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Abstract
The massive growth in data-centers has led to increased interest and regulations for management of waste heat and its
utilization. This work seeks to develop a combined Digital-Twin and Machine-Learning framework to optimize such systems
by controlling both the ventilation and the cooling of the bases of data units/processors in the system.This framework ascertains
optimal cooling strategies to deliver a target temperature in the system using a minimum amount of energy. A model problem
is constructed for a data-center, where the design variables are the flow rates and air-cooling at multiple ventilation ports
and ground-level conduction-based base-cooling of processors. A thermo-fluid model, based on the Navier–Stokes equations
and the first law of thermodynamics, for the data-center is constructed and a rapid, stencil-based, iterative solution method is
developed. This is then combined with a genomic-based machine-learning algorithm to develop a digital-twin (digital-replica)
of the system that can run in real-time or faster than the actual physical system, making it suitable as either a design tool or
an adaptive controller. Numerical examples are provided to illustrate the framework.

Keywords Data-centers · Heat management · Digital-twins · Machine-learning

1 Introduction

1.1 Motivation

Massive increases in internet users worldwide has led to
significant demand for ‘data-center’ services, and subse-
quent energy use. Here we define ‘data-centers’ as spaces
within building dedicated to housing computer systems
comprised of data handling units, telecommunications, high-
performance computing devices and associated equipment.
Between 2010 and 2018, the global quantity of data travers-
ing the internet increased more than ten-fold, while global
data-center storage capacity increased by a factor of 25 in
parallel (Masanet et al. [1]). At the largest industrial-scale,
the energy usage of such systems is huge, requiring large-
scale cooling and air conditioning. Such systems started in
the 1940s with the advent of the first computers and have
grown with the rise of industrial-scale computation, military
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installations, research labs, banks, etc. The heat produced
by such systems is immense, thus warranting sophisticated
cooling systems. While the analysis of the energy trends are
hotly debated, one point of agreement is that the volume
of data-centers is consistently increasing, year by year. The
reader is referred to [2–75] for a wide swath of the litera-
ture on this topic. All data points to trends that costs of such
systems is huge and growing. The basic trends on energy
consumption by data-centers can be found in the extensive
report of Shehabi et al. [76]. Therein, the authors have made
accurate estimates of data-center energy consumption from
2000 to 2016, relying on previous studies, historical data
and forecasted consumption. That report states that in 2014,
data-centers in the U.S. consumed an estimated 70 billion
kWh, representing about 1.8% of total U.S. electricity con-
sumption. Their analysis also indicates data-center electricity
consumption increased by about 4% from 2010 to 2014, a
large shift from the 24% increase estimated from 2005 to
2010 and the nearly 90% increase estimated from 2000 to
2005. The trends of approximately 1% increase each year
have been consistent over the last decade. In 2017, US based
data-centers alone used up more than 90 billion kilowatt-
hours of electricity and consumed around 205 terawatt-hours
(TWh) in 2018, or one percent of global electricity use

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-022-02152-3&domain=pdf


Computational Mechanics

(Masanet et al. [1]), and continues to grow, even through
the era of pandemic.

1.2 Restrictions

Recent governmental restrictions on energy waste for such
installations has led to interest in developing systems that
cool data-centers efficiently. A key aspect is the modular-
ity of such systems and the ability to flexibly and quickly
reconfigure data-centers. Accordingly, cooling systems need
to be optimized tomeet requirements specified by data-center
managers. This is especially important since oftentimes older
buildings or structures are retrofitted to become data-centers.
Generally, there are two main types of cooling: (1) air
conditioning and ambient air flow and ventilation and (2)
fluid-jacket contact cooling surrounding the units, typically
at the base. Although advancements in low heat wattage data
storage and low voltage cable routing have reduced heat-
ing and methods of separating hot and cold airstreams, for
example hot-cold aisle containment and in-row cooling units,
adaptive cooling is a necessity.We remark that cold aisle con-
tainment is achieved by opening the back of equipment racks
and enclosing the fronts of the servers with doors and cov-
ers. There are a variety of methods in this field, and as these
systems become more complex, one must rely on adaptive
methods. The total draw of power can range from a few kilo-
watts for a small set of units to megawatts for a large-scale
operation. For very energy intensive data-centers, electricity
can account for over 10% of the cost of ownership. There are
a variety of metrics used, such as the power usage effective-
ness ratio (PUE), which is the ratio of the total power entering
the data-center (IT+Overhead) divided by the power used by
IT equipment. It is an indicator of the overhead power, such
as cooling, lighting, etc. Typical data-centers have a PUE of
approximately 2, while the state of the art is PUE = 1.2. In
2014, the California Code of Regulations mandated energy
efficiency regulations, in particular on airflow. In 2015, the
United States enacted the Energy Efficiency Improvement
Act, which requires efficient operation of federal facilities,
including data-centers. Worldwide, in particular throughout
the EU, there have been a series of similar legislation. How-
ever, even if one puts legislation aside, the sheer cost of
running a data-center approaches the construction costs. It
has now become critical to develop simulation based models
to guide operations.

