
Journal of Computational Physics 451 (2022) 110841
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A fast and accurate physics-informed neural network reduced

order model with shallow masked autoencoder

Youngkyu Kim a,∗, Youngsoo Choi b, David Widemann c, Tarek Zohdi a

a Mechanical Engineering, University of California, Berkeley, CA 94720, United States of America
b Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
c Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 September 2020
Accepted 7 November 2021
Available online 12 November 2021

Keywords:
Nonlinear manifold solution representation
Physics-informed neural network
Reduced order model
Nonlinear dynamical system
Hyper-reduction

Traditional linear subspace reduced order models (LS-ROMs) are able to accelerate physical
simulations in which the intrinsic solution space falls into a subspace with a small
dimension, i.e., the solution space has a small Kolmogorov n-width. However, for physical
phenomena not of this type, e.g., any advection-dominated flow phenomena such as
in traffic flow, atmospheric flows, and air flow over vehicles, a low-dimensional linear
subspace poorly approximates the solution. To address cases such as these, we have
developed a fast and accurate physics-informed neural network ROM, namely nonlinear
manifold ROM (NM-ROM), which can better approximate high-fidelity model solutions with
a smaller latent space dimension than the LS-ROMs. Our method takes advantage of the
existing numerical methods that are used to solve the corresponding full order models.
The efficiency is achieved by developing a hyper-reduction technique in the context of the
NM-ROM. Numerical results show that neural networks can learn a more efficient latent
space representation on advection-dominated data from 1D and 2D Burgers’ equations. A
speedup of up to 2.6 for 1D Burgers’ and a speedup of 11.7 for 2D Burgers’ equations are
achieved with an appropriate treatment of the nonlinear terms through a hyper-reduction
technique. Finally, a posteriori error bounds for the NM-ROMs are derived that take account
of the hyper-reduced operators.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Physical simulations are influencing developments in science, engineering, and technology more rapidly than ever before.
However, high-fidelity, forward physical simulations are computationally expensive and, thus, make intractable any decision-
making applications, such as design optimization, inverse problems, optimal controls, and uncertainty quantification, for
which many forward simulations are required to explore the parameter space in the outer loop.

To compensate for the computational expense issue, the projection-based reduced order models (ROMs) take advantage
of both the known governing equation and the data. ROMs generate the solution data from the corresponding physical sim-
ulations and then compress the data to find an intrinsic solution subspace, which is represented by a linear combination
of basis vectors, i.e., LS-ROMs. This condensed solution representation is plugged back into the (semi-)discretized governing
equation to reduce the number of unknowns, resulting in an over-determined system, i.e., more equations than unknowns.

* Corresponding author.
E-mail addresses: youngkyu_kim@berkeley.edu (Y. Kim), choi15@llnl.gov (Y. Choi), widemann1@llnl.gov (D. Widemann), zohdi@berkeley.edu (T. Zohdi).
https://doi.org/10.1016/j.jcp.2021.110841
0021-9991/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2021.110841
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2021.110841&domain=pdf
mailto:youngkyu_kim@berkeley.edu
mailto:choi15@llnl.gov
mailto:widemann1@llnl.gov
mailto:zohdi@berkeley.edu
https://doi.org/10.1016/j.jcp.2021.110841

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
Note that the full governing equations are used to constrain the LS-ROM through this substitution. Therefore, this can be
considered as a physics-informed surrogate model. Additionally, the existing numerical methods for the corresponding full
order model (FOM) are utilized in the LS-ROM solution process. Therefore, the LS-ROM fully respects the original discretiza-
tion of the governing equations that describe/approximate the underlying physical laws, unlike black-box approaches.

The LS-ROM approach has been successfully applied to many problems and applications, including, but not limited to,
rocket nozzle shape design [2], flutter avoidance wing shape optimization [16], topology optimization of wind turbine blades
[20], porous media flow/reservoir simulations [29,35,74], computational electro-cardiology [73], inverse problems [28], shal-
low water equations [76,66], computing electromyography [51], spatio-temporal dynamics of predator—prey systems [23],
and acoustic wave-driven microfluidic biochips [3]. A survey paper for the projection-based LS-ROM techniques can be found
in [5].

In spite of its successes, the linear subspace solution representation suffers from not being able to represent certain
physical simulation solutions with a small basis dimension, such as advection-dominated or sharp gradient solutions. This
is because LS-ROMs work only for physical problems in which the intrinsic solution space falls into a subspace with a
small dimension, i.e., the solution space has a small Kolmogorov n-width. Unfortunately, even though problems that are
advection-dominated or have sharp gradient solutions are important, they do not have small Kolmogorov n-width. Such
physical simulations include, but are not limited to, the hyperbolic equations with high Reynolds number, the Boltzmann
transport equations, and the traffic flow simulations.

Therefore, there have been many attempts to build efficient ROMs for the advection-dominated or sharp gradient prob-
lems. The attempts can be divided mainly into two categories: the first one is to enhance the solution representability of the
linear subspace by introducing some special treatments and adaptive schemes and the second one is to replace the linear
subspace solution representation with the nonlinear manifold.

The effort of enhancing the solution representability of the linear subspace includes the artificial viscosity, the Petrov–
Galerkin projection applied to the computational fluid dynamics problems [13,12,19], the residual discrete empirical inter-
polation approach to handle the Navier—Stokes equations with a large Reynolds number [72], and the space–time ROM
[17,18,67] where the temporal as well as spatial dimensions were reduced to maximize the compressibility even with the
advection-dominated problems. A dictionary-based model reduction method was developed in [1] where �1 minimization
is used to project onto the reduced linear subspace. A fail-safe h-adaptive algorithm was developed in [9] where the re-
duced linear subspace basis vectors are broken algebraically to enrich the solution subspace. The shifted proper orthogonal
decomposition (POD) was introduced to address the issue that arises from the advection-dominated problems [60] where a
transport operator is incorporated within the POD process. The drawback with this approach is that the speed of the trans-
port operator must be known a priori. In a similar spirit, the transport reversal was introduced in [61], which was inspired
by the template fitting [38]. The windowed least-squares Petrov–Galerkin model reduction for dynamical systems with
implicit time integrators is introduced in [53], which can overcome the challenges arising from the advection-dominated
problems by representing only a small time window with a local ROM. In order to capture the sharp gradient accurately,
many approaches use localization strategies. The examples of such methods include the online adaptive bases and sam-
pling approach in [56] and [21]. Transformed snapshot interpolation method was also developed in [70] to capture a sharp
gradient in the solution, by introducing a new transform discretization near singularities.

Even though all the approaches mentioned above do show some remedies of overcoming the challenges that arise from
the advection-dominated problems, the solution representability of the linear subspace is still limited in a sense that the
treatments introduced in the methods above are problem-specific and require some a priori knowledge, such as advection
direction. In order to maximize the representability and make the methodology as general as possible, it seems unavoidable
to transition from the linear subspace to a nonlinear manifold solution representation.

There are many works available in the current literature that looked into the nonlinear manifold solution representation
in physical simulations. Many of them treat the weights and biases of a neural network (NN) to be unknowns in the
solution process. For example, Lagaris, et al., used a single output NN as an argument for trial functions and minimized the
partial/ordinary differential equation (PDE/ODE) residual norm [41], where the weights of the NNs are used as optimization
variables. Dissanayake and Phan-Thien used the universal approximator of NNs as a solution representation for solving PDEs.
They also used the weights of the NNs as parameters as in the work by Lagaris, et al. [24]. A similar method was also applied
to a plasma equilibrium solver [68]. Meade and Fernandez used hard limit transfer functions for linear ordinary differential
equations [50]. However, these approaches can introduce too many unknowns because all the weights and biases need to
be found during the PDE/ODE solution process.

Recently, similar attempts have been made to incorporate physical laws into NN-based surrogate models —- so called
physics-informed surrogate models, where the weights and biases of the NN are determined in the training phase. Such
models include, but are not limited to, attempts to mimic temporal evolution by incorporating a time integrator in a loss
function [59,15,36,47,4] and to represent the solution with a trained NN [59,77,6], the deep Galerkin method [65], ap-
proximating spatial gradient functions with a multilayer feedforward NN [30], DeepONet [48], DeepXDE [49], fractional
physics-informed NNs (fPINNs) [52], PINNs with uncertainty quantification [75], and Deep Ritz method of minimizing the
energy functional with trial functions of NNs [69,31]. However, inclusions of NNs in the governing equations of the under-
lying physical laws, such as those above, do not take advantage of the existing numerical methods for high-fidelity physical
simulations.
2

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
Fig. 1. The figure shows the hierarchy of several ROMs. If the governing equation is nonlinear, then a hyper-reduction is required to achieve both accuracy
and speed-up with respect to the corresponding FOM. This paper contributes to the development of NM-LSPG-HR and NM-Galerkin-HR that achieve both
speedup and accuracy with the NM-ROM. Throughout the paper, we will compare the performance of LS-ROMs and NM-ROMs.

Recently, a neural network-based ROM is developed in [43], where the weights and biases are determined in the training
phase and the existing numerical methods are utilized in their models. The same technique is extended to preserve the
conserved quantities in the physical conservation laws [42]. However, their approaches do not achieve any speed-up with
respect to the corresponding FOM because the nonlinear terms that still scale with the FOM size need to be updated every
time step or Newton step.

Two interesting papers were written by Rim, et al., recently. First of all, manifold approximations via transported sub-
spaces in [62] introduced a nonlinear solution representation by explicitly composing global transport dynamics with locally
linear approximations of the solution manifolds. However, their approach is only applicable to 1D problem for now. The
other work by Rim, et al., is the depth separation for reduced deep networks in nonlinear model reduction [63], where they
applied a compression technique on weight matrices and bias vectors to achieve the reduced deep networks.

