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Abstract
Advancements in additive manufacturing (3D printing) have enabled researchers to create complex structures, offering a new
class of materials that can surpass their individual constituent properties. Selective laser sintering (SLS) is one of the most
popular additive manufacturing techniques and uses laser power to bond powdered material into intricate structures. It is one
of the fastest additive manufacturing processes for printing functional, durable prototypes, or end-user parts. It is also widely
used in many industries, due to its ability to easily make complex geometries with little to no additional manufacturing effort.
In the SLS process, tool path selection is important because it is directly related to the integrity of a 3D printed structure. In
this research, we focus on how to obtain an optimal tool path for the SLS process from a numerical simulation. Also, we apply
a deep learning technique to accelerate the simulation of the SLS processes, while obtaining accurate numerical results.

Keywords Additive manufacturing · Deep learning · Optimization · Machine learning · Simulation · 3D printing

1 Introduction

Selective laser sintering (SLS) is an additive manufacturing
technique that uses a laser as a power source to sinter pow-
deredmaterial,1 by directing the laser automatically at points
in space, dictated by a 3D model. The original SLS process
was invented in 1986 at the University of Texas at Austin,
with increasing applications as the technology matures [2].
Many researchers have proposed various ways to simulate
the SLS process, to ascertain the mechanical/thermal behav-
ior of the sintered material [3]. Dong et al. [4] developed
a transient three-dimensional finite element (FE) model to
simulate the temperature evolution during the SLS process.
Kolossov et al. [5] created a three-dimensional finite ele-
ment model for SLS processes, considering the non-linear
behavior of thermal conductivity and specific heat due to tem-
perature changes and phase transformations. Matsumoto et
al. [6] proposed an FE model for calculating the temperature

1 PA12 is a widely used thermoplastic material for selective laser sin-
tering which is suitable for many applications [1].
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and stress distribution in a single layer of metallic powder in
selective laser processing. Simchi [7] andSimchi andPohl [8]
used experimental results to observe microstructural evolu-
tion anddensificationduring laser sinteringofmetal powders.
Gusarov and Kruth [9] employed a radiation transfer model
to calculate absorptances and deposited energy profiles while
processing thin layers of metallic powder, and provided an
analytical equation of laser penetration as a function of parti-
cle size and powder bed density. This workwas followed by a
finite difference simulation of heat transfer during selective
laser melting [10].2 There also have been discrete element
models, which are a good option for simulation of addi-
tivemanufacturing processes, formodeling and simulation of
the laser processing of the powdered particles [11–15]. That
work developed a coupled discrete element-finite difference
model of SLS process [16].

As mentioned, tool path selection in additive manufactur-
ing is important because it is directly related to the durability
of the 3D printed structure [17]. This research aims to obtain
an optimal tool path for the SLS process from numerical
simulations. During laser processing, temperature gradients

2 Selective laser sintering (SLS) processes heat the powdered material
below its melting point so that the powder can fuse together at a particle
level. In selective laser melting (SLM), however, the powdered material
is notmerely fused together but is fullymelted.While the SLMnormally
works with metals, the SLS generally works with plastics and ceramics.
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occur within a 3D printed structure, which can cause unin-
tended residual stresses. This is one of the major reasons for
premature failure in parts printed by additive manufacturing.
In order to find an optimal laser path which minimizes tem-
perature gradients among a variety of tool paths, we first need
to solve a dynamic programming problem to find all the pos-
sible laser paths for the laser grid configuration of a given
geometry. After obtaining all possible laser paths, one can
use numerical methods, such as the finite difference method,
the discrete element method, the finite element method, etc.,
to calculate the thermal gradients or residual stresses of a
printed geometry.