1.3 Objectives

The present work seeks to develop a combined Digital-Twin
and Machine-Learning framework to optimize such systems
by controlling both the ventilation and the cooling of the
bases of data units/processors in the system. This framework
ascertains optimal cooling strategies to deliver a target tem-

perature in the system using a minimum amount of energy.
A model problem (Fig. 1) is constructed for a data-center,
where the designvariables are theflow rates and air-cooling at
multiple ventilation ports and ground-level conduction-based
base-cooling of processors. A thermo-fluid model, based on
the Navier-Stokes Equations and the first law of thermo-
dynamics, for the data-center is constructed and a rapid,
stencil-based, iterative solution method is developed. This is
then combinedwith a genomic-basedmachine-learning algo-
rithm to develop a digital-twin (digital-replica) of the system
that can run in real-time or faster than the actual physical sys-
tem, making it suitable as either a design tool or an adaptive
controller. Numerical examples are provided to illustrate the
framework.

2 Governing equations

We start from first principles, proceeding by developing a
coupled thermo-fluid model for the air surrounding the pro-
cessors and the heat-generated by their operation.

2.1 Fluid flowmodel

For a hydrostatic fluid the stress can be written as

σ = −Po1, (2.1)

where Po = trσ
3 is the hydrostatic pressure. In other words,

there are no shear stresses in a fluid at rest. In the dynamic
case, the pressure, denoted the “thermodynamic pressure”, is
related to the temperature and the fluid density by an equation
of state

Z(P, ρ, θ) = 0. (2.2)

For a fluid in motion

σ = −P1 + τ vs (2.3)

where τ vs is a so-called viscous stress tensor, needed in a
balance of linear momentum:1

∇x · σ + f = ρ
dv

dt
, (2.4)

where v is the fluid velocity at point x and f are the body
forces. Thus, for a compressible fluid in motion:

trσ

3
= −P + trτ vs

3
. (2.5)

1 An inviscid or ”perfect” fluid is one where τ vs is taken to be zero,
even when motion is present.
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VENT VENT

VENT

HEAT EXTRACTED

THERMAL ZONE TO BE CONTROLLED

Fig. 1 LEFT: A cross-section of the schematic for an energy manage-
ment system comprised of air-vents and base cooling units. RIGHT:
Using the Navier–Stokes equations (streamlines shown) with 4 side

vents, a bottom vent and a top vent for a ‘pod’ of 10 processors, also
with base-cooling-flow streamlines shown

In general, for a fluid we have

τ vs = G(D) and D
def= 1

2
(∇xv + (∇xv)T ), (2.6)

where v is the velocity and D is the symmetric part of the
velocity gradient. For a Newtonian fluid, where a linear rela-
tion exists between the viscous stresses τ vs and D

τ vs = G(D) = C : D (2.7)

where C is a symmetric positive definite (fourth-order) vis-
cosity tensor. For an isotropic (standard) Newtonian fluid we
have

σ = −P1 + λtrD1 + 2μD

= −P1 + 3κ
trD
3

1 + 2μD′, (2.8)

where κ is called the bulk viscosity, λ is a viscosity constant,
μ the shear viscosity and D′ = D − trD

3 1. Explicitly, with
an (x1, x2, x3) Cartesian triad

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
σ12
σ23
σ31

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
def={σ }

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−P
−P
−P
0
0
0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
def={−P}

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1 c2 c2 0 0 0
c2 c1 c2 0 0 0
c2 c2 c1 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
def=[C]

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D11

D22

D33

2D12

2D23

2D31

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
def={D}

,

(2.9)

where c1 = κ + 4
3μ and c2 = κ − 2

3μ, where Di j =
1
2

(
∂vi
∂x j

+ ∂v j
∂xi

)
. The so-called “Stokes’ condition” attempts

to force the thermodynamic pressure to collapse to the clas-
sical definition of mechanical pressure, i.e.

trσ

3
= −P + 3κ

trD
3

= −P, (2.10)

leading to the conclusion that κ = 0 or λ = − 2
3μ. Thus, a

Newtonian fluid obeying the Stokes’ condition has the fol-
lowing constitutive law:

σ = −P1 − 2

3
μtrD1 + 2μD = −P1 + 2μD′. (2.11)

Note that

J̇ = d

dt
detF = (detF)tr(Ḟ · F−1)

= J trL = J∇x · v, (2.12)

where L = ∇xv is the velocity gradient. Note that ∇x · v =
trL = trD. Therefore, if the fluid is incompressible, J̇ = 0,
then ∇x · v = trL = trD = 0. Therefore,

σ = −P1 + 2μD. (2.13)

A conservation of mass dictates

d

dt
(ρo) = d

dt
(ρ J ) = J

dρ

dt
+ ρ

d J

dt
= 0, (2.14)

which leads to

dρ

dt
+ ρ

J

d J

dt
= 0. (2.15)
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Using Eq. 2.12, Eq. 2.14 becomes

dρ

dt
+ ρ∇x · v = 0. (2.16)

Now write the total temporal (“material”) derivative in con-
vective form:

dρ

dt
= ∂ρ

∂t
+ (∇xρ) · dx

dt
= ∂ρ

∂t
+ ∇xρ · v. (2.17)

Thus, Eq. 2.16 becomes

∂ρ

∂t
+ ∇xρ · v + ρ∇x · v = ∂ρ

∂t
+ ∇x · (ρv) = 0. (2.18)

Thus, writing the total time derivatives appearing previously
as

dv

dt
= ∂v

∂t
|x + (∇xv)|t · dx

dt
, (2.19)

the coupled governing equations are (momentarily ignoring
thermal effects)

∂ρ

∂t
= −∇xρ · v − ρ∇x · v,

ρ(
∂v

∂t
+ (∇xv) · v) = ∇x · σ + f ,

σ = −P1 + λtrD1 + 2μD = −P1 + 3κ trD
3 1 + 2μD′,

(2.20)

where, for example, P is given by an Equation of State. Col-
lectively, we refer to these equations as the ‘Navier-Stokes’
equations. There are a total of three variables: ρ, v, and P .
It is customary to specify v and P on the boundary, and to
determine ρ on the boundary through the Equation of State.