We present a fast and accurate physics-informed neural network ROM with a nonlinear manifold solution representation,
i.e., the nonlinear manifold ROM (NM-ROM). We train a shallow masked autoencoder with solution data from the corre-
sponding FOM simulations and use the decoder as the nonlinear manifold solution representation. Our NM-ROM is different
from the aforementioned physics-informed neural networks in that we take advantage of the existing numerical methods
of solving PDE/ODEs in our approach. Furthermore, our NM-ROM is different from the neural network-based ROM of [43]
in a sense that we use a shallow masked autoencoder, while they used a deep convolutional autoencoder. The choice of the
shallow masked NN over the deep convolutional NN is determined by the efficiency of the hyper-reduction technique we
have developed.

1.1. Nomenclature

We use the following nomenclature/abbreviation for various ROMs throughout the paper:

• FOM: full order model
• LS-ROM: linear subspace reduced order model
• LS-Galerkin: linear subspace Galerkin
• LS-LSPG: linear subspace least-squares Petrov–Galerkin
• LS-Galerkin-HR: linear subspace Galerkin hyper-reduction
• LS-LSPG-HR: linear subspace least-squares Petrov–Galerkin hyper-reduction
• NM-ROM: nonlinear manifold reduced order model
• NM-Galerkin: nonlinear manifold Galerkin
• NM-LSPG: nonlinear manifold least-squares Petrov–Galerkin
• NM-Galerkin-HR: nonlinear manifold Galerkin hyper-reduction
• NM-LSPG-HR: nonlinear manifold least-squares Petrov–Galerkin hyper-reduction

These ROMs form a hierarchy that is depicted in Fig. 1.

1.2. Organization of the paper

We organize the subsequent sections by starting to discuss some background materials in Section 2, where the FOM is
stated in Section 2.1 and two LS-ROMs, i.e., LS-Galerkin and LS-LSPG, are described in Sections 2.2.2 and 2.2.3, respectively.
Our NM-ROM is introduced in Section 3, where the nonlinear manifold solution representation is explained in Section 3.1.
The shallow masked autoencoder that is used for the solution representation is described in Section 3.2. The NM-Galerkin is
explained in Section 3.3 and the NM-LSPG is described in Section 3.4. The hyper-reduction technique that enables the NM-
ROM to achieve a speed-up is elaborated in Section 4. The error analysis is presented in Section 5. Finally, the performance
of our NM-ROM is demonstrated in two numerical experiments in Section 6. Finally, the paper is concluded with summary
and discussion in Section 7.
3

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
2. Background

2.1. Full order model

A parameterized nonlinear dynamical system is considered, characterized by a system of nonlinear ordinary differential
equations (ODEs), which can be considered as a resultant system from semi-discretization of Partial Differential Equations
(PDEs) in space domains

dx

dt
= f (x, t;μ), x(0;μ) = x0(μ), (2.1)

where t ∈ [0, T] denotes time with the final time T ∈ R+ , and x(t; μ) denotes the time-dependent, parameterized state
implicitly defined as the solution to problem (2.1) with x : [0, T] × D → RNs . Further, f : RNs × [0, T] × D → RNs with
(w, τ ; ν) �→ f (w, τ ; ν) denotes the velocity of x, which we assume to be nonlinear in at least its first argument. The initial
state is denoted by x0 :D →RNs , and μ ∈D denotes parameters in the domain D ⊆Rnμ .

A uniform time discretization is assumed throughout the paper, characterized by time step �t ∈R+ and time instances
tn = tn−1 + �t for n ∈ N(Nt) with t0 = 0, Nt ∈ N , and N(N) := {1, . . . , N}. To avoid notational clutter, we introduce the
following time discretization-related notations: xn := x(tn; μ), x̃n := x̃(tn; μ), x̂n := x̂(tn; μ), and f n := f (x(tn; μ), tn; μ),
where x̃, x̂ and x̂ are defined in Section 2.2.

Implicit time integrators are considered as time discretization methods. To illustrate this, we mainly consider the back-
ward Euler time integrator for an implicit scheme. Several other time integrators are shown in Appendix A.

The implicit Backward Euler (BE) method numerically solves Eq. (2.1), by solving the following nonlinear system of
equations for xn at n-th time step:

xn − xn−1 = �t f n. (2.2)

Eq. (2.2) implies the following subspace inclusion:

span{ f n} ⊆ span{xn−1, xn}.
By induction, we conclude the following subspace inclusion relation:

span{ f 1, . . . , f Nt
} ⊆ span{x0, . . . , xNt },

which shows that the span of nonlinear term snapshots is included in the span of solution snapshots. The residual function
with the backward Euler time integrator is defined as

rn
BE(xn; xn−1,μ) := xn − xn−1 − �t f n. (2.3)

2.2. Linear subspace reduced order model (LS-ROM)

Many projection-based reduced order models with linear subspace solution representation can be considered for non-
linear dynamical systems. We consider Galerkin and least-squares Petrov-Galerkin projection methods, which are the most
relevant to our proposed method, i.e., NM-ROM.

2.2.1. Linear subspace solution representation
The linear subspace reduced order model approach applies spatial projection using a subspace S := span{φi}ns

i=1 ⊆ RNs

with dim(S) = ns � Ns . Using this subspace, it approximates the solution as x ≈ x̃ ∈ xref + S (i.e., in a trial subspace) or
equivalently

x ≈ x̃ = xref + �x̂ (2.4)

and the time derivative of the solution as

dx

dt
≈ dx̃

dt
= �

dx̂

dt
(2.5)

where xref ∈ RNs denotes a reference solution and � := [φ1 · · ·φns
] ∈ RNs×ns denotes a basis matrix and x̂ ∈ Rns denotes

the generalized coordinates. The initial condition for the generalized coordinate, x̂0 ∈Rns , is given by x̂0 = �T
(
x0 − xref

)
.

For constructing �, Proper Orthogonal Decomposition (POD) is commonly used. POD [7] obtains � from a truncated
Singular Value Decomposition (SVD) approximation to a FOM solution snapshot matrix. It is related to principal component
analysis in statistical analysis [34] and Karhunen–Loève expansion [46] in stochastic analysis. POD forms a solution snapshot
matrix, X :=

[
xμ1

0 − xref · · · x
μnμ

Nt
− xref

]
∈RNs×nμ(Nt+1) , where xμk

n is a solution state at n-th time step with parameter
μk for n ∈N(Nt) and k ∈N(nμ). Then, POD computes its thin SVD:
4

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
X = U�V T ,

where U ∈RNs×nμ(Nt+1) and V ∈Rnμ(Nt+1)×nμ(Nt+1) are orthogonal matrices and � ∈Rnμ(Nt+1)×nμ(Nt+1) is a diagonal ma-
trix with singular values on its diagonals. Then POD chooses the leading ns columns of U to set � (i.e., � = [u1 · · · uns

]
,

where uk is k-th column vector of U). The POD basis minimizes ‖X − ��T X‖2
F over all � ∈ RNs×ns with orthonormal

columns, where ‖A‖F denotes the Frobenius norm of a matrix A ∈RI× J , defined as ‖A‖F =
√∑I

i=1
∑ J

j=1 a2
i j with aij being

an (i, j)-th element of A. Since the objective function does not change if � is post-multiplied by an arbitrary ns ×ns orthog-
onal matrix, the POD procedure seeks the optimal ns—dimensional subspace that captures the snapshots in the least-squares
sense. For more details on POD, we refer to [33,40].

2.2.2. Linear subspace Galerkin projection
We derive LS-Galerkin using time continuous residual minimization. First, we rewrite FOM ODE Eq. (2.1) as

r(ẋ, x, t;μ) := ẋ − f (x, t;μ) = 0, x(0;μ) = x0(μ) (2.6)

where r : RNs ×RNs ×R+ ×D → RNs with (ẇ, w, τ ; ν) �→ r(ẇ, w, τ ; ν) denotes the time continuous residual. Here, we
denote ˙(·) as time derivative of (·) for notational simplicity. Replacing x with x̃ given by Eq. (2.4) and ẋ with ˙̃x given by
Eq. (2.5) leads to the following residual function with the reduced number of unknowns

r̃(˙̂x, x̂, t;μ) := r(� ˙̂x, xref + �x̂, t;μ),

where r̃ : Rns ×Rns ×R+ × D → RNs with (˙̂w, ŵ, τ ; ν) �→ r̃(˙̂w, ŵ, τ ; ν) denotes the time continuous residual. Note that
r̃(˙̂x, ̂x, t; μ) = 0 is an over-determined system. Therefore, it is likely that no solution exists. To close the system, we minimize
the squared norm of the residual vector function:

˙̂x = argmin
v̂∈Rns

‖r̃(v̂, x̂, t;μ)‖2
2 (2.7)

with x̂(0; μ) = x̂0(μ) = �T
(
x0(μ) − xref

)
. The solution to Eq. (2.7) leads to the LS-Galerkin

˙̂x = �T f (xref + �x̂, t;μ), x̂(0;μ) = x̂0(μ). (2.8)

Applying a time integrator to Eq. (2.8) leads to a fully discretized reduced system, denoted as the reduced O�E. Note
that the reduced O�E has ns unknowns and ns equations. If an implicit time integrator is applied, a Newton–type method
can be applied to solve for unknown generalized coordinates each time step. If an explicit time integrator is applied, time
marching updates will solve the system. However, we cannot expect any speed-up because the size of the nonlinear term
and its Jacobian, which need to be updated for every Newton step, scales with the FOM size. In order to handle this issue,
the hyper-reduction will be applied (see Section 4.2.1).

