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Since, for plane harmonic waves, the magnetic and electric
field amplitudes are related by H = E

vμ
, we have

E||i + E||r = μi

μa

vi

va
E||a = μi

μa

na
ni

E||a
def= n̂

μ̂
E||a, (10)

where μ̂
def= μa

μi
, n̂

def= na
ni

and where vi , vr and va are the
values of the velocity in the incident, reflected and absorbed
directions.5 By again employing the law of refraction, we
obtain the Fresnel reflection and transmission/absorption
coefficients, generalized for the case of unequal magnetic
permeabilities

r|| = E||r
E||i

=
n̂
μ̂
cosθi − cosθa

n̂
μ̂
cosθi + cosθa

and

a|| = E||a
E||i

= 2cosθi

cosθa + n̂
μ̂
cosθi

. (11)

Following the same procedure for case (2), where the com-
ponents of E are perpendicular to the plane of incidence, we
have

r⊥ = E⊥r

E⊥i
=

cosθi − n̂
μ̂
cosθa

cosθi + n̂
μ̂
cosθa

and

a⊥ = E⊥a

E⊥i
= 2cosθi

cosθi + n̂
μ̂
cosθa

. (12)

Our primary interest is in the reflections. We define the
reflectances as

IR||
def= r2|| and IR⊥

def= r2⊥. (13)

Particularly convenient forms for the reflections are

r|| =
n̂2

μ̂
cosθi − (n̂2 − sin2θi )

1
2

n̂2
μ̂
cosθi + (n̂2 − sin2θi )

1
2

and

r⊥ =
cosθi − 1

μ̂
(n̂2 − sin2θi )

1
2

cosθi + 1
μ̂
(n̂2 − sin2θi )

1
2

. (14)

Thus, the total power reflected can be characterized by

IR def=
(
Er

Ei

)2

= E2⊥r + E2||r
E2
i

= I||r + I⊥r

Ii
. (15)

If the resultant plane of oscillation of the (polarized) wave
makes an angle of γi with the plane of incidence, then

E||i = Eicosγi and E⊥i = Ei sinγi , (16)

5 Throughout the analysis we assume that n̂ ≥ 1.

and it follows from the previous definition of I that

I||i = Ii cos2γi and I⊥i = Ii sin2γi . (17)

Substituting these expressions back into the equations for the
reflectances yields

IR = I||r
Ii

cos2γi + I⊥r

Ii
sin2γi = IR||cos2γi + IR⊥sin2γi .

(18)

For natural or unpolarized electromagnetic radiation, the
angle γi varies rapidly in a random manner, as does the field
amplitude. Thus, since

〈cos2γi (t)〉T = 1
2 and 〈sin2γi (t)〉T = 1

2 , (19)

and therefore for natural electromagnetic radiation

I||i = Ii
2 and I⊥i = Ii

2 . (20)

and therefore

r2|| =
(

E2||r
E2||i

)2

= I||r
I||i and r2⊥ =

(
E2⊥r
E2⊥i

)2

= I⊥r
I⊥i

.

(21)

Thus, the total reflectance becomes

IR = 1

2
(IR|| + IR⊥) = 1

2
(r2|| + r2⊥), (22)

where 0 ≤ IR ≤ 1. For the cases where sinθa = sinθi
n̂ > 1,

one may rewrite reflection relations as

r|| =
n̂2

μ̂
cosθi − j(sin2θi − n̂2)

1
2

n̂2
μ̂
cosθi + j(sin2θi − n̂2)

1
2

and

r⊥ =
cosθi − 1

μ̂
j(sin2θi − n̂2)

1
2

cosθi + 1
μ̂
j(sin2θi − n̂2)

1
2

(23)

where, j = √−1, and in this complex case6

IR||
def= r||r̄|| = 1, and IR⊥

def= r⊥r̄⊥ = 1, (24)

where r̄|| and r̄⊥ are complex conjugates. Thus, for angles
above the critical angle θ∗

i , all of the power is reflected.Notice
that as n̂ → 1 we have complete absorption, while as n̂ →
∞ we have complete reflection. The amount of absorbed
irradiance by the surface is Ia = (1 − IR)Ii .