However, when the simulation system becomes exces-
sively large, it can become computationally expensive to
perform exhaustive simulations to calculate the temperature
gradients for large numbers of possible paths. Accordingly,
in order to efficiently obtain an optimal laser path for SLS
processes, we apply Deep Learning techniques, which allow
computers to learn and detect patterns from noisy/complex
data sets, and then to extract discovered patterns to make
predictions for future unknown data. There have been some
previous studies that used deep learning to solve partial
differential equations (PDEs) or to develop deep learning-
based reduced order models (ROMs). [18–20] propose deep
learning-based numerical methods for solving PDEs. Also,
[21,22] propose deep learning-based ROMs, having the
potential to simulate physical and dynamic systems with
increased computational efficiency while maintaining rea-
sonable accuracy. Applying the deep learning technique, we
accelerate the numerical simulations to obtain the optimal
laser path with high accuracy, as well as reduced computa-
tional costs. In order to efficiently process multi-dimensional
data, we employ Convolutional neural networks (CNNs) to
solve this manufacturing problem.

Themain objective of this work is to develop a deep learn-
ing model to efficiently predict the optimal tool path of the
SLS process, which minimizes the average thermal gradient.
In order to achieve this, we first obtain all the possible laser
paths needed to print the objective geometry. We then solve
a dynamic programming problem (which will be explained
further in the next section). After that, we model and simu-
late the SLS process in order to calculate the average thermal
gradient. Finally, based on the obtained simulation data, we
construct a deep learning model to predict the optimal laser
path for the SLS process. The overall flowchart is shown in
Fig. 1 and Algorithm 1.

2 Tool path generation using dynamic
programming

In this section, we will focus on finding all the possible laser
pathswithin the discretizeddomain.Examples of the possible

Algorithm 1: Overall Algorithm
STEP 1: Split all the laser paths (obtained by dynamic
programming) into the training data and the test data.

STEP 2: Finite difference simulations
foreach path ∈ training data do

Finite difference simulation to obtain the thermal gradients.
end

STEP 3: Sort the paths in training data based on the finite
difference simulation results.

STEP 4: Label the top half ‘Good’, and the bottom half ‘bad’.

STEP 5: Convert all the paths into gray-scale images
(preprocessing for the deep learning).
STEP 6: Train the deep learning predictive model with the
gray-scale images and corresponding labels of the training data.

STEP 7: Predict the rankings of all the data (the training data
and the test data).

Fig. 1 The overall algorithm flowchart

laser paths for a simple 4 by 4 grid is shown in Fig. 2. After
discretizing the domain into a structured grid, we can set
the starting point of the laser from any of the nodes in the
grid. In order to simplify the problem, we set the following
restrictions on the laser path:

• The laser should visit all the nodes in the grid.
• The laser should visit each node only once.
• The laser cannot jump over nodes.

The main problem we encounter is that, as the laser moves
from node to node, every single path obtained so far branches
off to the new points, as shown in Fig. 3. For example, if we
have connected the points (0, 4, 8, 12, 13, 14, 10) so far, then
there are three possible next points 9,6, and 11. Therefore,
(0, 4, 8, 12, 13, 14, 10) branches off to (0, 4, 8, 12, 13, 14,
10, 9), (0, 4, 8, 12, 13, 14, 10, 6), and (0, 4, 8, 12, 13, 14,
10, 11) in the next step. We have to accumulate the cases to
search for all the possible tool paths.

For this reason, we apply a dynamic programming tech-
nique to efficiently solve for the laser path. Dynamic
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Fig. 2 Examples of the possible laser paths (processing the same geom-
etry) in a 4 by 4 laser grid

Fig. 3 Laser path finding (RED: accumulated path points, BLUE: new
possible points). (Color figure online)

programming is a technique that simplifies a complicated
problem by breaking it down into simpler sub-problems in a
recursive manner [23–26]. In order to develop the tool path
finder which could be applied for various kinds of complex
geometries, we employ the dynamic programming technique
in order to store the previous movements of paths, so that all
the possible paths can be found efficiently.

There could be many possible starting points for the laser
paths and the number of starting points is equal to the num-
ber of points in the laser grid. However, since the laser grid
obtained from the geometry could be symmetric, either hori-
zontally, vertically, or diagonally, one can reduce the number
of starting points to remove symmetrically overlapping laser
paths. For example, one can start from only three points
marked in red, as shown in Fig. 4, because the given laser grid
in Fig. 4 is horizontally, vertically, and diagonally symmet-
ric. In other words, one does not need to consider all nodes
as starting points.