2.2.3. Linear subspace least-squares Petrov–Galerkin projection
The Least-Squares Petrov–Galerkin (LSPG) method projects a fully discretized solution space onto a trial subspace. That

is, it discretizes Eq. (2.1) in time domain and replaces xn with x̃n := xref + �x̂n for n ∈N(Nt) in residual functions defined
in Section 2.1 and Appendix A. Here, we consider only implicit time integrators because the LSPG projection is equivalent to
the Galerkin projection when an explicit time integrator is used as shown in Section 5.1 in [10]. The residual functions for
implicit time integrators are defined in (2.3), (A.1), and (A.2) for various time integrators. For example, the residual function
with the backward Euler time integrator1 after the trial subspace projection becomes

r̃n
BE(x̂n; x̂n−1,μ) := rn

BE(xref + �x̂n; xref + �x̂n−1,μ)

= �(x̂n − x̂n−1) − �t f (xref + �x̂n, tn;μ).
(2.9)

The basis matrix � can be found by the POD as in the Galerkin approach. Note that Eq. (2.9) is an over-determined system.
To close the system and solve for the unknown generalized coordinates, x̂n , the LSPG takes the squared norm of the residual
vector function and minimize it at every time step:

x̂n = argmin
v̂∈Rns

1

2

∥∥r̃n
BE(v̂; x̂n−1,μ)

∥∥2
2 . (2.10)

The Gauss–Newton method with the starting point x̂n−1 is applied to solve the minimization problem (2.10) in LSPG.
However, as in the Galerkin approach, a hyper-reduction, which will be discussed in Section 4.2.2, is required for a speed-
up due to the presence of the nonlinear residual vector function that scales with the full order model size.

1 Although the backward Euler time integrator is used extensively in the paper for illustrative purposes, many other time integrators introduced in
Appendix A can be applied to all the ROM methods dealt in the paper in a straightforward way.
5

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
Fig. 2. General description of an autoencoder: x being encoded to a latent vector, x̂, by the encoder and decoded by the decoder, to x̃. The mean square
error between x and x̃ is minimized to update neural network weights and bias.

3. Nonlinear manifold reduced order model (NM-ROM)

A projection-based reduced order model with nonlinear manifold solution representation is introduced in this section.
The ROM formulation with nonlinear manifold solution representation is introduced in Section 3.1. Section 3.2 describes
how we construct the neural network that is used as a nonlinear manifold solution representation. As in the LS-ROMs
of Section 2.2, Galerkin and least-squares Petrov–Galerkin projections will be applied in Sections 3.3 and 3.4. Finally, the
hyper-reduction for the NM-ROM is described in Section 4.

3.1. Nonlinear manifold solution representation

The NM-ROM applies solution representation using a nonlinear manifold S := {g
(

v̂
) |v̂ ∈ Rns }, where g : Rns → RNs

with ns � Ns denotes a nonlinear function that maps a latent space of dimension ns to the full order model space of
dimension, Ns . That is, the NM-ROM approximates the solution in a trial manifold as

x ≈ x̃ = xref + g
(
x̂
)

(3.1)

and the time derivative of the solution as

dx

dt
≈ dx̃

dt
= J g

(
x̂
) dx̂

dt
(3.2)

where x̂ ∈ Rns denotes the generalized coordinates. The initial condition for the generalized coordinate, x̂0 ∈ Rns , is given
by x̂0 = h

(
x0 − xref

)
, where h ≈ g−1 (i.e., x − xref ≈ g

(
h
(
x − xref

))
). The details about the nonlinear functions, h and g ,

are presented in Section 3.2.

3.2. Shallow masked autoencoder

In this section, we present the approach for constructing a nonlinear manifold. Here, we use an autoencoder, A , in the
form of a feedforward neural network, that is trained to reconstruct its input. The autoencoder architecture is composed of
an encoder, E and a decoder, D . The encoder maps a high dimensional input, x ∈ RNs to a low-dimensional latent vector,
x̂ ∈ Rns , i.e., E(x) = x̂, and the decoder then maps the latent vector to x̃ ∈ RNs , i.e., D(x̂) = x̃, where ns � Ns (see Fig. 2).
Therefore, we have

x ≈ x̃ = A(x) = D(E(x)).

The main idea behind an autoencoder is that it forces the model to learn salient features by compressing the input into
a low-dimensional space and then reconstructing the input.

The universal approximation theorem [22,57], proves that functions of the form,

vk =
N2∑
j=1

w jk2σ

(
N1∑

i=1

wij1ui + θ j

)
for k ∈N(N3), (3.3)

where wij1, w jk2 ∈ R are weights, θ j ∈ R is a bias, σ is a non-polynomial activation function, ui is an input and vk is
an output, can approximate any continuous, real-valued function arbitrarily well. Eq. (3.3) is a simple, single hidden layer
neural network with a non-polynomial activation function. Its input dimension is N1, width of the hidden layer is N2, and
6

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
Fig. 3. Three layer autoencoder architecture: (a) unmasked and (b) masked shallow neural network. Nodes and edges in orange color represent active path
that stems from the sampled outputs that are marked as the orange disks. Note that the masked shallow neural network has a sparser structure than the
unmasked one.

output dimension is N3. We construct two single hidden layer neural networks, one is the encoder, E , and the other is the
decoder, D . For non-polynomial activation functions, a sigmoidal function given by

σ(x) = 1

1 + exp (−x)

or a swish function given by

σ(x) = x

1 + exp (−x)

are used. We use a non-deep neural network for the decoder because the decoder and its Jacobian are computed many
times during the ROM computation. In order for this computation to be on par with POD methods, it is necessary to limit
the depth of the decoder network. The dimension of the encoder input and the decoder output is Ns and the dimension of
the encoder E output and the decoder D input is ns . The width of the encoder E and decoder D are hyper-parameters. The
first layers of the encoder E and decoder D are fully-connected layers, where the nonlinear activation functions are applied
and the last layer of the encoder E is fully-connected layer with no activation functions. The last layer of the decoder D is
either fully-connected layer or sparsely-connected layer with no activation functions. These network architectures are shown
in Fig. 3.

Then, combining the encoder and the decoder yields the autoencoder which can be trained to learn the identity mapping
in an unsupervised manner because the desired output is the input. During the training phase, the error measured by

‖X − X̃‖2
F ,

where X is solution snapshot matrix and X̃ is a reconstructed solution snapshot matrix, is minimized by optimizing learn-
able parameters (i.e., weights and bias) in the two networks. The error is back-propagated through the networks and the
gradient with respect to the learnable parameters are computed by using the chain rule [64,54,71]. Then, the parameters
are updated in the steepest descent direction with respect to the gradient. Here, ADAM [37], a variant of stochastic gradient
descent (SGD), is used to approximate the gradient with a few data samples to make training process faster. Stochastic
gradient noise helps the neural network avoiding over-fitting [8]. Furthermore, graphics processing units (GPUs) are utilized
to parallelize the autonencoder’s training by simultaneously approximating multiple snapshots [58]. In practice, a dataset
is usually normalized before the training process. Here, we normalize the dataset (i.e., solution snapshots) in the following
way:

xnormal = xscale
 (x − xref
)

where x is a column vector of the dataset matrix X and
 denotes the element-wise product. xscale and xref are directly
computed from the dataset along each feature direction such that xnormal ranges either [−1, 1] or [0, 1].

After data normalization, an autoencoder can be trained to learn the identity mapping with the normalized dataset.
Now, a normalized encoder maps from a high dimensional normalized input xnormal ∈ RNs to a low dimensional latent
vector x̂ ∈Rns in the form:
7

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
Fig. 4. Mask matrix. Note that the mask matrices have the analogical structure to the ones of Mass matrix that arises from a numerical discretization, such
as the finite element or difference method, with 1D or 2D diffusion equations.

x̂ = en (xnormal)

and a normalized decoder maps from the low dimensional latent vector x̂ ∈ Rns to a reconstructed normalized input
x̃normal ∈RNs in the form:

x̃normal = de
(
x̂
)
.

Next, the encoder E and the decoder D can be written by

E (x) = en
(
xscale
 (x − xref

))
D
(
x̂
)= xref + de

(
x̂
)� xscale

where
 and � denote the element-wise product and division, respectively. Moreover, the row-wise product of xscale and
the first layer weight matrix of en yields the scaled encoder h. Likewise, the row-wise division of xscale and the last layer
weight matrix of de gives us the scaled decoder g . Finally, the encoder E and the decoder D are given by

E (x) = h
(
x − xref

)
D
(
x̂
)= xref + g

(
x̂
)
.

We set the decoder D
(
x̂
)= xref + g

(
x̂
)

as the nonlinear manifold solution representation discussed in Section 3.
The scaled decoder g can be written in the form

g
(
x̂
)= W 2σ

(
W 1x̂ + b1

)
where W 1 and W 2 are weight matrices, b1 is a bias vector, and σ is an element-wise activation function. The decoder can
have more than two hidden layers (i.e., deep network). However, we use the single layer decoder (i.e., shallow network)
because the Jacobian computation of the multiple hidden layer decoder involves multiple matrix—matrix multiplications.
The output layer of the decoder g is fully-connected as depicted in Fig. 3 (a) (i.e., W 2 is a dense matrix), which means
all nodes in the previous layer are required to compute even one element of the output vector. We apply a sparsity mask
on the output layer of the decoder. Then, sampling a subset of the output vector doesn’t need all nodes in the previous
layer as depicted in Fig. 3 (b). Thus, more speed-up can be achieved by a hyper-reduction technique that is described in
Section 4. For example, the orange color nodes in Fig. 3 show the required nodes when the first and the last elements of
the output are selected, which are represented as solid orange disks. To create a sparsely connected layer, we use a mask
matrix S which contains either zero or one as shown in Fig. 4. By element-wise product S
 W 2, a sparse weight matrix
is obtained. The mask matrix S is constructed to reflect local connectivity as in the Laplacian operator approximated by the
central difference scheme in Finite Difference Method. The autoencoder composed of the encoder and the sparse decoder is
trained by using custom pruning in PyTorch [55] pruning module.