6 The limiting case
sinθ∗

i
n̂ = 1, is the critical angle (θ∗

i ) case.
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2.7 Reflectivity

To observe the dependency of IR on n̂ and θi we can explic-
itly write

IR = 1
2

⎛
⎝

(
n̂2
μ̂
cosθi−(n̂2−sin2θi )

1
2

n̂2
μ̂
cosθi+(n̂2−sin2θi )

1
2

)2

+
(

cosθi− 1
μ̂

(n̂2−sin2θi )
1
2

cosθi+ 1
μ̂

(n̂2−sin2θi )
1
2

)2
⎞
⎠ .

(25)

We observe:

• As n̂ → ∞, IR → 1, no matter what the angle of
incidence’s value. We note that as n̂ → 1, provided that
μ̂ = 1, IR → 0, i.e. all incident power is absorbed (it is
transparent).

• With increasing n̂, the angle for minimum reflectance
grows larger. As mentioned previously, for the remainder
of the work, we shall take μ̂ = 1 (μo = μi = μa), thus

n̂ = na
ni

=
√

εaμa

εiμi
⇒ εaμa = (n̂)2εiμi ⇒ εa = (n̂)2εi .

(26)

• The previous assumption yields

IR = Ir
Ii

= 1

2

⎛
⎝

(
n̂2cosθi − (n̂2 − sin2θi )

1
2

n̂2cosθi + (n̂2 − sin2θi )
1
2

)2

+
(
cosθi − (n̂2 − sin2θi )

1
2

cosθi + (n̂2 − sin2θi )
1
2

)2
⎞
⎠ . (27)

Remark 1 Recall that Ī is the power per unit area, and that
we obtain the power associated with an entire pulse/beam by
multiplying the irradiance by the cross-sectional area of an
initially coherent beam, Ī Ab, where Ab is the cross-sectional
area of the beam (comprising all of the rays). The power in a
ray in the pulse/beam is then given by I = Ī Ar = Ī Ab/Nr ,
where Nr is the number of rays in the beam(Fig. 2) and Ar can
be considered the area associated with a ray. The reflection
relation, Eq. 25, can then be used to compute changes in the
magnitude of the reflected rays (and the amount absorbed),
with directional changes given by the laws of reflection. We
refer the reader to Gross [26] and Zohdi [28–34] for details.

Remark 2 We have the following additional observations:

• The angle between the point of contact of a ray (Fig. 2)
and the outward normal to the surface at that point is the
angle of incidence, θi . The classical reflection law states
that the angle at which a ray is reflected is the same as
the angle of incidence and that the incoming (incident,

P=1/2

SHAPESVARIOUS

P=20

P=2

P=1

Fig. 3 Possible panel shapes (cross-sections) generated from a gener-
alized 3D-ellipsoidal equation (Eq. 28)

θi ) and outgoing (reflected, θr ) ray lays in the same plane,
and θi = θr .

• The classical refraction law states that, if the ray passes
from one medium into a second one (with a different
index of refraction) and, if the index of refraction of the
second medium is less than that of the first, the angle the
ray makes with the normal to the interface is always less

than the angle of incidence, where n̂
def= vi

va
=

√
εaμa
εiμi

=
sinθi
sinθa

, θa being the angle of the absorbed ray (Fig. 2).

3 Power propagation tracking algorithm

From this point forth, we assume that the ambient medium
behaves as a vacuum. Accordingly, there are no energetic
losses as the rays move through the surrounding medium.
Starting at t = 0 and ending at t = T , the simple overall
algorithm to track rays is as follows, at each time increment:

1. Check for intersections of rays with surfaces (hence a
reflection), and compute the ray magnitudes and ori-
entation if there are reflections (for all rays that are
experiencing a reflection, I re fj , j = 1, 2, . . . , Rays),

2. Increment all ray positions (r j (t + �t) = r j (t) +
�tv j (t), j = 1, 2, . . . , Rays),

3. Increment time forward (t = t + �t) and repeat the
process for the next time interval.

In order to capture all of the ray reflections that occur:

• The time step size �t is dictated by the offset height of
the source. A somewhat ad-hoc approach is to scale the
time step size by the speed of ray propagation according
to �t = ξ H

||v|| , where H is the height of the source and
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Fig. 4 Examples for (a) (p1, p2, p3) = (10, 1/2, 1/2) and
(R1, R2, R3) = (1/20, 1, 1), (b) (p1, p2, p3) = (10, 1, 1) and
(R1, R2, R3) = (1/20, 1, 1), (c) (p1, p2, p3) = (10, 2, 2) and

(R1, R2, R3) = (1/20, 1, 1) and (d) (p1, p2, p3) = (10, 10, 10) and
(R1, R2, R3) = (1/20, 1, 1) for a generalized 3D-ellipsoidal equation
(Eq. 28)

0.0001 ≤ ξ ≤ 0.01. Typically, the results are insensitive
to ξ that are smaller than this range.