Even though we can apply a dynamic programming tech-
nique to find all the possible laser paths, every single path
obtained so far branches off to the possible new points. Also,
those new points are added back to the current paths to create
new current paths. They branch off again to the new points
in the next time steps. This process is iterated over and over
until we obtain all the final paths visiting all the nodes in a
given laser grid.

Fig. 4 Starting points considering the symmetric laser grid

For this reason, performing calculations to obtain all the
possible paths could be computationally expensive when the
size of the laser grid is large. To overcome this limitation,
one could perform early detection of the paths to be failed
and remove them from the candidate path set in advance.
This work could prevent path finder from a huge amount of
unnecessary calculations. The examples of the failed paths
are shown in Fig. 5. In Fig. 5, red lines represent current
paths and blue arrows represent possible next points. As we
can observe, they can not be included in the set of pos-
sible laser paths no matter what direction of blue arrows
they choose, since either paths or boundary of the geome-
try already encompassed some node points in the laser grid.

To implement this, we could create a circular linked list
(flag list) in either clockwise or counterclockwise direction
along with boundary nodes, which indicates whether the
boundary nodes of the laser grid are touched by the path.
After that, we flag-up each boundary node when the path
touches them. If flags have any interval between ‘1’s (flagged-
up), that is a failed path. This is applied in the same way for
inner boundaries for hollow geometries. Also, a similar prin-
ciple could be applied for detecting the self-colliding paths.
The overall flowchart of the dynamic programming process
is shown in Algorithm 2.

3 Modeling and simulation of the SLS
process

After obtaining all of the possible laser paths, one needs to
mathematically model the laser sintering process in order
to perform numerical simulations for given laser paths. A
schematic of the laser processing is shown inFig. 6.As for the
grid configuration, we adopt amaterial grid that is three times
finer than the laser grid and includes the laser grid nodes, as
shown in Fig. 7. In Fig. 7, yellow circles represent the area
covered by laser. While the laser grid points are the positions
through which a laser moves as time progresses, the material
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Fig. 5 Failed paths to be removed from the candidate path set

Fig. 6 A schematic and the coordinate system of the laser processing

grid points are the points where numerical simulations are
actually performed to evaluate the thermal gradients. The
simulation parameters are shown in Table 1.

The governing equation is as follows:

ρC
∂θ

∂t
= ∇ · (K∇θ) + Iabs, (3.1)

where

• θ : Temperature (K)

• ρ: Density (kg/m3)
• C : Specific heat capacity (J/(kgK))
• K : Thermal conductivity (W/mK)
• Iabs :Absorbed laser energywithin the laser zone (W/m3)

Assuming that we have a constant thermal conductivity k
for simplicity, the boundary conditions are as follows:

• Top surface: Convection

− k
dθ

dz
= h(θ∞ − θ) (3.2)

• Other surfaces: Adiabatic

qs = −k
dθ

dx
= 0 (3.3)

qs = −k
dθ

dy
= 0 (3.4)

qs = −k
dθ

dz
= 0, (3.5)

where θ∞ is the ambient temperature (K ), and qS is heat flux
at the surfaces (W/m2). As for energy absorption Iabs , we
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Fig. 7 Grid configuration (RED: the laser grid, BLACK: the material grid). (Color figure online)

Algorithm 2: Dynamic Programming
Initial step: Obtain the starting points of the laser, based on the
symmetry of the laser grid.

foreach ini tial_point ∈ starting_points do
all_the_paths_so_ f ar = [ini tial_point]
count = 0

while count < the_number_of_all_the_laser_grid_points do
next_paths = []

foreach path ∈ all_the_paths_so_ f ar do

STEP 1: Obtain next_possible_points for path:
NEITHER Already passed points NOR Self-collision
NOR
Interval between boundary flags.