In the autoencoder, the number of learnable parameters (i.e., weights and bias) is determined by the number of nodes
in the hidden layers in the encoder and the decoder, dimension of latent vector, and the sparsity in the mask matrix. The
sparsity is determined by how many nodes in the hidden layer are used to compute one element of the output and how
many nodes in the hidden layer are shared for neighboring elements of the output. To generate a mask matrix for 1D
problem, we use two variables b and δb, where b denotes the number of nodes in the hidden layer to compute one output
element (width of the block in each row in Fig. 4(a)) and δb denotes the amount by which the block shifts. For example,
at the ith row, j ∈ {(i − 1)db, (i − 1)db + 1, · · · , (i − 1)db + b}th column is one and the others are zero. For a mask of the
2D problem, we create a building matrix in the same way as the mask matrix for 1D problem. Then, we add all rows
neighboring ith row (e.g., 5-point stencil for 2D and 7-point stencil for 3D) to ith row and change nonzero values to one.
Note that the mask matrix for 2D problem as in Fig. 4(b) looks similar to 2D finite difference Laplacian operator.

There is no way to determine these hyper-parameters a priori. If the number of learnable parameters is not enough, the
decoder is not able to represent the nonlinear manifold well. On the other hand, too many learnable parameters may result
in over-fitting, so the decoder is not able to generalize well, which means the trained decoder can’t be used for problems
whose data is unseen, i.e., the predictive case. To avoid over-fitting, there are two options to consider. In the first option,
8

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
Fig. 5. Loss history of decoders for various problems; all three figures show good agreement between train and test loss history, which is a sign for good
balance between overfitting and accuracy.

one first divides the data into two sets, i.e., train and test sets. Then, the autoencoder is trained using the train set only
and is tested for the generalization ability using the test set. If the mean squared error on the test and train sets are very
different, the over-fitting occurs and we should reduce the number of learnable parameters [39].

The second option of avoiding the overfitting is to use Akaike’s information criteria (AIC) which is given by

AIC = ln(e) + 2
Nw

N

where e = ‖X−X̃‖2
F

2N , Nw is the total number of learnable parameters, and N is the number of elements in the data set matrix
(i.e., X). If one minimizes only the first term of AIC, then an over-fit network will be obtained. On the other hand, if one
minimizes only the second term of AIC, i.e., Nw = 0, then the network will not fit the training distribution. Therefore, the
minimum of AIC helps train a model that is not over-fit and generalizes well. [45,39]. However, finding the minimum of
AIC requires a lot more training processes than the first option above. Because of randomness in training, e.g., the random
initialization of weights and bias in neural networks and SGD optimization method, e will be different for every training
process even with the same Nw and the dataset matrix. Therefore, AIC needs to be averaged over several training for each
Nw to find the minimum of AIC.

Because of the practicality of the first option of avoiding the overfitting over the second option, we use the first option
in our numerical experiments. For example, as shown in Fig. 5, the mean squares error on the test and train data sets are
very close. This implies that the trained autoencoder is not over-fit.

3.3. Nonlinear manifold Galerkin projection

We derive NM-Galerkin using time continuous residual minimization. Replacing x with x̃ given by Eq. (3.1) and ẋ with ˙̃x
given by Eq. (3.2) in Eq. (2.6) leads to the following residual function with the reduced number of unknowns

r̃(˙̂x, x̂, t;μ) := r(J g(x̂) ˙̂x, xref + g(x̂), t;μ). (3.4)

Note that Eq. (3.4) is an over-determined system. Therefore, it is likely that no solution exists. To close the system, we
minimize the squared norm of the residual vector function:

˙̂x = argmin
v̂∈Rns

‖r̃(v̂, x̂, t;μ)‖2
2 (3.5)

with x̂(0; μ) = x̂0(μ) = h
(
x0(μ) − xref

)
. The solution to Eq. (3.5) leads to the NM-Galerkin

˙̂x = J g(x̂)† f (xref + g(x̂), t;μ), x̂(0;μ) = x̂0(μ) (3.6)

where the Moore–Penrose inverse of a matrix A ∈RNs×ns with full column rank is defined as A† := (AT A)−1 AT .
Applying a time integrator to Eq. (3.6) leads to a fully discretized reduced system, denoted as the reduced O�E. Note

that the reduced O�E has ns unknowns and ns equations. If an implicit time integrator is applied, a Newton–type method
can be applied to solve for unknown generalized coordinates each time step. If an explicit time integrator is applied, time
marching updates will solve the system. However, we cannot expect any speed-up because the size of the nonlinear terms
and their Jacobians, which need to be updated for every Newton step, scales with the FOM size. In order to handle this
issue, the hyper-reduction will be applied (see Section 4.3.1).

3.4. Nonlinear manifold least-squares Petrov–Galerkin projection

Alternatively, the nonlinear manifold least-squares Petrov–Galerkin (NM-LSPG) approach projects a fully discretized solu-
tion space onto a trial manifold. That is, it discretizes Eq. (2.1) in time domain and replaces xn with x̃n := xref + g

(
x̂n
)

for
n ∈N(Nt) in residual functions defined in Section 2.1 and Appendix A. Here, we consider only implicit time integrators for
9

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
simplicity. See Ref. [44] for other types of time integrators. The residual functions for several implicit time integrators are
defined in (2.3), (A.1), and (A.2). For example, the residual function with the backward Euler time integrator1 after the trial
manifold projection becomes

r̃n
BE(x̂n; x̂n−1,μ) := rn

BE(xref + g
(
x̂n
) ; xref + g

(
x̂n−1

)
,μ)

= g
(
x̂n
)− g

(
x̂n−1

)− �t f (xref + g
(
x̂n
)
, tn;μ).

(3.7)

The nonlinear manifold g can be found by training the autoencoder as described in Section 3.2. Note that Eq. (3.7) is
an over-determined system. Therefore, it is likely that no solution exists. To close the system and solve for the unknown
generalized coordinates, x̂n , the NM-LSPG takes the squared norm of the residual vector function and minimizes it at every
time step:

x̂n = argmin
v̂∈Rns

1

2

∥∥r̃n
BE(v̂; x̂n−1,μ)

∥∥2
2 . (3.8)

The Gauss–Newton method with the starting point x̂n−1 is applied to solve the minimization problem (3.8). However, as
in the Galerkin approach, a hyper-reduction which will be discussed in Section 4.3.2 is required for a speed-up due to
the presence of the nonlinear residual vector function that scales with the full order model size. More specifically, g

(
x̂n
)
,

f (xref + g
(
x̂n
)
, t; μ), and their Jacobians are needed to be updated whenever x̂n changes if the backward Euler time

integrator is used.

4. Hyper-reduction

As mentioned in Section 2.2 and 3, we cannot expect speed-up even though the dimension of unknowns in ROMs is
small, i.e., ns � Ns , because the nonlinear term still scales with the full order model size. To overcome this issue, there are
several hyper-reduction techniques available, e.g., [14,25,26,13,19] for LS-ROMs. These hyper-reduction techniques share a
common feature and it plays an important role in the development of the hyper-reduction technique in the NM-ROMs, so
we will go over one of the hyper-reduction technique that is commonly used in the LS-ROMs.

4.1. Nonlinear residual approximation

We follow the DEIM-SNS and GNAT-SNS approaches introduced in [19] where the solution snapshots, whose span in-
cludes a span of nonlinear term snapshots, are taken to build a nonlinear term basis. Then, it selects a subset of each
nonlinear term basis vector to either interpolate or data-fit in a least-squares sense. In this way, it reduces the computa-
tional complexity of updating nonlinear terms in an iterative solver for nonlinear problems.