2.2 Thermophysics model

The interconversions of mechanical, thermal and chemical
energy in a system are governed by the first law of thermo-
dynamics. It states that the time rate of change of the total
energy, K + I, is equal to the work rate, P and the net heat
supplied, H + Q,

d

dt
(K + I) = P + H + Q . (2.21)

Here the kinetic energy of a subvolume of material contained

in �, denoted ω, is K def= ∫

ω
1
2ρv · v dω, the rate of work

or power of external forces acting on ω is given by P def=∫

ω
ρb·v dω+∫

∂ω
σ ·n·v da, b being the body forces, the heat

flow into the volume by conduction isQ def= − ∫
∂ω

q ·n da =
− ∫

ω
∇x · q dω, q being the heat flux, the heat generated due

to sources, such as chemical reactions, is H def= ∫

ω
ρz dω,

z are sources, and the stored energy is I def= ∫

ω
ρw dω, w

being the stored energy. If we make the assumption that the
mass in the system is constant, one has,

current mass =
∫

ω

ρ dω

=
∫

ω0

ρ J dω0 ≈
∫

ω0

ρ0 dω0 = original mass, (2.22)

which implies ρ J = ρ0 ⇒ ρ̇ J + ρ J̇ = 0. Using this and
the energy balance leads to

d

dt

∫

ω

1

2
ρv · v dω =

∫

ω0

d

dt

1

2
(ρ Jv · v) dω0

=
∫

ω0

(
d

dt
ρ0)

1

2
v · v dω0

+
∫

ω

ρ
d

dt

1

2
(v · v) dω

=
∫

ω

ρv · v̇ dω. (2.23)

We also have

d

dt

∫

ω

ρw dω = d

dt

∫

ω0

ρ Jw dω0

=
∫

ω0

d

dt
(ρ0)w dω0 +

∫

ω

ρẇ dω. (2.24)

By using the divergence theorem, we obtain

∫

∂ω

σ · n · v da =
∫

ω

∇x · (σ · v) dω

=
∫

ω

(∇x · σ ) · v dω +
∫

ω

σ : ∇xv dω. (2.25)

Combining the results, and enforcing balance of momentum,
leads to

∫

ω

(ρẇ + v · (ρv̇ − ∇x · σ − ρb) − σ : ∇xv + ∇x · q − ρz) dω

=
∫

ω

(ρẇ − σ : ∇xv + ∇x · q − ρz) dω = 0. (2.26)

Since the volume ω is arbitrary, the integrand must hold
locally and we have

ρẇ − σ : ∇xv + ∇x · q − ρz = 0. (2.27)

A typical approximation in fluid mechanics is w ≈ ρCθ ,
where C is the heat capacity and θ is the temperature in
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Kelvin. As in the Navier-Stokes equations, breaking the ther-
mal rate term into a fixed part and a convective part yields

ρẇ = ρC(
∂θ

∂t
+ ∇xθ · v) = σ : ∇xv − ∇x · q + ρz.

(2.28)

Remark 1 For the remainder of the work, we will assume
that the fluid is incompressible, homogeneous and that it’s
properties are thermally-insensitive.

3 Discretization of the fluid

3.1 Temporal discretization

For the fluid, we write

dv

dt
= ∂v

∂t
+ ∇xv · v = 1

ρ
(∇x · σ + f ) , (3.1)

leading to

∂v

∂t
= 1

ρ
(∇x · σ + f ) − ∇xv · v

def= L. (3.2)

We discretize for time=t+φ�t , and using a trapezoidal “φ−
scheme” (0 ≤ φ ≤ 1)

∂v

∂t
≈ v(t + �t) − v(t)

�t
≈ L(t + φ�t)

≈ φL(t + �t) + (1 − φ)L(t). (3.3)

Rearranging yields

v(t + �t) ≈ v(t) + �t (φL(t + �t) + (1 − φ)L(t))

(3.4)

where the previously introduced spatial discretization is
applied to the derivative terms (such as ∇x · σ ) in L. The
discretized system is formulated next as an implicit time-
stepping scheme within each time step L .

Remark 2 The same process is applied to the thermal field

dθ

dt
= ∂θ

∂t
+ ∇xθ · v

= 1

ρC
(σ : ∇xv − ∇x · q + ρz)

def= Z , (3.5)

yielding

θ(t + �t) ≈ θ(t) + �t (φZ(t + �t) + (1 − φ)Z(t))

(3.6)

3.2 Spatial stencil-based discretization

Referring to Fig. 2, the following standard approximations
are used:

1. For thefirst derivative of a primal variablev at (x1, x2, x3):

∂v

∂x1
≈ v(x1 + �x1, x2, x3) − v(x1 − �x1, x2, x3)

2�x1
(3.7)

2. For the derivative of a flux at (x1, x2, x3):

∂

∂x1

(

A
∂v

∂x1

)

≈
(
A ∂v

∂x1

)
|
x1+ �x1

2 ,x2,x3
−
(
A ∂v

∂x1

)
|
x1− �x1

2 ,x2,x3

�x1

= 1

�x1

[

A(x1 + �x1
2

, x2, x3)