• Although outside the scope of this work, one can also
use this algorithm to compute the thermal response by
combining it with heat transfer equations via staggering
schemes (Zohdi [28,31]).

4 Panel surfacemodel

The discrete-ray approach is flexible enough to simulate a
wide variety of systems. This also aligns with advances in
manufacturing, 3D-printing, etc. that allow for many possi-

ble shapes to be fabricated. For the solar panels, we consider a
topology described by the normalized equation for a surface,
F(x1, x2, x3) = 1 (Figs. 3, 4). Specifically, a generalized
3D-ellipsoidal equation (Eq. 28) is used where for exponent
values of (p1, p2, p3) equal to two, (2, 2, 2), we generate a
familiar 3D-ellipsoidal surface, for values less than one we
generate involute (nonconvex shapes and corresponding sur-
faces), and for exponent values of (p1, p2, p3) greater than
two, we generate a box-like shapes (Figs. 3, 4). To generate
a panel, a generalized 3D-ellipsoidal equation is used
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F(x1, x2, x3) = ‖ x1 − x1o
R1

‖p1 + ‖ x2 − x2o
R2

‖p2

+‖ x3 − x3o
R3

‖p3 = 1 (28)

where (x1o, x2o, x3o) are the coordinates panel center and
(R1, R2, R3) are the generalized radii and (p1, p2, p3) are
exponents of the generalized 3D-ellipsoid, which ultimately
will be design variables in the Machine-Learning Algorithm
discussed later. Intersections of a ray with a surface are
achieved by checking the intersection with the surface of the
3D-ellipsoidal equation (Eq. 28) The outward surface nor-
mals, n, needed during the scattering calculations, are easy
to characterize by writing

n = ∇F

||∇F || , (29)

where the components of the gradient are

∇F = ∂F

∂x1
e1 + ∂F

∂x2
e2 + ∂F

∂x3
e3. (30)

5 Numerical/quantitative examples

We have the following examples:

• The initial velocity vector for all initially collimated (par-
allel) rays comprising the beam was v = (c, 0, 0), where
c = 3 × 108 m/s is the speed of light in a vacuum. Ini-
tially, the rays are randomly placed in a square that is 1.5
times the size of the target area, all pointing in parallel
in the same direction connecting the center of the target
area and the square containing the rays.

• We used a parametrized test surface given by Eq. 28,
(p1, p2, p3) = (10, 10, 10) and (R1, R2, R3) = (1/20,
1, 1) for a generalized 3D-ellipsoidal equation (Eq. 28).
This corresponds to square panels. The panels were also
rotated (and fixed) 45◦ about the x2/y axis.

• The number of rays in the beam were steadily increased
from Nr = 100, 200, etc, until the results were insen-
sitive to further refinements-at approximately 2000 ≤
Nr ≤ 2500 parallel rays in rectangular cross-sectional
plane of the beam.The rays were randomly placed within
the beam (Fig. 2), to correspond to unpolarized incoming
power.

• To illustrate the propagation of light for one incoming
source scenario, the rays come from the left at an angle
and “plow” through the farm. There were 16 panels in
the simulation, equally spaced in a 4 × 4 grid and all
oriented in the same direction. Only the surfaces that

have been previously contacted by the rays (with corre-
sponding power absorbed) are shown, which in this case
were 8 panels. This allows for easy viewing of where
the power is going. The length and color of the directed
rays indicate the power content (Watts), where orange
is the raw, unreflected power from the source (for exam-
ple, the sun), while the blue arrows (as well as other color
between orange and blue) indicate smaller power content,
due to multiple reflections. The vector directions indi-
cate the propagation direction of power flow. The length
and color of the directed rays indicate the power content
(Watts), where orange is the raw, unreflected power from
the source (for example, the sun) which the blue arrows
(as well as other color between orange and blue) indi-
cate smaller power content, due to multiple reflections.
The vector directions indicate the propagation direction
of power flow.