In more details, the GNAT-SNS method approximates the nonlinear residual term with gappy POD [27] as

r̃ ≈ �r r̂, (4.1)

where �r := [φr,1, . . . , φr,nr
] ∈RNs×nr , ns ≤ nr � Ns , denotes the residual basis matrix and r̂ ∈Rnr denotes the generalized

coordinates of the nonlinear residual term. Here, r̃ represents a residual vector function, e.g., the backward Euler residual,
r̃n

B E , defined in Eq. (2.9). The GNAT-SNS method uses the SVD of the FOM solution snapshot matrix to construct �r , which
reduces computational cost by avoiding another POD to a nonlinear residual term snapshots. The hyper-reduction method
solves the following least-squares problem to obtain the generalized coordinates r̂:

r̂ := argmin
v̂∈Rnr

1

2

∥∥∥Z T (r̃ − �r v̂)

∥∥∥2

2
, (4.2)

where Z T := [ep1 , . . . , epnz
]T ∈Rnz×Ns , ns ≤ nr ≤ nz � Ns , is the sampling matrix and epi is the pi th column of the identity

matrix I Ns ∈RNs×Ns . The solution to Eq. (4.2) is given as

r̂ = (Z T �r)
† Z T r̃,

where the Moore–Penrose inverse of a matrix A ∈Rnz×nr with full column rank is defined as A† := (AT A)−1 AT . Therefore,
Eq. (4.1) becomes

r̃ ≈ P r̃, (4.3)

where P := �r(Z T �r)
† Z T is the oblique projection matrix. The projection matrix has a pseudo-inverse instead of the

inverse because it allows the oversampling, i.e., nr < nz . The hyper-reduction method does not construct the sampling matrix
Z . Instead, it maintains the sampling indices {p1, . . . , pn f } and corresponding rows of �r and ̃r . This enables hyper-reduced ROMs
to achieve a speed-up when it is applied to nonlinear problems.
10

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
The sampling indices (i.e., Z) can be determined by Algorithm 3 of [13] for computational fluid dynamics problems and
Algorithm 5 of [11] for other problems. These two algorithms take greedy procedure to minimize the error in the gappy
reconstruction of the POD basis vectors �r . These sampling algorithms for the hyper-reduction method allow oversampling
(i.e., nz > nr), resulting in solving least-squares problems in the greedy procedure. These selection algorithms can be viewed
as the extension of Algorithm 1 in [14] (i.e., a row pivoted LU decomposition) to the oversampling case. The nonlinear
residual term projection error associated with these sampling algorithms is presented in Appendix D of [13]. That is,

‖r̃ −P r̃‖2 ≤ ‖R−1‖2‖r̃ − �r�
T
r r̃‖2

where R is the triangular factor from the QR factorization of Z T �r (i.e., Z T �r = Q R). For more details, please refer to
[19].2

4.2. Hyper-reduction for LS-ROM

We present formulations of LS-Galerkin-HR and LS-LSPG-HR. For numerical examples, LS-LSPG-HR is only implemented.

4.2.1. LS-Galerkin-HR
We denote the hyper-reduced linear subspace Galerkin as LS-Galerkin-HR. The LS-Galerkin-HR method approximates the

nonlinear residual term with the gappy POD procedure as in Section 4.1. Therefore, the LS-Galerkin-HR method replaces the
residual in (2.7) with P r̃(v̂, ̂x, t; μ) given by Eq. (4.3). Thus, it minimizes the following least-squares problem:

˙̂x = argmin
v̂∈Rns

‖(Z T �r)
† Z T r̃(v̂, x̂, t;μ)‖2

2 (4.4)

with x̂(0; μ) = x̂0(μ). The solution to Eq. (4.4) leads to the following reduced ODE:

˙̂x = ((Z T �r)
† Z T �)†((Z T �r)

T Z T �r)
−1(Z T �r)

T Z T f (xref + �x̂, t;μ), x̂(0;μ) = x̂0(μ). (4.5)

Applying a time integrator to Eq. (4.5) leads to a fully discretized reduced system, denoted as the reduced O�E. Note
that the reduced O�E has ns unknowns and ns equations. If an implicit time integrator is applied, a Newton–type method
can be applied to solve for unknown generalized coordinates each time step. If an explicit time integrator is applied, time
marching updates can be applied.

Note that the operator ((Z T �r)
† Z T �)†((Z T �r)

T Z T �r)
−1(Z T �r)

T can be pre-computed once for all. We avoid construct-
ing the sampling matrix Z . For example, the operator Z T �r can be computed simply by extracting only the selected rows
of �r . For the term, Z T f , only the nonlinear term elements that are selected by the sampling matrix need to be computed.
This implies that we have to keep track of the rows of � that are needed to compute the selected nonlinear term elements,
which is usually a larger set than the rows that are selected solely by the sampling matrix, i.e., Z T �, as in the 5-point
stencil or 7-point stencil in the finite difference method.

4.2.2. LS-LSPG-HR
We denote the hyper-reduced linear subspace LSPG as LS-LSPG-HR. The LS-LSPG-HR method approximates the nonlinear

residual term with the gappy POD procedure as in Section 4.1. Therefore, the LS-LSPG-HR method replaces the residual in
(2.10) with P r̃(v̂, ̂x, t; μ) given by Eq. (4.3). Thus, it minimizes the following least-squares problem:

x̂n = argmin
v̂∈Rns

1

2

∥∥∥ (Z T �r)
† Z T r̃n

BE(v̂; x̂n−1,μ)

∥∥∥2

2
,

with x̂(0; μ) = x̂0(μ). Note that the pseudo-inverse (Z T �r)
† can be pre-computed once for all. Due to the definition of r̃n

BE
in Eq. (2.9), the sampling matrix Z needs to be applied to the following terms: �(x̂n − x̂n−1) and f (xref + �x̂n, t; μ) at
every time step. The first term Z T � can be precomputed by extracting the selected rows of the basis matrix. For the second
term, only the nonlinear term elements that are selected by the sampling matrix need to be computed. This implies that
we have to keep track of the rows of � that are needed to compute the selected nonlinear term elements, which is usually
a larger set than the rows that are selected solely by the sampling matrix, i.e., Z T �, as in the 5-point stencil or 7-point
stencil in the finite difference method.

4.3. Hyper-reduction for NM-ROM

There are two layers of nonlinear terms in the NM-ROM: (i) the nonlinear term in the original governing equations, i.e.,
f in Eq. (2.1), and (ii) the decoder, which is nonlinear function of the generalized coordinates, i.e., g in Eq. (3.1) and appears
in the definition of residuals both for Galerkin and Petrov–Galerkin cases. The first layer nonlinear term can be treated in

2 In this paper, GNAT-SNS in [19] is re-named as LS-LSPG-HR to emphasize the difference between the LS-ROMs and NM-ROMs.
11

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
the same way as the LS-ROMs (see Sections 4.2.1 and 4.2.2). Now, it is the second layer nonlinear term that requires a
special attention. For example, the Jacobian of the decoder needs to be evaluated at every solver iteration. Because the
cost of computing the Jacobian scales with the number of learnable parameters in the decoder, we cannot expect much
speed-up. As we did in the hyper-reduction process of the LS-ROMs, we have to avoid computing all the entries of the
decoder or its Jacobian because they scale with the full order model size. This will be achieved by constructing a subnet
that computes only the relevant outputs, which is discussed in Section 4.4. First, we state the hyper-reduced NM-ROMs,
i.e., the NM-Galerkin-HR in Section 4.3.1 and the NM-LSPG-HR in Section 4.3.2. At last, the flop count estimate comparison
between non-hyper-reduced and hyper-reduced models is shown at the end of Section 4.4 and their derivations are shown
in Appendix B.

4.3.1. NM-Galerkin-HR
Now, we apply the hyper-reduction to the NM-Galerkin method. We denote the hyper-reduced nonlinear manifold

Galerkin as NM-Galerkin-HR. The NM-Galerkin-HR method approximates the nonlinear residual term with the gappy POD
procedure as in Section 4.1. Therefore, the NM-Galerkin-HR method replaces the residual in (3.5) with P r̃(v̂, ̂x, t; μ) given
by Eq. (4.3). Thus, it minimizes the following least-squares problem:

˙̂x = argmin
v̂∈Rns

‖(Z T �r)
† Z T r̃(v̂, x̂, t;μ)‖2

2 (4.6)

with x̂(0; μ) = x̂0(μ). The solution to Eq. (4.6) leads to the NM-Galerkin-HR

˙̂x = ((Z T �r)
† Z T J g(x̂))†(Z T �r)

† Z T f (xref + g(x̂), t;μ), x̂(0;μ) = x̂0(μ). (4.7)

Applying a time integrator to Eq. (4.7) leads to a fully discretized reduced system, denoted as the reduced O�E. Note
that the reduced O�E has ns unknowns and ns equations. If an implicit time integrator is applied, a Newton–type method
can be applied to solve for unknown generalized coordinates each time step. If an explicit time integrator is applied, time
marching updates will solve the system.

Note that the pseudo inverse, (Z T �r)
†, can be pre-computed once for all by extracting only the selected rows of �r .

However, the term, Z T J g(x̂), cannot be precomputed because J g needs to be updated every time x̂ is updated. Fortunately,
we need to compute only the selected rows of J g by the sampling matrix Z . Similarly, for the term, Z T f , only the nonlinear
term elements that are selected by the sampling matrix need to be computed. This implies that we have to keep track of
the outputs of g that are needed to compute the selected nonlinear term elements, which is usually a larger set than the
outputs that are selected solely by the sampling matrix, i.e., Z T g , as in the 5-point stencil or 7-point stencil in the finite
difference method.

4.3.2. NM-LSPG-HR
We apply the hyper-reduction to the NM-LSPG method discussed in Section 3.4. The hyper-reduction procedure for the

nonlinear residual function after the trial manifold projection is the same as the one in Section 4.1, i.e., we replace the
residual defined in (3.7) with P r̃n

B E and plug it into the minimization problem in Eq. (3.8). Then, the minimization problem
becomes

x̂n = argmin
v̂∈Rns

1

2

∥∥∥ (Z T �r)
† Z T r̃n

BE(v̂; x̂n−1,μ)

∥∥∥2

2
.

Note that the pseudo-inverse (Z T �r)
† can be pre-computed once for all. Due to the definition of r̃n

BE in Eq. (3.7), the
sampling matrix Z needs to be applied the following two terms: g

(
x̂n
)− g

(
x̂n−1

)
and f (xref + g

(
x̂n
)
, t; μ) at every time

step. The first term, Z T (g
(
x̂n
)− g

(
x̂n−1

)
), requires to compute only the selected outputs of the decoder. Furthermore, for

the second term, only the nonlinear term elements that are selected by the sampling matrix need to be computed. This
implies that we have to keep track of the outputs of g that are needed to compute the selected nonlinear term elements by
the sampling matrix, which is usually a larger set than the outputs that are selected solely by the sampling matrix, i.e., Z T g ,
as in the 5-point stencil or 7-point stencil in the finite difference method. Therefore, we build a subnet that computes only
the outputs of the decoder that is required to compute the elements of the nonlinear term, f . Then, with the same subnet,
the outputs required for the first term, Z T (g

(
x̂n
)− g

(
x̂n−1

)
), can be extracted from the same subnet. The construction of

the subnet is explained in Section 4.4.1.