×
(

v(x1 + �x1, x2, x3) − v(x1, x2, x3)

�x1

)]

− 1

�x1

[

A(x1 − �x1
2

, x2, x3)

×
(

v(x1, x2, x3) − v(x1 − �x1, x2, x3)

�x1

)]

, (3.8)

where we have used

A(x1 + �x1
2

, x2, x3) ≈ 1

2
(A(x1 + �x1, x2, x3)

+A(x1, x2, x3)) (3.9)

and

A(x1 − �x1
2

, x2, x3) ≈ 1

2
(A(x1, x2, x3)

+A(x1 − �x1, x2, x3)) (3.10)

3. For the cross-derivative of a flux at (x1, x2, x3):

∂

∂x2

(

A
∂v

∂x1

)

≈ ∂

∂x2
(A(x1, x2, x3)

(
v(x1 + �x1, x2, x3) − v(x1 − �x1, x2, x3)

2�x1

))

≈ 1

4�x1�x2
(A(x1, x2 + �x2, x3)

t imes [v(x1 + �x1, x2 + �x2, x3)

−v(x1 − �x1, x2 + �x2, x3)]

−A(x1, x2 − �x2, x3) [v(x1 + �x1, x2 − �x2, x3)

−v(x1 − �x1, x2 − �x2, x3)]). (3.11)
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THERMO−ONLY DOMAIN

VENTVENT

VENT

VENT THERMO−FLUID
DOMAIN

Fig. 2 A cross-section of the schematic for an energy management system with the two types of domains: a A thermo-fluid domain (ambient
interior domain) and b a thermo-only domain(processors), where the velocity field is set to zero (v = 0). Figure 3 illustrates the results (evolution
of flow streamlines)

Remark 3 To illustrate second-order accuracy, consider a
Taylor series expansion for an arbitrary function w

w(x + �x) = w(x) + ∂w

∂x
|x�x + 1

2

∂2w

∂x2
|x (�x)2

+1

6

∂3w

∂x3
|x (�x)3 + O((�x)4) (3.12)

and

w(x − �x) = w(x) − ∂w

∂x
|x�x + 1

2

∂2w

∂x2
|x (�x)2

−1

6

∂3w

∂x3
|x (�x)3 + O((�x)4) (3.13)

Subtracting the two expressions yields

∂w

∂x
|x = w(x + �x) − w(x − �x)

2�x
+ O((�x)2). (3.14)

All other derivatives follow from this basic process, which is
relatively standard in the Finite Difference community.

3.3 Overall iterative (implicit) solutionmethod

Following the basic framework in Zohdi [77–86], let us con-
sider the finite difference nodes (i):

v
L+1,K
i = vL

i + �t
(
φLL+1,K−1

i + (1 − φ)LL
i

)
, (3.15)

where i is the node counter, which is of the form

v
L+1,K
i = G(v

L+1,K−1
i ) + Ri , (3.16)

where K = 1, 2, 3, . . . is the index of iteration within time
step L + 1 and

• G(v
L+1,K−1
i ) = φ�tLL+1,K−1

i and
• Ri = vL

i + �t(1 − φ)LL
i .

The term Ri is a remainder term that does not depend on
the current solution (only on the previous time step’s solu-
tion). The convergence of such a scheme is dependent on
the behavior of G. Namely, a sufficient condition for con-
vergence is that G is a contraction mapping for all v

L+1,K
i ,

K = 1, 2, 3, . . . In order to investigate this further, we define
the iteration error as

ε
L+1,K
i

def= v
L+1,K
i − vL+1

i . (3.17)

A necessary restriction for convergence is iterative self-
consistency, i.e. the “exact” (discretized) solution must be
represented by the scheme, vL+1

i = G(vL+1
i ) + Ri . Enforc-

ing this restriction, a sufficient condition for convergence is
the existence of a contraction mapping

|| vL+1,K
i − vL+1

i︸ ︷︷ ︸

ε
L+1,K
i

|| = ||G(v
L+1,K−1
i ) − G(vL+1

i )||

≤ ηL+1,K ||vL+1,K−1
i − vL+1

i ||, (3.18)

where, if 0 ≤ ηL+1,K < 1 for each iteration K , then

ε
L+1,K
i → 0 for any arbitrary starting value rL+1,K=0

i ,
as K → ∞, which is a contraction condition that is suf-
ficient, but not necessary, for convergence. The convergence

of Eq. 3.15 is scaled by η ∝ (φ�t)2

mi
. Therefore, we see that

the contraction constant of G is:
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• directly dependent on the magnitude of the interaction
forces (||L||),

• directly proportional to (�t)2.