STEP 2:
if next_possible_points is NOT empty then

foreach pt ∈ next_possible_points do
Append pt to path
Append path to next_paths

end
end

end

all_the_paths_so_ f ar = next_paths
count = count + 1

end

Store all_the_paths_so_ f ar as laser paths of the starting
point (ini tial_point).

end

use the Beer-Lambert penetration model for a Gaussian laser
[16], where

Iabs(r , z) = I0e
−βze

−2r2

w2 (3.6)

Table 1 Simulation parameters

Symbol Units Value Description

θ∞ K 300 Ambient temperature

θ0 K 300 Initial temperature

h W/m2K 10 Convection coefficient

k W/(mK) 0.22 Thermal conductivity of PA12

ρ kg/m3 1100 Density of PA12

C J/(kgK) 1590 Specific heat capacity of PA12

w m 0.0025 Laser radius

v mm/s 10 Laser scanning speed

P W 200 Power term in Iabs

β 1/m 80 Optical extinction coefficient

�L m 0.00167 Material grid gap size

with

I0 = 2P

πw2 , (3.7)

where β is an optical extinction coefficient [27], P is the
power of the laser, and w is the laser radius. According to
Gusarov et al. [10], the extinction coefficient β is dependent
on the size and themorphology ofmicro-scale particles in the
micrograph. This could be determined by experimental work
as shown in [28]. In the numerical analysis we performed,
we used the finite difference method using a constant optical
extinction coefficient to calculate the temperature values.3

Also, we can rewrite Eq. 3.1 as follows:

ρC
∂θ

∂t
= k

(∂2θ

∂x2
+ ∂2θ

∂ y2
+ ∂2θ

∂z2
) + Iabs(r , z). (3.8)

3 One could use a micro-scale particle-based model to include the
expression for the estimated extinction coefficient.

123



Computational Mechanics

Fig. 8 LEFT: example geometry, RIGHT: corresponding laser grid

When we discretize Eq. 3.8 using finite difference method
with a forward Euler scheme for time integration, we obtain:

θ(t + �t, x, y, z) = θ(t, x, y, z)

+�t
[ k

ρC

(
Ax + Ay + Az

) + 1

ρC
Iabs(r , z)

]
, (3.9)

where

Ax = ∂2θ

∂x2

= θ(t, x + �x, y, z) − 2θ(t, x, y, z) + θ(t, x − �x, y, z)

�x2

(3.10)

and

Ay = ∂2θ

∂ y2

= θ(t, x, y + �y, z) − 2θ(t, x, y, z) + θ(t, x, y − �y, z)

�y2

(3.11)

and

Az = ∂2θ

∂z2

= θ(t, x, y, z + �z) − 2θ(t, x, y, z) + θ(t, x, y, z − �z)

�z2
.

(3.12)

The convective boundary condition [3.2] on the top surface
is discretized as follows

h(θ∞ − θ) + k
θ1 − θ0

�z
= 0, (3.13)

where θ1 is the temperature at the outermost inner node,
which is adjacent to the boundary node, and θ0 is the tem-
perature at the boundary node.

After the laser visits all the nodes in the laser grid, we
have the final temperature values for the material grid nodes
throughout the domain that are obtained by solving the Eq.
[3.1] numerically.

Using the final temperature values, we could calculate the
temperature gradient values throughout the inner nodes of the
material grid, taking a central difference from the adjacent
nodes. Each inner nodehas its temperature gradient values for
x , y, and z directions. After that, we could get the average
thermal gradient throughout the domain of the 3D printed
layer, as shown in Equation [3.14].

Average thermal gradient

= 1

N

∑

i∈Z

√(
∂θ

∂x

)2

i
+

(
∂θ

∂ y

)2

i
+

(
∂θ

∂z

)2

i
, (3.14)

where Z is a printing zone sintered by laser, and N is the
number of the inner nodes in the material grid included in
the printing zone. The average temperature gradient values
for the laser paths are then used for the labeling of the train-
ing/test data in Sect. 6.

4 Simulation process of the SLS process

We implemented the simulation of the SLS process to print
the example geometry shown in Fig. 8. We considered two
example laser paths, even though there could be numerous
possible laser paths for this geometry and the correspond-
ing laser grid. The possible starting points on the laser grid,
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(a) Example path 1 (b) Example path 2

Fig. 9 Examples of the possible laser paths for the given geometry

(a) Example path 1 (b) Example path 2

Fig. 10 Temperature plots of the top surfaces at the final processing time (37.5 (s))

Fig. 11 Distribution of the temperature gradients
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Fig. 12 Preprocessing of path data—the x-axis of the grayscale image
corresponds to the time information, and the y-axis of the grayscale
image corresponds to the spatial information. Since the laser grid on

the left subfigure has 16 grid nodes, the grayscale image on the right
subfigure should have a size of 16 by 16