• Figure 5 illustrates the results for five different incom-
ing light scenarios: Case 1: parallel rays emanating from
(−1.0, 0.0, 0.65), Case 2: parallel rays emanating from
(−0.5, 0.0, 0.65), Case 3: parallel rays emanating from
(0.0, 0.0, 0.65), Case 4: parallel rays emanating from
(0.5, 0.0, 0.65) and Case 5: parallel rays emanating from
(1.0, 0.0, 0.65). Initially, the rays are randomly placed
in a square that is 1.5 times the size of the target area,
all pointing in parallel in the same direction connecting
the center of the target area and the square containing the
rays.

• This Digital-Twin facilitates quick quantification of the
absorption efficacy across the topology of the structure
(color coding the efficacy relative to the incoming irradia-
tion) and parametric studies for the changes in absorption
as a function of changes in surface geometry. The simu-
lations take a fraction of a second on a laptop. This type
of approach makes it quite suitable for use in conjunction
withmobileAPV systems and provides a simpler alterna-
tive to a direct, computationally intensive, discretization
of a continuum description using Maxwell’s equations
with a Finite Element or Finite Difference method.

Remark 3 If desired, this approach also allows an analyst to
explore nonuniform beam profiles, for example exponential
central irradiance decay: I (d) = I (d = 0)e−ad , where d is
the distance from the center of the initial beam, where in the
case of a = 0, one recaptures a flat beam, I (d) = I (d = 0).7

7 Note that algorithmically, we can the set total initial irradiance via∑Nr
i=1 I

inc
i (t = 0)Ar = P Watts. To achieve this distribution, one

would first place rays randomly in the plane, and then scale the individ-
ual I inc by e−ad and the normalized the average so that the total was P
Watts.
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TOP  VIEW

CASE 5

x2
x3

x1

CASE 1 CASE 2 CASE 3 CASE 4

Fig. 5 The results of performance for 5 different incoming solar sce-
narios. Case 1: parallel rays emanating from (−1.0, 0.0, 0.65), Case
2: parallel rays emanating from (−0.5, 0.0, 0.65), Case 3: parallel
rays emanating from (0.0, 0.0, 0.65), Case 4: parallel rays emanat-
ing from (0.5, 0.0, 0.65) and Case 5: parallel rays emanating from

(1.0, 0.0, 0.65). Initially, the rays are randomly placed in a square that
is 1.5 times the size of the target area, all pointing in parallel in the
same direction connecting the center of the target area and the square
containing the rays

Fig. 6 Frames associated with one solar farm configuration and one
incoming source scenario. The rays come from the left at an angle
and “plow” through the farm. There were 16 panels in the simulation,
equally spaced in a 4×4 grid and all oriented in the same direction. Only
the surfaces that have been contacted by the rays are exposed, which
in this case were 8 panels. The length and color of the directed rays

indicate the power content (Watts), where orange is the raw, unreflected
power from the source (for example, the sun), while the blue arrows (as
well as other color between orange and blue) indicate smaller power
content, due to multiple reflections. The vector directions indicate the
propagation direction of power flow

6 Genomic machine-learning framework

The rapid rate at which these simulations can be completed
enables the ability to explore inverse problems seeking to
determinewhat parameter combinations can deliver a desired
result. Following Zohdi [41–44] , we formulate the objective

as a cost function minimization problem that seeks system
parameters that match a desired response by minimizing a
cost/error function (�). Specifically, we use

 = w1α + w2γ, (31)
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where the panel loss ratio is α = Panel Losses
T otal I nput , which sig-

nifies the power not captured by the panels, and γ represents
a range of ground absorption given by

• I f G ≥ G+ then γ = |G − G+|,
• I f G ≤ G− then γ = |G − G−| and
• I f G− < G < G+ then γ = 0,

where the ground absorption ratio is G = Ground Absorption
T otal I nput ,

G+ is the upper bound for the fraction of solar power
absorbed by the ground and G− is the lower bound for the
fraction of solar power absorbed by the ground.We systemat-

ically minimize , by varying the design parameters: �i def=
{�i

1,�
i
2,�

i
3, . . . , �

i
N } def= {panel si ze, spacing, angles

. . .}. The system parameter search is conducted within the
constrained ranges of �

(−)
1 ≤ �1 ≤ �

(+)
1 , �

(−)
2 ≤ �2 ≤

�
(+)
2 and �

(−)
3 ≤ �3 ≤ �

(+)
3 , etc. These upper and lower

limits would, in general, be dictated by what is physically
feasible. The system parameters to vary and optimize the
following (12) parameters: (1) Panel inclination (3 angles),
(2) Refractive index of panels (front and back, 1 parameter),
(3) Dimensions of panels (3 parameters), (4) Shape of pan-
els (3 parameters), (5) Ground refractive index (1 parameter)
and (6) Panel placement above ground (1 parameter).

6.1 System parameter search/machine-learning
algorithm (MLA)

Cost functions such as  are nonconvex in design parameter
space and often nonsmooth. Their minimization is usually
difficult with direct application of gradient methods. This
motivates nonderivative search methods, for example those
found inMachine-Learning Algorithms (MLA’s). One of the
most basic subsets of MLA’s are so-called Genetic Algo-
rithms (GA’s). For a review of GA’s, see the pioneering work
of John Holland ([35,36]), as well as Goldberg [37], Davis
[38], Onwubiko [39] and Goldberg and Deb [40]. A descrip-
tion of the algorithm will be described next (Zohdi [41–44]).

6.2 Algorithmic structure

TheMLA/GA approach is extremelywell-suited for noncon-
vex, nonsmooth, multicomponent, multistage systems and,
broadly speaking, involves the following essential concepts
(Fig. 7):

1. Population generation Generate a parameter population
of genetic strings: �i

2. Performance evaluation Compute performance of each
genetic string: (�i )

3. Rank strings Rank them �i , i = 1, . . . , S

4. Mating process Mate pairs/produce offspring
5. Gene elimination Eliminate poorly performing genetic

strings
6. Population regeneration Repeat process with updated

gene pool and new random genetic strings
7. Solution post-processing Employ gradient-based meth-

ods afterwards in local “valleys”-if smooth enough

6.3 Specifics

Following Zohdi [41–44], the algorithm is as follows:

• STEP 1: Randomly generate a population of S starting
genetic strings, �i , (i = 1, 2, 3, . . . , S) :

�i def=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�i
1

�i
2

�i
3

. . .

�i
N

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(32)

• STEP 2: Compute fitness of each string (�i ), (i=1,
…, S)

• STEP 3: Rank genetic strings: �i , (i=1, …, S)
• STEP 4: Mate nearest pairs and produce two offspring,
(i=1, …, S):

λi
def= � ◦ �i + (1 − �) ◦ �i+1 def=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ1�
i
1

φ2�
i
2

φ3�
i
3

. . .

φN�i
N

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − φ1)�
i+1
1

(1 − φ2)�
i+1
2

(1 − φ3)�
i+1
3

. . .

(1 − φN )�i+1
N

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(33)

and

λi+1 def= � ◦ �i + (1 − �) ◦ �i+1 def=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ1�
i
1

ψ2�
i
2

ψ3�
i
3

. . .

ψN�i
N

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − ψ1)�
i+1
1

(1 − ψ2)�
i+1
2

(1 − ψ3)�
i+1
3

. . .

(1 − ψN )�i+1
N

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(34)
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Fig. 7 Left, an overall flow
chart and right, the basic action
of a MLA/GA
Machine-Learning
Algorithm/Genetic Algorithm
(Zohdi [41–44])

IF COST FUNCTION     < TOL

Π

Π STOP

STORE PERFORMANCE

REPEAT FOR NEXT GENE

RANK GENES

POPULATION

GENERATIONS

=ΛSET SOLAR FARM GENE

RUN SOLAR FARM SIMULATION

Λ

Π CHILDREN
SUCCESSIVE

where for this operation, the φi and ψi are random num-
bers, such that 0 ≤ φi ≤ 1, 0 ≤ ψi ≤ 1, which are
different for each component of each genetic string

• STEP 5: Eliminate the bottom M strings and keep
top K parents and their K offspring (K offspring+K
parents+M=S)

• STEP 6: Repeat STEPS 1-5 with top gene pool (K off-
spring and K parents), plus M new, randomly generated,
strings

• IMPORTANT OPTIONS: One can rescale and restart
search around best performing parameter set every few
generations. Typically, one will use a GA first in order
to isolate multiple local minima, and then use a gradient-
based algorithm in these locally convex regions or reset
the GA to concentrate its search over these more con-
strained regions.