Thus, decreasing the time step size improves the conver-
gence. In order to maximize the time-step sizes (to decrease
overall computing time) and still meet an error tolerance on
the numerical solution’s accuracy, we build on an approach
originally developed for continuum thermo-chemical mul-
tifield problems (Zohdi [77–86]), where one assumes: (1)
ηL+1,K ≈ S(�t)p, (S is a constant) and (2) the error
within an iteration behaves according to (S(�t)p)K εL+1,0 =
εL+1,K , K = 1, 2, . . ., where εL+1,0 = v

L+1,K=1
i −vL

i is the
initial norm of the iterative (relative) error and S is intrinsic
to the system. For example, for second-order problems, due
to the quadratic dependency on �t , p ≈ 2. The objective
is to meet an error tolerance in exactly a preset (the ana-
lyst sets this) number of iterations. To this end, one writes
(S(�ttol)p)Kd εL+1,0 = T OL , where T OL is a tolerance
and where Kd is the number of desired iterations. If the error
tolerance is not met in the desired number of iterations, the
contraction constant ηL+1,K is too large. Accordingly, one
can solve for a new smaller step size, under the assumption
that S is constant,

�ttol = �t

⎛

⎝
( T OL
εL+1,0 )

1
pKd

( εL+1,K

εL+1,0 )
1
pK

⎞

⎠

︸ ︷︷ ︸
def=�K

.
(3.19)

The assumption that S is constant is not critical, since the time
steps are to be recursively refined and unrefined throughout
the simulation. Clearly, the expression in Eq. 3.19 can also
be used for time step enlargement, if convergence is met in
less than Kd iterations (typically chosen to be between five
to ten iterations). Specifically, the solution steps are, within
a time-step:

• (1): Start a global fixed iteration (set i = 1, . . . , Nn (node
counter) and K = 0 (iteration counter))

• (2): If i > Nn then go to (4)
• (3): If i ≤ Nn then:

(a) Compute the velocity v
L+1,K
i

(b) Go to (2) for the next node (i = i + 1)

• (4): Measure error (normalized) quantities

(a) εK
def=
∑Nn

i=1 ||vL+1,K
i − v

L+1,K−1
i ||

∑Nn
i=1 ||vL+1,K

i ||
(b) EK

def= εK

T OLr

(c) �K
def=
⎛

⎝
( T OL

ε0
)

1
pKd

( εK

ε0
)

1
pK

⎞

⎠.

• (5): If the tolerance is met: EK ≤ 1 and K < Kd then

(a) Increment time: t = t + �t
(b) Construct the next time step: �tnew = �K�told ,
(c) Select theminimumsize:�t = MI N (�t lim,�tnew)

and go to (1)

• (6): If the tolerance is not met: EK > 1 and K < Kd

then

(a) Update the iteration counter: K = K + 1
(b) Reset the node counter: i = 1
(c) Go to (2)

• (7): If the tolerance is not met (EK > 1) and K = Kd

then

(a) Construct a new time step: �tnew = �K�told

(b) Restart at time t and go to (1)

Time-step size adaptivity is critical, since the system’s
dynamics and configuration can dramatically change over
the course of time, possibly requiring quite different time
step sizes to control the iterative error. However, to main-
tain the accuracy of the time-stepping scheme, one must
respect an upper bound dictated by the discretization error,
i.e., �t ≤ �t lim . Note that in step (5), �K may enlarge the
time-step if the error is lower than the preset tolerance. At
a given time, once the process is complete, then the time is
incremented forward and the process is repeated. The over-
all goal is to deliver solutions where the iterative error is
controlled and the temporal discretization accuracy dictates
the upper limit on the time step size (�t lim). Clearly, there
are various combinations of solution methods that one can
choose from. For example, for the overall field coupling, one
may choose implicit or explicit staggering and within the
staggering process, either implicit (0 < φ ≤ 1) or explicit
time-stepping (φ = 0), and, in the case of implicit time-
stepping, iterative or direct solvers for the Navier-Stokes
equations. Furthermore, one could employ internal iterations
for each field equation, then update, more sophisticated met-
rics for certain components of the error, etc.

3.4 Model problem and numerical example

As an example, we consider the direct numerical simula-
tion of the fluid flow using the Navier-Stokes equations and
first law of thermodynamics (streamlines shown) with 4 side
vents, a bottom vent and a top vent for a pod of 10 proces-
sors with base-cooling. Figure 2 illustrates a cross-section
of the schematic for an energy management system with the
two types of domains: (a) A thermo-fluid domain (ambient
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interior domain) and (b) a thermo-only domain (processors),
where the velocity field is set to zero (v = 0). Figure 3 illus-
trates the results (evolution of flow streamlines). In themodel
problem, we have made the vent sizes 0.25 that of the wall,
the processor heat zone height h = 0.1 of the wall and width
w = 0.1 of the wall. A 20 × 20 × 20 stencil grid was used.
A standard Macbook Pro laptop was used for all calculations
using a FORTRAN code written by the author. We consider
base cooling using the formula for the power extracted

Power extracted = −(D + Asin(2πω
t

T
)) = ρz, (3.20)

where D is the DC-power extracted, A is the amplitude of
the AC part of the power extracted, ω is the alternating fre-
quency, t is the time and T is the total time period. This
cooling power extraction is applied to all parts of the proces-
sor domain below a height h and within a width w, as shown
in Figs. 1 and 2 as a negative source term in Eq. 2.28.