(a) Image of example path 1 (b) Image of example path 2

Fig. 13 Preprocessing of the paths into path map images

Fig. 14 CNN architecture

considering the symmetry of the geometry, are also shown
in Fig. 8. There were 66,464 possible laser paths in total for
this geometry and corresponding laser grid configuration,
which were found by dynamic programming. The example

laser paths are shown in Fig. 9. Also, the temperature plots
of the powder bed for the corresponding laser paths at the
final processing time are shown in Fig. 10.
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In the same way, we can perform the numerical simula-
tions for all the other laser paths to obtain the corresponding
average thermal gradients described inEq. 3.14. The data dis-
tribution of the temperature gradients for 66464 laser paths
is shown in Fig. 11.

5 Preprocessing of the laser paths

In deep learning, a convolutional neural network (CNN, or
ConvNet) is a class of deep neural networks, most commonly
applied to image classification and recognition [29–32]. The
CNNprocesses data that has a knowngrid-like topology [33].
Our next step is to convert the laser paths we found into
gray-scale path map images to train the deep learning model
(CNN). The way to convert the laser paths (time data) into
the image (space data) is shown in Fig. 12. The path maps
(as shown in Fig. 12) also help to visually check that each
node was visited only once by looking at each row. Node
numbering goes from the left to the right, and from the top
to the bottom, starting from zero. On the converted path map
image, we identify the white points based on the laser path.
In other words, the white squares correspond to the laser
location at each time step. For example, if the second point of
the laser path is node number 4, then the time-stamp identifier
for this point is ‘1’ (since node numbering starts from zero),
and the spatial identifier of this point is ‘4’.

Since the number of the laser grid nodes of the givengeom-
etry is 76, every single laser path is preprocessed into 76
by 76 gray-scale images. The preprocessing of the previous
example paths for the given geometry is shown in Fig. 13.

6 A deep learningmodel to predict the
optimal tool path

Deep learning is a branch of artificial intelligence based on a
biologically-inspired learning process based on how neurons
communicate and learn in living things, allowing computers
to learn from the past data so that it could detect patterns and
make predictions from noisy and complex data sets [33–37].
The deep learning approach deals with the design of algo-
rithms to learn from machine-readable data. Also, there has
been some research on generating predictive models to solve
a variety of engineering problems such as material design,
computer vision, pattern recognition, and spam filtering [38–
45], including those in computational mechanics [46]. In our
approach, we applied a deep learning algorithm to efficiently
and accurately predict the optimal laser paths for SLS. We
implemented our deep learning model with PyTorch (1.1.0
version), which is an efficient deep learning framework for
Python and competent in both usability and speed [47].

In the previous section, we converted laser paths into
grayscale images. Those images were processed in our deep

Table 2 Hyper-parameters (CNN model)

Hyper-parameter Value

Convolution filter size (3,3)

Max-pooling (2,2)

Padding 1

Stride 1

Learning rate 0.001

Training epochs 25

Batch size 200

The number of hidden layers 1

The number of nodes in a hidden layer 800

Activation function ReLu

Weight initialization Xavier uniform

Loss function Cross entropy loss

Optimization method Adam optimizer

Table 3 Hyper-parameters (Linear model)

Hyper-parameter Value

Learning rate 0.001

Training epochs 25

Batch size 200

Weight initialization Xavier uniform

Loss function Cross entropy loss

Optimization method Adam optimizer

learning model. Also, every path map image was ranked
before training with the deep learning model, based on the
average thermal gradient described in Eq. 3.14. The lower
the average thermal gradient, the better the path. After that,
we gave each path two kinds of labels: half of the group was
labeled as ‘good’ (a label of ‘1’) and the other halfwas labeled
as ‘bad’ (a label of ‘0’). In other words, the samples having
the temperature gradient higher than the median temperature
gradient were labeled as ‘bad’, and the samples having the
temperature gradient lower than the median were labeled as
‘good’.