Remark 4 If one selects the mating parameters φ′s and γ ′s
to be greater than one and/or less than zero, one can induce
“mutations”, i.e. characteristics that neither parent possesses.
However, this is somewhat redundant with introduction of
new random members of the population in the current algo-
rithm. If one does not retain the parents in the algorithm
above, it is possible that inferior performing offspring may
replace superior parents. Thus, top parents should be kept for
the next generation. This guarantees amonotone reduction in
the cost function. Furthermore, retained parents do not need
to be reevaluated, making the algorithm less computation-
ally less expensive, since these parameter sets do not have
to be reevaluated (or ranked) in the next generation. Numer-
ous studies of the author (Zohdi [41–44]) have shown that the
advantages of parent retention outweighs inbreeding, for suf-
ficiently large population sizes. Finally, we remark that this
algorithm is easily parallelizeable. After application of such
a global search algorithm, one can apply a gradient-based
method, if the objective function is sufficiently smooth in
that region of the parameter space. In other words, if one
has located a convex portion of the parameter space with a
global genetic search, one can employ gradient-based pro-

cedures locally to minimize the objective function further,
since they are generally much more efficient for convex opti-
mization of smooth functions. An exhaustive review of these
methods can be found in the texts of Luenberger [45] and
Gill, Murray and Wright [46].

6.4 Algorithmic settings

In the upcoming example, the design parameters � =
{�1,�2 . . . �N } are optimized over the search intervals (12
variables): �−

i ≤ �i ≤ �+
i , i = 1, 2, . . . , 12. Specifically

(Fig. 8), we varied the following parameters: (a) Panel incli-
nation (3 angles), (b) Refractive index of panels (front and
back, 1 parameter), (c) Dimensions of panels (3 parameters),
(d) Shape of panels (3 parameters), (e) Ground refractive
index (1 parameter) and (f) Panel height above ground (1
parameter). Figure 9 shows the reduction of the cost func-
tion for the 12 parameter set. Shown are the best performing
gene (design parameter set, in red) as a function of succes-
sive generations, as well as the average performance of the
entire population of the genes (designs, in green). We used
the following MLA settings:

• Number of design variables: 12,
• Population size per generation: 24,
• Number of parents to keep in each generation: 6,
• Number of children created in each generation: 6,
• Number of completely new genes created in each gener-
ation: 12,

• Number of generations for re-adaptation around a new
search interval: 10 and

• Number of generations: 1000.

6.5 Parameter search ranges and results

We considered a 16 panel farm, where the panels are equally-
spaced in a square pattern. All panels are identical. The
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Fig. 8 The system to be
optimized: 16 panels, equally
spaced. The following
parameters were varied: a panel
inclination (3 angles), b
refractive index of panels (front
and back, 1 parameter), c
dimensions of panels (3
parameters), d shape of panels
(3 parameters), e) ground
refractive index (1 parameter)
and f panel height above ground
(1 parameter)

TARGETED LEVEL OF 
GROUND ABSORPTION

MAXIMIZE ABSORPTION/MINIMIZE LOSSES

TOP  VIEW

CASE 2CASE 1 CASE 3 CASE 4 CASE 5

x2
x3

x1

BEST

POPULATION

Fig. 9 Optimization of performance of a single fixed solar farm con-
figuration for 5 different incoming light conditions. Shown are the cost
function for the best performing gene (red) as a function of successive
generations, as well as the average cost function of the entire popula-
tion of genes (green). We allowed the MLA/GA to readapt every 10
generations, leading to the (slight) nonmonotone reduction of the cost
function. Often, this action is more efficient than allowing the algo-
rithm not to readapt, since it probes around the current optimum for
better local alternatives

following search parameter ranges were used (with w1 = 1
and w2 = 0.5):