4 Genomic machine-learning cooling
optimization

The rapid rate at which these simulations can be com-
pleted enables the ability to explore inverse problems seeking
to determine what parameter combinations can deliver a
desired result (Fig. 4). In order to cast the objective math-
ematically, we set the problem up as a Machine Learning
Algorithm (MLA); specifically a Genetic Algorithm (GA)
variant, which is well-suited for nonconvex optimization.
Following Zohdi [88–91], we formulate the objective as a
cost functionminimization problem that seeks systemparam-
eters that match a desired response

�(�1, . . . �N )
def= w1�

(1) + w2�
(2)

+w3�
(3) + w4�

(4) def= �total , (4.1)

where the error in achieving the target temperature is

�(1) = ||θ target − θ simulated ||
||θ target || (4.2)

and the normalized base cooling power is

�(2) = || ∫ T0 (D + Asin(2πω t
T ))dt − 0||

||Dmax || , (4.3)

and the normalized ventilation flow power is

�(3) =
√

�6
i=1(vi )

2 − 0

||vmax || , (4.4)

and normalized cooling power in the vents is

�(4) =
√

�6
i=1(θi − θa)2 − 0

||θmax || . (4.5)

We systematically minimize Eq. 4.1, min��, by varying

the design parameters: �i def= {�i
1,�

i
2,�

i
3, . . . , �

i
N }. The

system parameter search is conducted within the constrained
ranges of �

(−)
1 ≤ �1 ≤ �

(+)
1 , �(−)

2 ≤ �2 ≤ �
(+)
2 , �(−)

3 ≤
�3 ≤ �

(+)
3 , etc. These upper and lower limits are dictated

by what is physically feasible.

4.1 Machine-learning algorithm (MLA)

Cost functions such as � are nonconvex in design parameter
space and often nonsmooth. Their minimization is usually
difficult with direct application of gradient methods. This
motivates nonderivative search methods, for example those
found inMachine-Learning Algorithms (MLA’s). One of the
most basic subsets of MLAs are so-called Genetic Algo-
rithms (GAs). For a review of GAs, see the pioneering work
of John Holland (89, 90]), as well as Goldberg [94], Davis
[95], Onwubiko [96] and Goldberg and Deb [97]. A descrip-
tion of the algorithm will be described next (Zohdi [88–91]).

4.2 Algorithmic structure

TheMLA/GA approach is extremelywell-suited for noncon-
vex, nonsmooth, multicomponent, multistage systems and,
broadly speaking, involves the following essential concepts
(Fig. 4):

1. POPULATION GENERATION: Generate a parameter
population of genetic strings: �i

2. PERFORMANCE EVALUATION:Compute performance
of each genetic string: �(�i )

3. RANK STRINGS: Rank them �i , i = 1, . . . , S from best
to worst

4. MATING PROCESS: Mate pairs/produce offspring
5. GENE ELIMINATION: Eliminate poorly performing

genetic strings
6. POPULATION REGENERATION: Repeat process with

updated gene pool and new random genetic strings
7. SOLUTION POST-PROCESSING: Employ gradient-

based methods afterwards in local “valleys”-if smooth
enough

4.3 Specifics

Following Zohdi [88–91], the algorithm is as follows:
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Fig. 3 Successive frames of flow using a direct numerical simulation of the fluid flow using the Navier–Stokes equations (streamlines shown) with
4 side vents, a bottom vent and a top vent for a pod of 10 processors, also with base-cooling. The evolution of flow streamlines are shown
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IF COST FUNCTION     < TOL

=ΛSET THE COOLING PARAMETER GENE

RUN COOLING SIMULATION

STORE PERFORMANCE

POPULATION

GENERATIONS
RANK GENES

REPEAT FOR NEXT GENE

STOPΠ

Π

Λ

PARENTS
PARENTS

CHILDREN
DECREASING

SUCCESSIVELY

Π(Λ)

Fig. 4 The basic action of a MLA/GA-machine learning algorithm/genetic algorithm. Zohdi [88–91]

• STEP 1: Randomly generate a population of S starting
genetic strings, �i , (i = 1, 2, 3, . . . , S) :

�i def=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�i
1

�i
2

�i
3

. . .

�i
N

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(4.6)

• Step2: Compute fitness of each string �(�i ), (i=1, …,
S)

• Step3: Rank genetic strings: �i , (i=1, …, S) from best
to worst

• Step4: Mate nearest pairs and produce two offspring,
(i=1, …, S):

λi
def= � ◦ �i + (1 − �) ◦ �i+1

def=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ1�
i
1

φ2�
i
2

φ3�
i
3

. . .

φN�i
N

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 − φ1)�
i+1
1

(1 − φ2)�
i+1
2

(1 − φ3)�
i+1
3

. . .

(1 − φN )�i+1
N

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4.7)

and

λi+1 def= � ◦ �i + (1 − �) ◦ �i+1

def=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψ1�
i
1

ψ2�
i
2

ψ3�
i
3

. . .

ψN�i
N

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 − ψ1)�
i+1
1

(1 − ψ2)�
i+1
2

(1 − ψ3)�
i+1
3

. . .

(1 − ψN )�i+1
N

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4.8)

where for this operation, the φi and ψi are random num-
bers, such that 0 ≤ φi ≤ 1, 0 ≤ ψi ≤ 1, which are
different for each component of each genetic string

• Step5: Eliminate the bottom M strings and keep
top K parents and their K offspring (K offspring+K
parents+M = S)

• Step6: Repeat STEPS 1–5 with top gene pool (K off-
spring and K parents), plus M new, randomly generated,
strings

• Option:One can rescale and restart search around best
performing parameter set every few generations, thus
refocussing the computation effort around the most
promising (optimal) areas of design space.