4.4. Efficient hyper-reduction decoder computation

In the NM-LSPG-HR method, the residual is evaluated at the sampling points given by the hyper-reduction. We use
“sample points” and “hyper-reduction indices” interchangeably throughout the paper. Evaluating the decoder and its Ja-
cobian can be done efficiently by restricting the computation to the active paths of the outputs required to compute the
selected residual elements. For example, active paths of the sparse decoder are shown in orange color in Fig. 3(b). The costs
of computing the decoder and its Jacobian scale piecewise-linearly with the number of sample points because the slopes
12

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
Fig. 6. Illustration of the computational time elapsed for the evaluation of decoder and its Jacobian vs the number of sample points from 2D Burgers’
equation in Section 6.2. The total number of points is 3364.

of the costs of computing the decoder and its Jacobian vs the number of sample points are different depending on how
many nodes in hidden layer are shared for each sample point (see Fig. 6). The distribution of the hyper-reduction indices
determines the number of overlapping nodes in hidden layer of decoder. The more the overlapping nodes in hidden layer
imply the more efficient computation of the hyper-reduced decoder. If successive points are selected, overlapping of nodes
in hidden layer are maximized. If the selected points are uniformly apart, then the overlapping of nodes in hidden layer is
minimized. In the case of random distribution, if the number of selected points is small, the possibility of overlapping is
low. Our required outputs to compute the selected residual elements after the hyper-reduction are neither successive nor
uniformly separated. Thus, the cost of computing the decoder and its Jacobian would be between case 1 (successive points)
and case 2 (uniformly separated points) in Fig. 6. By restricting our computation to active paths, we only compute along the
subnet of the decoder network that is needed for our required outputs.

4.4.1. Construction of a subnet
To determine the sparse decoder’s active paths for given hyper-reduction indices together with additional indices re-

quired to compute the hyper-reduced residual (i.e., the neighbor indices that are used to approximate the derivatives at the
sample point), denoted as H, we follow the steps below:

Step 1: Set nonlinear activation functions to be identity functions.
Step 2: Replace nonzero elements of the weight matrices, W 1, W 2
 S and the bias vector, b1 with one and then denote

each of them as W̃ 1, W̃ 2, and b̃1, respectively. Zero elements of W̃ 1, W̃ 2, and b̃1 represent non-connected edges
between layers.

Step 3: A new decoder model, g̃(y0), is created in the form

g̃(y0) = W̃ 2(W̃ 1 y0 + b̃1)

or for each layer, we can write

y1 = W̃ 1 y0 + b̃1

y2 = W̃ 2 y1.

Step 4: Set y0 = (1, · · · , 1)T ∈Rns as an input. By construction, g̃(y0) must be all positive.
Step 5: Define the target vector as y∗ = y2 − e ∈RNs , where ith component of the error vector, e, is defined as ei = δi j, j ∈

H. Then the loss function, L, is defined as

L = 1

2
‖y2 − y∗‖2

2

and ∂L
∂ y2

is given by

∂L

∂ y2
= y2 − y∗ = e.

Step 6: Compute ∇W̃ 2
L, ∇W̃ 1

L, and ∇b̃1
L using the chain rule

∇W̃ 2
L = ∂L

˜ = ∂L ∂ y2

˜ =
(

∂L
yT

1

)

 s(W̃ 2)
∂W 2 ∂ y2 ∂W 2 ∂ y2

13

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
Fig. 7. Illustration of the effect on the sparsity of the active path for shallow network vs deep network. The shallow network provides a sparser network
than the deep network in the subnet. Therefore, the shallow network is expected to achieve a higher speed-up than the deep network.

∇W̃ 1
L = ∂L

∂W̃ 1
= ∂L

∂ y1

∂ y1

∂W̃ 1
= ∂L

∂ y2

∂ y2

∂ y1

∂ y1

∂W̃ 1
=
(

W̃
T
2

∂L

∂ y2
yT

0

)

 s(W̃ 1)

∇b̃1
L = ∂L

∂ b̃1
= ∂L

∂ y1

∂ y1

∂ b̃1
= ∂L

∂ y2

∂ y2

∂ y1

∂ y1

∂ b̃1
=
(

W̃
T
2

∂L

∂ y2

)

 s(b̃1)

where

s(x) :=
{

0 i f x ≤ 0

1 otherwise

is the element-wise function. Here, we make derivatives of L with respect to non-connected edges (i.e., zero ele-
ments of W̃ 2, W̃ 1, and b̃1) zeros by element-wise multiplication with s(W̃ 2), s(W̃ 1), and s(b̃1) because we do not
consider non-connected edges as variables.

Step 7: Using the fact that the weights and bias that are not in the active paths do not contribute to computing L, we
deduce that the derivatives of L with respect to such weights and bias are zero. On the other hand, the derivatives
of L with respect to the weights and bias that are in the support of indices in H must be strictly positive because
the special structure of g̃ (i.e., the same structure as the sparse decoder, g , except all the nonzero weights and
bias are one and the nonlinear activation functions are identity functions), choosing the all-ones vector as input
vector, and defining the target vector as above should induce the positive gradient to reduce the L. Thus, active path
weights and bias are obtained by

W a
2 = (W 2
 S)
 s(∇W̃ 2

L)

W a
1 = W 1
 s(∇W̃ 1

L)

ba
1 = b1
 s(∇b̃1

L).

Step 8: Removing zero rows and zero columns of the active path weights and bias, W a
2, W a

1, and ba
1 yields the subnet

weights and bias, which are denoted as W sn
2 , W sn

1 , and bsn
1 , respectively. Then the subnet, gsn is given by

gsn(x̂) = W sn
2 σ (W sn

1 x̂ + bsn
1).

This subnet strategy works for neural networks of arbitrary depth. However, we have illustrated it in the context of the
neural network with one hidden layer. It is because that is what we use to achieve enough speed up. Please see Fig. 7 for
an argument of a shallow over a deep network.
14

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
Remark 4.1. To count flops of NM-LSPG and NM-LSPG-HR, let m, f , z, and b denote FOM size, ROM size, the size of subnet
output, and the number of nodes in the hidden layer to compute one output element of the sparse decoder, respectively.
Then, the flop counts of NM-LSPG is O(mbf) and the flop counts of NM-LSPG-HR is O(zbf) + O(f z2). Thus, if z is small
e.g., z2 < m, speed-up can be achieved. For full details, see Appendix B.

5. Error analysis

We present error analysis of the NM-LSPG-HR method. The error analysis is based on [43] and we added an oblique
projection matrix for a hyper-reduction method. A posteriori discrete-time error bounds for NM-Galerkin and NM-LSPG
without any hyper-reduction are derived in [43]. Here, we apply a linear multi-step method described in Appendix A.

Theorem 5.1. Let Z ∈ RNs×nz with nz � Ns denote a sampling matrix, P ∈ RNs×Ns be an oblique projection matrix used in NM-
Galerkin-HR and NM-LSPG-HR, i.e., P = PNM-Galerkin-HR for NM-Galerkin-HR and P = PNM-LSPG-HR for NM-LSPG-HR, and r̃n ∈ RNs

denote the nonlinear residual term, which is defined by replacing xn with x̃n := xref + g
(
x̂n
)

for n ∈ N(Nt) in residual functions
defined in Section 2.1 and Appendix A, e.g., the residual with the backward Euler time integrator is defined in Sections 3.4 and 4.3.2.
Then, if the velocity f is Lipschitz continuous with the Lipschitz constant L and the time step size �t is sufficiently small such that
�t <

γ1|α0|
γ2|β0|L , we have the following error bound

‖xn − xref − g(x̂n)‖2 ≤ 1

‖P‖2(γ1 − γ2
|β0|�tL

|α0|)|α0|
∥∥P r̃n

(xref + g(x̂n))
∥∥

2

+
k∑

j=1

|α j| + |β j|�tL

(γ1 − γ2
|β0|�tL

|α0|)|α0|
∥∥xn− j − xref − g(x̂n− j)

∥∥
2

(5.1)

for NM-Galerkin-HR and

‖xn − xref − g(x̂n)‖2 ≤ 1

‖P‖2(γ1|α0| − γ2|β0|�tL)
min

v̂∈Rns

∥∥P r̃n
(v̂; x̂n−1, · · · , x̂n−k,μ)

∥∥
2

+
k∑

j=1

|α j| + |β j|�tL

(γ1|α0| − γ2|β0|�tL)

∥∥xn− j − xref − g(x̂n− j)
∥∥

2

(5.2)

for NM-LSPG-HR, where coefficients α j, β j ∈ R, j = 0, · · · , k define a particular linear multi-step scheme and γ1, γ2 ∈ R are 0 <
γ1, γ2 ≤ 1.