The architecture of the CNN that we used for training and
prediction is shown in Fig. 14. In order to reduce architec-
tural complexity, we used a simple CNN structure having
three convolutional layers, which was followed by a fully
connected neural network. In Fig. 14, None represents the
number of data samples, and FC neural network represents
the fully connected neural network. For initialization of the
parameters, Xavier initialization was used for the weight ini-
tialization, in order to obtain substantially faster convergence
[48]. The configuration of the hyper-parameters for the CNN
model is shown in Table 2.4

4 It is hard to say that the given configuration of the hyper-
parameters is the optimal choice for the deep learning model.
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(a) Linear model (Full ranking)

(b) Linear model (Closeup)

Fig. 15 Ranking prediction (linear model, 33000 training data)
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(a) CNN model (Full ranking)

(b) CNN model (Closeup)

Fig. 16 Ranking prediction (CNN model, 33000 training data)
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(a) Linear model (Full ranking)

(b) Linear model (Closeup)

Fig. 17 Ranking prediction (Linear model, 4000 training data)
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(a) CNN model (Full ranking)

(b) CNN model (Closeup)

Fig. 18 Ranking prediction (CNN model, 4000 training data)
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(a) Ranking 1 (b) Ranking 2

(c) Ranking 3 (d) Ranking 4

Fig. 19 Top four paths of the linear model

After passing through the CNN, we used the softmax
function to convert neural network output numbers to prob-
abilities (of being either a good path or a bad path) for each
image. We not only used the softmax function to calculate
the cross entropy loss function while training, but also used
it as a probability extractor to predict the probability of being
a good path for each path map image in a test data set. The
softmax probability function is described in Eq. 6.1.

Pθ (y
(m) = i) = ez

(m)
i

∑1

k=0
ez

(m)
k

, (6.1)

where i is the label of either 1 (good) or 0 (bad), z(m)
i is the

output number of mth image data for the label i from the
CNN, and Pθ (y(m) = i) is the predicted probability for mth

Footnote 4 continued
One could try optimizing hyper-parameters by using optimization tech-
niques such as Bayesian optimization, evolutionary algorithms, or
gradient-based optimization.

image to have label i . Also, for multi-class classification, we
used the cross entropy loss as in Eq. 6.2. We used this loss
function as an error metric while training as well.

L = − 1

N

N∑

m=1

1∑

i=0

P(y(m) = i) · logPθ (y
(m) = i), (6.2)

where N refers to the number of data samples (path map
images), and P(y(m) = i) is the actual probability (either
0 or 1) for mth image to have label i . In order to train the
CNNwith the cross entropy loss function, anAdamoptimizer
was used for the optimization, which is computationally effi-
cient and has little memory requirements [49]. Also, note
that the test data is brand new data for the trained model,
whichmeans theywere completely isolated from the training
data set and training process. The training set was randomly
selected from all data sets. In addition to the CNN model,
we also trained and tested the linear model to compare the
predictive power of both models. The configuration of the
hyper-parameters for the linear model is shown in Table 3.
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(a) Ranking 1 (b) Ranking 2

(c) Ranking 3 (d) Ranking 4

Fig. 20 Temperature plots at the top surfaces (Top 4, linear model)

7 Simulation results

With the deep learning model described above, we predicted
what the optimal laser path should be, by ranking them based
on the probability of being a good path, as obtained by the
softmax probability extractor in Eq. 6.1. After that, we com-
pared the predicted results from the CNN model with that of
the linear model.

We first trained both the CNNmodel and the linear model
with 33,000 point training data set (49.7% of 66464 total data
points). In this case, the rest of the data (33464 paths) are
what we actually make the predictions for. The full rankings
of the predicted results for bothmodels are shown in Figs. 15a
and 16a. Also, closeups on the top-ranked path for Figs. 15a
and 16a are shown in Figs. 15b and 16b, respectively. We
observe that the linear model could not capture the actual
optimal laser path well, as shown in Fig. 15. That is because
the system is highly nonlinear. Even though the linear model
is the least expensivemachine learningmodelwith the lowest

computational cost, we need to account for the accuracy.
However, we can observe that the CNN model captures the
highest-ranked laser path quite well, as shown in Fig. 16. We
also attempted to train both the CNN model and the linear
model with quite small data sets: 4000 training data points
(only 6.02% of 66464 total data points). In this case, the
rest of the data (62464 paths, 93.98%) are used to make the
predictions. The full rankings of the predicted results for both
models are shown in Figs. 17a and 18a. Also, closeups on the
top-ranked path for Figs. 17a and 18a are shown in Figs. 17b
and 18b, respectively.