Remark 4 If one selects the mating parameters φ′s and ψ ′s
to be greater than one and/or less than zero, one can induce
“mutations”, i.e. characteristics that neither parent possesses.
However, this is somewhat redundant with introduction of
new random members of the population in the current algo-
rithm. If one does not retain the parents in the algorithm
above, it is possible that inferior performing offspring may
replace superior parents. Thus, top parents should be kept for
the next generation. This guarantees a monotone reduction
in the cost function. Furthermore, retained parents do not
need to be reevaluated, making the algorithm less compu-
tationally expensive, since these parameter sets do not have
to be reevaluated (or ranked) in the next generation. Numer-
ous studies of the author (Zohdi [88–91]) have shown that
the advantages of parent retention outweighs inbreeding, for
sufficiently large population sizes. Finally, we observe that
this algorithm is easy to parallelize. After application of such
a global search algorithm, one can apply a gradient-based
method, if the objective function is sufficiently smooth in
that region of the parameter space. In other words, if one
has located a convex portion of the parameter space with a
global genetic search, one can employ gradient-based pro-
cedures locally to minimize the objective function further,
since they are generally much more efficient for convex opti-
mization of smooth functions. An exhaustive review of these
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BEST

POPULATION

Fig. 5 Shown are the cost function for the best performing gene (red) as
a function of successive generations, as well as the average cost function
of the entire population of genes (green). We allowed the MLA/GA to
readapt every 10 generations. Often, this action is more efficient than
allowing the algorithm not to readapt, since it probes around the current
optimum for better local alternatives. The weights were all set to w1 =
w2 = w3 = w4 = 1. The final cost functions were �(1) = 0.01277,
�(2) = 0.01873, �(3) = 0.07859 and �(4) = 0.03537. The total is
�total = 0.1453

methods can be found in the texts of Luenberger [98] and
Gill, Murray and Wright [99].

4.4 Algorithmic settings

In the upcoming example, the design parameters � =
{�1,�2 . . . �N } are optimized over the search intervals (15
variables): �−

i ≤ �i ≤ �+
i , i = 1, 2, . . . 15. Specifically

(Fig. 5), we varied the 15 parameters associated with vents
and base system cooling and used the following MLA set-
tings:2

• Number of design variables: 15,
• Population size per generation: 24,
• Number of parents to keep in each generation: 6,
• Number of children created in each generation: 6,
• Number of completely new genes created in each gener-
ation: 12,

• Number of generations for re-adaptation around a new
search interval: 10 and

• Number of generations: 20.

2 As in the previous example, a 20 × 20 × 20 stencil grid was used
along with a standard Macbook Pro laptop for all calculations using a
FORTRAN code written by the author.

4.5 Parameter search ranges and results

We considered a 15 parameter cooling system design, with a
target average temperature of θdesired = 305Ko in a lower
layer of the data-center xlayer ≤ 0.1 of the wall height
(Fig. 1). The following search parameter ranges were used
(with w1 = w2 = w3 = w4 = 1):

• �i=1−6 = Flow in/out of vent i:�−
i = −5 ≤ �i ≤

�+
i = 5,

• �7 = DC cooling parameter:�−
7 = 10 × 106 ≤ �7 ≤

�+
7 = 50 × 106,

• �8 = AC cooling parameter:�−
8 = 0 ≤ �8 ≤ �+

8 =
10 × 106,

• �9 =AC cooling frequency:�−
9 = 0 ≤ �9 ≤ �+

9 = 10
and

• �i=10−15 = Temperature in vent i:�−
i = 280 ≤ �i ≤

�+
i = 320.

Figure 5 illustrates the results for the cost function for the
best performing gene (red) as a function of successive gener-
ations, aswell as the average performance cost function of the
entire population of genes (green).We allowed theMLA/GA
to readapt every 10 generations. Often, this action is more
efficient than allowing the algorithm not to readapt, since it
probes around the current optimum for better local alterna-
tives, although for this model problem the effect was mild.
The weights were all set to w1 = w2 = w3 = w4 = 1. The
final cost functions were �(1) = 0.01277, �(2) = 0.01873,
�(3) = 0.07859 and �(4) = 0.03537. The total is �total =
0.1453. Table 1 shows the final design parameters. The entire
20 generation simulation, with 24 genes per evaluation (480
total designs) took a few minutes on a laptop,making it ideal
as a design tool.We note that, for a given set of parameters,
a complete simulation takes approximately one second, thus
hundreds of parameter sets can be evaluated in an hour,with-
out even exploiting the inherent parallelism of the MLA/GA.
The speed at which the overall process can be completed
makes it a suitable digital-twin of the system that can run in
real-time or faster than the actual physical system, making it
suitable as either a design tool or an adaptive controller.

5 Summary and extensions

In summary, the massive growth in data-centers has led to
increased interest and regulations for management of waste
heat and its utilization. This work sought to develop a com-
bined Digital-Twin and Machine-Learning framework to
optimize such systems by controlling both the ventilation
and the cooling of the bases of data units/processors in the
system. This framework ascertains optimal cooling strate-
gies to deliver a target temperature in the system using a
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Table 1 The system parameters
(�1 − �15) for the best
performing design (gene) with
design weights of w1 = 1,
w2 = 1, w3 = 1 and w4 = 1