• �1 = Rotation angle 1 (relative to the x1-axis):�
−
1 =

−0.5π ≤ �1 ≤ �+
1 = 0.5π ,

• �2 = Rotation angle 2 (relative to the x2-axis):�
−
2 =

−0.5π ≤ �2 ≤ �+
2 = 0.5π ,

• �3 = Rotation angle 3 (relative to the x3-axis): �−
3 =

−0.5π ≤ �3 ≤ �+
3 = 0.5π ,

• �4 = Panel refractive index: �−
4 = 1.0 ≤ �4 ≤ �+

4 =
100,

• �5 = Ground refractive index:�−
5 = 1.0 ≤ �5 ≤

�+
5 = 100,

• �6 = Panel R1 size:�
−
6 = 0.005 ≤ �6 ≤ �+

6 = 0.01,
• �7 = Panel R2 size:�−

7 = 0.0125 ≤ �7 ≤ �+
7 =

0.125,
• �8 = Panel R3 size:�−

8 = 0.0125 ≤ �8 ≤ �+
8 =

0.125,
• �9 = Shape Parameter p1:�

−
9 = 1 ≤ �9 ≤ �+

9 = 20,
• �10 = Shape Parameter p2:�

−
10 = 1 ≤ �10 ≤ �+

10 =
20,

• �11 = Shape Parameter p3:�
−
11 = 1 ≤ �11 ≤ �+

1 =
20,

• �12 = height h: �−
12 = 0.25 ≤ �12 ≤ �+

12 = 0.5.

Figure 9 illustrates the results for the cost function for the
best performing gene (red) as a function of successive gener-
ations, aswell as the average performance cost function of the
entire population of genes (designs, in green), using design
weights of w1 = 1 and w2 = 0.5, indicating that minimiz-
ing panel losses was twice as important (in this example) as
meeting ground absorption targets.We allowed theMLA/GA

Table 1 The system parameters (�1 − �12) for the best performing design (gene)

w1 w2 �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12 

1.000 0.500 −0.446 0.07114 −0.151 1.035 33.220 0.009781 0.124 0.124 4.149 19.666 19.043 0.268 0.5875
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to readapt every 10 generations, leading to the (slightly) non-
monotone reduction of the cost function. Often, this action
is more efficient than allowing the algorithm not to readapt,
since it probes around the current optimum for better local
alternatives. Table 1 shows the final design parameters. The
entire 1000 generation simulation, with 24 genes per evalu-
ation (24000 total designs) took a few minutes on a laptop,
making it ideal as a design tool. We note that, for a given
set of parameters, a complete simulation takes a fraction of
a second, thus thousands of parameter sets can be evaluated
in an hour, without even exploiting the inherent parallelism
of the MLA/GA.

7 Summary and extensions

In summary, Agrophotovoltaic (APV) systems attempt to co-
develop the same area of land for both solar photovoltaic
power and agriculture. Towards this goal, this work focused
developing a computational Digital-Twin framework to track
and optimize the flow of optical power through complexmul-
tiobjective solar facilities. The optical power flow is rapidly
computed with a reduced order model of Maxwell’s equa-
tions, based on a high-frequency decomposition of optical
power into multiple rays, which are propagated forward in
time to ascertain multiple reflections and absorption for var-
ious system configurations, varying multi-panel inclination,
tracking, refractive indices, sizes, shapes, ground refractive
properties, etc. The method allows for a solar installation to
be tested from multiple source directions quickly and uses
a genomic-based Machine-Learning Algorithm to optimize
the system. This is particularly useful for planning of com-
plex next-generation solar farm systems involving bifacial
(double-sided) panelling, which are capable of capturing
ground albedo reflection, exemplified by APV systems.
Numerical examples were provided to illustrate the results,
with the overall goal being to provide a computational frame-
work to rapidly design and deploy complex APV systems.
A key goal of this work was to develop an easy simulation
tool that is computationally inexpensive and accessible to
a wide range of researchers involved in APV systems. This
can accelerate the development of new technologies to maxi-
mize agricultural efficiency, quality, safety,water distribution
and power management, enabled by computational science
and systems engineering. A central component of this frame-
work was the Digital-Twin paradigm of physical reality, i.e.
a digital replica of a complex system that can then be inex-
pensively and safely manipulated, improved and optimized
in a virtual setting. The computationally designed system can
then be deployed in the physical world afterwards, reducing
the potential costs of experiments associated with bringing
new technologies to the market. Current work of the author

involves incorporating remote sensing imagery and sensor
data feeds into the computational framework developed.
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