We clearly observe that the linear model could not capture
the actual optimal laser path pattern, as shown in Fig. 17.
This implies that the linear model becomes less useful when
the data set is even smaller. However, the CNN model still
captures the high-ranked laser paths reasonably well, in spite
of a much smaller training set, as shown in Fig. 18. The CNN
model is quite successful in capturing the top 35 paths, even
though 34 paths of them were from the test data set. The top
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(a) Ranking 1 (b) Ranking 2

(c) Ranking 3 (d) Ranking 4

Fig. 21 Top 4 paths of the CNN model

4 paths which were chosen by the linear model are shown in
Fig. 19, and the corresponding plots of the temperature at the
top surface of the powder bed are shown in Fig. 20. Also, the
top 4 paths which were chosen by the CNNmodel are shown
in Fig. 21, and the corresponding plots of the temperature at
the top surface of the powder bed are shown in Fig. 22.

The computing times for all the above models are shown
in Table 4. The computer employed for the entire simula-
tion was a MacBook Pro (Retina, 15-inch, Mid 2014), and
the corresponding CPU was a 2.8 GHz Intel Core i7. The
exhaustive simulation time for all the 66,464 laser paths was
38,109.53 (s). The total time represents the entire simulation
time, including every single path simulation for the number
of training data points, the training time, and the prediction
time. The acceleration represents how many times faster it is
than direct exhaustive simulations for 66,464 possible paths.

As we see in the table, the CNN model with 4000 train-
ing data (only 6.02% of 66464 total data) was more than 10
times faster than a brute force simulation for all the possible
laser paths needed to calculate the thermal gradients, with the
desired accuracy. This implies that the deep learning model

can learn the pattern of the preferable paths (which includes
the process of solving differential equations) and predict
the optimal laser paths accurately and efficiently, without
knowing geometry and without having any mathematical or
physical knowledge to solve differential equations and opti-
mization problems.

8 Summary

As this work illustrated, optimal laser paths can be accu-
rately predicted using a deep learning technique, even with
a very small amount of training data and binary information
(good/bad paths). Furthermore, a Deep Learning simulation
using the CNN was significantly faster than a brute force
simulation. These results illustrate the potential of Deep
Learning for tool path optimization, in particular the ability
to learn the patterns of tool paths and rebuild detailed path
performances. In this work, we only considered the average
thermal gradient at the final processing time as the cost of the
laser path. In other words, we ranked the laser paths solely
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(a) Ranking 1 (b) Ranking 2

(c) Ranking 3 (d) Ranking 4

Fig. 22 Temperature plots at the top surfaces (Top 4, CNN model)

Table 4 Computation time
comparison

Model Training data Training (s) Prediction (s) Total time (s) Acceleration

CNN 33,000 3872.44 747.45 23,541.63 1.619

CNN 4000 473.13 752.91 3519.58 10.828

Linear 33,000 12.58 0.52 18,934.84 2.013

Linear 4000 1.98 0.47 2295.99 16.598

based on the average thermal gradient values. However, other
operation parameters such as tool maneuverability, operating
conditions could be included to calculate the cost or optimal-
ity of the laser paths.

Clearly, the ideaof a physics-baseddeep learning approach
for tool path optimization can be widely applied to many
other additive techniques including fused deposition mod-
eling, selective laser melting, and direct energy deposition.
Also, deep learning techniques can be applied to many other
fields of numerical simulations, well beyond simple tool
path optimization for additive manufacturing, and deliver

reduced simulation costs while ensuring desirable accuracy
[46,50,51]. However, there will always be trade-offs between
computational costs and accuracy.More computational effort
may be required if we use more sophisticated deep learning
models, yielding good predictive capabilities, as opposed to
simple deep learning models, with limited predictive power.
Determining the optimal balance between these competing
interests is an ongoing issue across this field.
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