Proof. We have

rn(xn) =
k∑

j=0

α jxn− j − �t
k∑

j=0

β j f (xn− j) = 0, (5.3)

P r̃n
(xref + g(x̂n)) = P

⎛
⎝ k∑

j=0

α j
(
xref + g(x̂n− j)

)− �t
k∑

j=0

β j f
(
xref + g

(
x̂n− j

))⎞⎠ (5.4)

where xn ∈RNs denotes FOM solution and xref + g(x̂n), x̂n ∈Rns is approximate solution.
Subtracting Eq. (5.3) from Eq. (5.4) gives

−P r̃n (xref + g(x̂n)
)= P

⎛
⎝α0

(
xn − xref − g(x̂n)

)− �tβ0
(

f (xn) − f (xref + g(x̂n))
)

+
k∑

j=1

α j
(
xn− j − xref − g(x̂n− j)

)− �t
k∑

j=1

β j
(

f
(
xn− j

)− f
(
xref + g(x̂n− j)

))⎞⎠ .

We can re-write this in the following form

P
(

xn − xref − g(x̂n) − β0�t

α0

(
f (xn) − f (xref + g(x̂n))

))
︸ ︷︷ ︸=
I

15

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
− 1

α0
P r̃n

(xref + g(x̂n)) +P

⎛
⎝− 1

α0

k∑
j=1

α j
(
xn− j − xref − g(x̂n− j)

)+ �t

α0

k∑
j=1

β j
(

f
(
xn− j

)− f
(
xref + g(x̂n− j)

))⎞⎠
︸ ︷︷ ︸

II

Applying the reverse triangle inequality gives

‖I‖2 ≥
∣∣∣∣‖P(xn − xref − g(x̂n))‖2 −

∥∥∥∥β0�t

α0
P(f (xn) − f (xref + g(x̂n)))

∥∥∥∥
2

∣∣∣∣ .
Now, we use relationships

‖P(xn − xref − g(x̂n))‖2 = γ1‖P‖2‖xn − xref − g(x̂n)‖2

and

‖P(f (xn) − f (xref + g(x̂n)))‖2 = γ2‖P‖2‖ f (xn) − f (xref + g(x̂n))‖2

where 0 < γ1 ≤ 1 and 0 < γ2 ≤ 1. Then, we have

‖I‖2 ≥
∣∣∣∣γ1‖P‖2‖xn − xref − g(x̂n)‖2 − γ2‖P‖2

∥∥∥∥β0�t

α0
(f (xn) − f (xref + g(x̂n)))

∥∥∥∥
2

∣∣∣∣
= ‖P‖2

∣∣∣∣γ1‖xn − xref − g(x̂n)‖2 − γ2

∥∥∥∥β0�t

α0
(f (xn) − f (xref + g(x̂n)))

∥∥∥∥
2

∣∣∣∣ .
If f is Lipschitz continuous with L and �t is sufficiently small such that �t <

γ1|α0|
γ2|β0|L , we have

‖I‖2 ≥ ‖P‖2

(
γ1 − γ2

|β0|�tL

|α0|
)

‖xn − xref − g(x̂n)‖2. (5.5)

With triangle inequality and Lipschitz continuity of f , we have

‖II‖2 ≤ 1

|α0| ‖P r̃n
(xref + g(x̂n))‖2 + ‖P‖2

1

|α0|
k∑

j=1

(
(|α j| + |β j|�tL)‖xn− j − xref − g(x̂n− j)‖2

)
. (5.6)

Combining Eq. (5.5) and (5.6) yields

‖xn − xref − g(x̂n)‖2 ≤ 1

‖P‖2(γ1 − γ2
|β0|�tL

|α0|)|α0|
∥∥P r̃n

(xref + g(x̂n))
∥∥

2

+
k∑

j=1

|α j| + |β j|�tL

(γ1 − γ2
|β0|�tL

|α0|)|α0|
∥∥xn− j − xref − g(x̂n− j)

∥∥
2 .

(5.7)

The error bound for NM-Galerkin-HR Eq. (5.1) is proved. Furthermore, noting that NM-LSPG-HR solution x̂n minimizes the
term ‖P r̃n

(xref + g(x̂n))‖2 in Eq. (5.7) proves the error bound for NM-LSPG-HR Eq. (5.2). �
From the error bound for NM-LSPG-HR, we know that the NM-LSPG-HR solutions satisfy sequential minimization of the

error bound.

6. Numerical results

We demonstrate the accuracy and speed-up of the nonlinear manifold reduced order model for two advection-dominated
problems: (i) a parameterized 1D inviscid Burgers equation in Section 6.1 and (ii) a parameterized 2D viscous Burgers equa-
tion with a large Reynolds number (i.e., the advection-dominated case) in Section 6.2. The ROMs are trained with solution
snapshot associated with train parameters in a parameter space and are used to predict the solution of the parameter that
is not included in the train parameters. We refer this to the predictive case. The accuracy of ROM solution x̃(·; μ) is assessed
from its maximum relative error:

maximum relative error = max
n∈N(Nt)

(‖x̃(tn;μ) − x(tn;μ)‖2

‖x(tn;μ)‖2

)
where x is the corresponding FOM solution. We also introduce the projection errors for the lower bounds of LS-ROMs and
NM-ROMs maximum relative errors:
16

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
projection error =
√√√√ Nt∑

n=1

‖ (I − ��T
) (

x(tn;μ) − xref (μ)
)‖2

2

/√√√√ Nt∑
n=1

‖x(tn;μ)‖2
2 (6.1)

for linear subspace projection and

projection error =
√√√√ Nt∑

n=1

‖ (x(tn;μ) − xref (μ)
)− g ◦ h

(
x(tn;μ) − xref (μ)

)‖2
2

/√√√√ Nt∑
n=1

‖x(tn;μ)‖2
2 (6.2)

for nonlinear manifold projection, where � denotes a POD basis matrix, and the scaled decoder g and the scaled encoder
h are a nonlinear manifold and its approximate inverse function that are obtained from an autoencoder, respectively. The
computational cost is measured in terms of the CPU wall time. Specifically, timing is obtained by performing calculations
on an Intel(R) Xeon(R) CPU E5-2637 v3 @ 3.50 GHz and DDR4 Memory @ 1866 MT/s. The autoencoders are trained on a
NVIDIA Quadro M6000 GPU with 3072 NVIDIA CUDA Cores and 12 GB GDDR5 GPU Memory using PyTorch [55] which is
the open source machine learning frame work.

6.1. 1D inviscid Burgers’ equation

We consider a parameterized 1D inviscid Burgers’ equation

∂u(x, t;μ)

∂t
+ u(x, t;μ)

∂u(x, t;μ)

∂x
= 0, (6.3)

x ∈ � = [0,2]
t ∈ [0, T],

where u ∈R denotes a scalar-valued time dependent state variable with the periodic boundary condition

u(2, t;μ) = u(0, t;μ)

and the initial condition

u(x,0;μ) =
{

1 + μ
2

(
sin
(
2πx − π

2

)+ 1
)

if 0 ≤ x ≤ 1
1 otherwise

where μ ∈D = [0.9, 1.1] is a parameter. Discretizing the space domain � into nx −1 uniform mesh gives nx grid points xi =
(i − 1)�x where i ∈ {1, 2, · · · , nx} and �x = 2

nx−1 . We denote the discrete solutions on grid points as ui(t; μ) = u(xi, t; μ),
where i ∈N(nx). Then, the backward difference scheme ∂u

∂x ≈ ui−ui−1
�x yields the semi-discretized equation which is written

by

dU

dt
= f (U)

where U = (u1, u2, · · · , unx−1)
T and f :Rnx−1 →Rnx−1 is in the form

f (U) = − 1

�x
(MU
 U + BU)

where

M =

⎡
⎢⎢⎢⎣

1
−1 1

. . .
. . .

−1 1

⎤
⎥⎥⎥⎦

(nx−1)×(nx−1)

, B =

⎡
⎢⎢⎢⎣

unx−1
0

. . .

0

⎤
⎥⎥⎥⎦

(nx−1)×(nx−1)

,

with
 denoting element-wise multiplication.
For a time integrator, we use the backward Euler scheme with time step size �t = T

nt
, where T is final time and nt is

the number of time steps. We set T = 0.5, nx = 1001, and nt = 500.
For the training process, we collect solution snapshots associated with the parameter μ ∈ Dtrain = {0.9, 1.1} such that

ntrain = 2 at which the FOM is solved. Then, the number of train data points is ntrain · (nt + 1) = 1002 and 10% of the train
data are used for validation purpose. We employ the Adam optimizer [37] for SGD with initial learning rate 0.001 which
decreases by a factor of 10 when a training loss stagnates for 10 successive training epochs. We set the number of nodes
in the hidden layer of the encoder, M1 = 2000, and the number of nodes in the hidden layer of the decoder, M2 = 12024.
The weights and bias of the autoencoder are initialized via Kaiming initialization [32]. The size of the batch is 20 and the
17

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
Fig. 8. 1D Burgers’ equation. Relative errors vs reduced dimensions.

Fig. 9. 1D Burgers’ equation. Relative errors vs the number of parameter instances. We use Dtrain = {0.9, 1.1} for ntrain = 2, Dtrain = {0.9, 0.95, 1.05, 1, 1}
for ntrain = 4, Dtrain = {0.9, 0.9 + 1

30 , 0.9 + 2
30 , 1 + 1

30 , 1 + 2
30 , 1.1} for ntrain = 6, Dtrain = {0.9, 0.925, 0.95, 0.975, 1.025, 1.05, 1.075, 1.1} for ntrain = 8, and

Dtrain = {0.9, 0.92, 0.94, 0.96, 0.98, 1.02, 1.04, 1.06, 1.08, 1.1} for ntrain = 10.

maximum number of epochs is 10, 000. The training process is stopped if the loss on the validation dataset stagnates for
200 epochs.