�1 �2 �3 �4 �5 �6 �7 �8

-0.0231 0.3295 0.8116 0.0210 0.2258 0.3274 17276463 4718675

�9 �10 �11 �12 �13 �14 �15 �

5.819 316.7 307.6 313.3 299.7 314.1 309.3 0.1453

minimum amount of energy. A model problem was stud-
ied whereby, for a data-center, the design variables are the
flow rates and air-cooling of the multiple ventilation ports
and ground-level conduction-based base-cooling of proces-
sors. A fast solution method, based on a CFD representation
of the data-center was developed using a stencil-based dis-
cretization of the Navier-Stokes equations and the first law of
thermodynamics, which is combined with a genomic-based
machine-learning algorithm to develop a digital-twin of the
system, i.e. a digital replica that can run in real-time or faster
than the actual physical system, which is suitable as either
a design tool or a controller. Numerical examples were pro-
vided to illustrate the framework. Ultimately, the use of such
a model for real time control may need the inclusion of sim-
plified reduced-order models that can be trained on the data
generated by more complex models, such as the one intro-
duced in the body of this work. For example, on the simplest
level this model simulates the temperature in a data-center
and attempts to cool it to a target. Accordingly, consider a
simplified reduced-order model for the overall balance of
heat:

mC
dθ

dt
= dHgen

dt
− dHout

dt
, (5.1)

with constraints

i f θ > θ target then
dHout

dt
= a(θ target − θ), (5.2)

and

i f θ ≤ θ target then
dHout

dt
= 0 (5.3)

where the effective parameters of the simplified system are

• m=effective mass of data-center,
• θ =effective temperature of data-center,
• θ target =effective target temperature of data-center,
• C =effective heat capacity of data-center,
• Hgen = effective heat energy generated by data-center,
• Hout =effective heat energy extracted by cooling sys-

tem and
• a =effective rate parameter.

A simple explicit numerical solution is

mC
θ(t + �t) − θ(t)

�t
= dHgen

dt
(t) − dHcool

dt
(t) (5.4)

and

θ(t + �t) = θ(t) + �t

mC
(
dHgen

dt
(t) − dHcool

dt
(t)) (5.5)

For the next time step, the cooling needed predicted by the
model to achieve the target temperature is

dHcool,predicted

dt
= mC

θ target − θ(t + �t)

�t
− dHgen

dt
(5.6)

This is an explicit time-staggeredpredictor-correctormethod.
However, for this to have some connection to physical reality,
themodel and effective parameters needs to be calibrated, i.e.
‘trained’ usingmore complexmodels, such as the ones devel-
oped in this work. If calibrated properly, the simplifiedmodel
can serve as an instantaneous real-time controller. Alterna-
tively, or in conjunction with the proceeding approaches,
paradigms, such neural nets, which are based on constructing
simple input-output type models that are also adept for such
tasks and are essentially, adaptive nonlinear regressions of the
form OUT PUT = B(I N PUT ,W1,W2, . . .WN ) where B
is an Artificial Neural Network (ANN) constructed from:

• SYNAPSES, which multiply inputs by weights that rep-
resent the inputs’ relevance to the desired output,

• NEURONS, which add outputs from all incoming
synapses and applies activation functions and

• TRAINING, which recalibrates the weights to achieve a
desired overall output.

Ultimately, one constructs a system with optimized
weights to mimic an artificial ‘input-output’ brain for rapid
control. Blending of these various paradigms (complex mod-
els, simplified reduced-order models and neural nets) is the
subject of current work of the author.
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Appendix: Related websites

1. https://www.datacenterdynamics.com/en/analysis/tak
ing-next-steps-stockholm-circular-city/

2. https://www.google.com/about/datacenters/efficiency/
3. https://en.wikipedia.org/wiki/Data_center
4. https://eta.lbl.gov/publications/united-states-data-center

-energy
5. https://energyinnovation.org/2020/03/17/how-much-

energy-do-data-centers-really-use/
6. https://www.nature.com/articles/d41586-018-06610-y
7. https://www.energy.gov/eere/buildings/data-centers-

and-servers
8. https://www.vxchnge.com/blog/growing-energy-deman

ds-of-data-centers
9. https://www.sciencedirect.com/science/article/pii/S030

6261921003019
10. https://www.wsj.com/articles/data-center-company-ali

gned-energy-raises-1-25-billion-in-debt-to-fund-susta
inable-facilities-11629407307mod=hp_minor_pos4

11. https://datacenterfrontier.com/waste-heat-utilization-da
ta-center-industry/

Appendix: Further discussion on fluid
mechanics models

Although we considered an incompressible thermally-
insensitive fluid in the body of the work, for completeness,
we briefly discuss enhancements to such models.

Pressure-density approximation

There are a variety of possible Equations of State that connect
the density to the pressure, such as aBoussinesq-like relation,
which is adequate to describe dense gases and fluids, derived
from3

ρ ≈ ρo(Po) + ∂ρ

∂P
�P, (8.1)

where ρo and Po are reference values and �P = P − Po.

We define the bulk (compressibility) modulus by ζ
def= ρ ∂P

∂ρ
,

yielding

ρ ≈ ρo

(

1 + 1

ζ
�P

)

⇒ P ≈ Po + ζ

(
ρ

ρo
− 1

)

. (8.2)

For a constant density case, ρ = ρo, and utilizing the
Boussinesq-like relation, P = Po.

3 We have ignored thermal effects in this representation.

Buoyancy

Although we will not consider buoyancy in the present anal-
ysis, for completeness we illustrate a typical model. Consider
the following decomposition of the body forces:

f = ρg = ρog + (ρ − ρo)g. (8.3)

Now we approximate

(ρ − ρo)g ≈ −ρoβ(θ − θo)g, (8.4)

where β is the thermal expansion coefficient. Thus,

�ρ = (ρ − ρo) ≈ −ρoβ(θ − θo), (8.5)

thus

ρ ≈ ρo(1 − β(θ − θo)). (8.6)

A generalization

ρ ≈ ρoe
−β(θ−θo) ≈ ρo(1 − β(θ − θo)) + · · · (8.7)
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