After the training is done, the NM-ROMs and LS-ROMs solve the Eq. (6.3) with the target parameter μ = 1 which is not
included in the train dataset for training the autoencoder and the linear subspace. Fig. 8 shows the relative error versus the
reduced dimension ns . It also shows the projection errors for LS-ROMs and NM-ROMs, which are defined in (6.1) and (6.2).
These are the lower bounds for LS-ROMs and NM-ROMs, respectively. As expected the relative errors for the NM-ROMs are
lower than the ones for the LS-ROMs. We even observe that the relative errors of NM-ROMs are even lower than the lower
bounds of LS-ROMs.

To see the trends regarding the number of training parameter instances, we increase the number of parameters starting
from ntrain = 2 with the fixed reduced dimension ns = 5 to achieve less than 1% maximum relative error for NM-ROMs. In
Fig. 9, we observe that ntrain = 2 is enough.

LS-ROMs with ns = 5 are able to achieve speed-up, but their accuracies are not as good as NM-ROMs. For example,
LS-ROMs are about 5 to 6 times faster than FOM on average and have a maximum relative error of 6%. NM-ROMs solve
the problem with less than the maximum relative error of 1%. For LS-ROMs, a hyper-reduction improves speed-up (e.g.,
9 to 10 times faster than FOM) but accuracy doesn’t get better. On the other hand, NM-ROMs without a hyper-reduction
do not achieve any speed-up with respect to the corresponding FOM simulation. For example, the FOM simulation takes
1.30 seconds, while the NM-Galerkin and NM-LSPG with ns = 5 takes 1.67 and 1.35 seconds, respectively. Therefore, the
hyper-reduction is essential to achieve a speed-up with a reasonable accuracy for the NM-ROMs. Now, we compute the
maximum relative error and wall-clock time for the hyper-reduced ROMs, i.e., NM-LSPG-HR and LS-LSPG-HR, by varying
the number of residual basis and residual samples with the fixed number of training parameter instances ntrain = 2 and the
reduced dimension ns = 5 and show the results in Table 1. Although the LS-LSPG-HR can achieve a better speed-up than
the NM-LSPG-HR, the relative error of the LS-LSPG-HR is too large, e.g., the relative errors of around 6%. On the other hand,
the NM-LSPG-HR achieves much better accuracy, i.e., a relative error of around 1%, than the LS-LSPG-HR with a speedup of
higher than 2.

Fig. 10 shows solutions in both space and time domain of FOM, NM-LSPG-HR, and LS-LSPG-HR with the reduced dimen-
sion being ns = 5. For NM-LSPG-HR, 31 residual basis and 47 residual samples are used and for LS-LSPG-HR, 30 residual
basis and 47 residual samples are used. In fact, the NM-LSPG-HR is able to achieve an accuracy as good as the NM-LSPG for
some combinations of the small number of residual basis and residual samples.
18

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
Table 1
The top 6 maximum relative errors and wall-clock times at different numbers of residual basis and samples which range from 30 to 50.

NM-LSPG-HR LS-LSPG-HR

Residual basis 31 33 36 32 40 32 30 30 30 31 41 41
Residual samples 47 49 40 47 42 46 47 48 49 49 49 48
Max. rel. error (%) 1.03 1.07 1.18 1.23 1.23 1.25 6.07 6.08 6.08 6.09 6.11 6.11
Wall-clock time (sec) 0.63 0.51 0.49 0.50 0.51 0.50 0.14 0.13 0.13 0.23 0.14 0.13
Speed-up 2.07 2.53 2.63 2.62 2.56 2.62 9.29 9.80 9.71 5.65 9.63 9.82

Fig. 10. A space–time solution instances of FOM and ROMs for 1D Burgers’ equation.

Fig. 11. The comparison of the NM-LSPG-HR and NM-LSPG on the maximum relative error vs μ.

We look into the numerical tests to see the generalization capability of the NM-LSPG and NM-LSPG-HR, i.e., the robust-
ness of the NM-LSPG and NM-LSPG-HR outside of the trained domain. The training sample point set, μ ∈ Dtrain = {0.9, 1.1},
is used to train a NM-LSPG-HR. Then the trained NM-LSPG-HR model is used to predict the following parameter points,
μ ∈Dtest = {μ|μ = 0.6 + 0.02i, i = 0, 1, · · · , 30}. The residual basis dimension and the number of residual samples for each
test case are given in Table 2. Fig. 11 shows the maximum relative error over the test range of the parameter points. Note
that the NM-LSPG and NM-LSPG-HR are the most accurate within the range of the training points, i.e., [0.9, 1.1]. As the
parameter points go beyond the training parameter domain, the accuracy of the NM-LSPG and NM-LSPG-HR start to deteri-
orate gradually. This implies that the NM-LSPG and NM-LSPG-HR have a trust region. Its trust region should be determined
by an application. For example, if the application is okay with the maximum relative error of 10%, then the trust region of
this particular NM-LSPG-HR is [0.6, 1.2]. However, if the application requires a higher accuracy, e.g., the maximum relative
error of 2%, then the trust region of the NM-LSPG-HR is [0.82, 1.12]. Note that the average speed-up of the NM-LSPG-HR
for all the test cases is 2.72 (see Table 2).

6.2. 2D Burgers’ equation

We now consider a parameterized 2D viscous Burgers’ equation

∂u + u
∂u + v

∂u = 1
(

∂2u
2

+ ∂2u
2

)
(6.4)
∂t ∂x ∂ y Re ∂x ∂ y

19

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
Table 2
The residual basis dimension and the number of residual samples for each test parameter μ. The wall-clock time and the speed-up of the NM-LSPG-HR
with respect to the corresponding FOM are also reported.

μ Residual basis Residual samples Wall-clock time (sec) Speed-up

0.60 46 48 0.54 2.41

0.62 37 39 0.46 2.83

0.64 37 39 0.47 2.77

0.66 44 46 0.52 2.50

0.68 42 44 0.48 2.71

0.70 42 44 0.48 2.71

0.72 42 44 0.48 2.71

0.74 42 44 0.48 2.71

0.76 43 45 0.53 2.45

0.78 36 45 0.46 2.83

0.80 38 47 0.47 2.77

0.82 38 47 0.47 2.77

0.84 38 47 0.47 2.77

0.86 38 47 0.47 2.77

0.88 37 46 0.46 2.83

0.90 33 33 0.45 2.89

0.92 33 33 0.46 2.83

0.94 33 33 0.46 2.83

0.96 33 33 0.45 2.89

0.98 31 47 0.45 2.89

1.00 31 47 0.45 2.89

1.02 33 49 0.48 2.71

1.04 31 48 0.46 2.83

1.06 30 48 0.46 2.83

1.08 33 39 0.48 2.71

1.10 33 40 0.48 2.71

1.12 33 42 0.48 2.71

1.14 44 49 0.54 2.41

1.16 31 48 0.48 2.71

1.18 31 48 0.47 2.77

1.20 44 48 0.57 2.28

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂ y
= 1

Re

(
∂2 v

∂x2
+ ∂2 v

∂ y2

)
(x, y) ∈ � = [0,1] × [0,1]

t ∈ [0,2],
with the boundary condition

u(x, y, t;μ) = v(x, y, t;μ) = 0 on � = {(x, y)|x ∈ {0,1}, y ∈ {0,1}}
and the initial condition

u(x, y,0;μ) =
{

μ sin (2πx) · sin (2π y) if (x, y) ∈ [0,0.5] × [0,0.5]
0 otherwise

v(x, y,0;μ) =
{

μ sin (2πx) · sin (2π y) if (x, y) ∈ [0,0.5] × [0,0.5]
0 otherwise

where μ ∈ D = [0.9, 1.1] is a parameter and u(x, y, t; μ) and v(x, y, t; μ) denote the x and y directional velocities, respec-
tively, with u : � × [0, 2] ×D → R and v : � × [0, 2] × D → R defined as the solutions to Eq. (6.4), and Re is a Reynolds
number which is set Re = 10000. In the case of Re = 10000 (an advection-dominated case), the FOM solution snapshot
shows slowly decaying singular values compared to the case of Re = 100 as shown in Fig. 12 and we observe that a sharp
gradient, i.e., a shock, appears in Figs. 15(a) and 15(d).

Discretizing the space domain � into nx − 1 and ny − 1 uniform meshes in x and y directions, respectively, gives nx ×ny

grid points (xi, y j). xi is given by xi = (i − 1)�x where i ∈ {1, 2, · · · , nx} and �x = 1
nx−1 and y j is given by y j = (j − 1)�y

where j ∈ {1, 2, · · · , ny} and �y = 1 . We denote the discrete solutions on grid points as ui, j(t; μ) = u(xi, y j, t; μ) and
ny−1

20

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
Fig. 12. The effect of Reynolds number on the singular value decay.

vi, j(t; μ) = v(xi, y j, t; μ), where i ∈ N(nx) and j ∈ N(ny). Let nxy = (nx − 2) × (ny − 2). Then, the backward difference
scheme for the first spatial derivative terms

∂(·)
∂x

≈ (·)i, j − (·)i−1, j

�x
,

∂(·)
∂ y

≈ (·)i, j − (·)i, j−1

�y

and the central difference scheme for the second spatial derivative terms

∂2(·)
∂x2

≈ (·)i+1, j − 2(·)i, j + (·)i−1, j

�x2
,

∂2(·)
∂ y2

≈ (·)i, j+1 − 2(·)i, j + (·)i, j−1

�y2

yield the semi-discretized equation which is written by

dU

dt
= f u(U , V),

dV

dt
= f v(U , V)

where U = (u2,2, u3,2, · · · , unx−2,2, u2,3, u3,3, · · · , unx−2,3, · · · u2,ny−2, u3,ny−2, · · · , unx−2,ny−2)
T and V = (v2,2, v3,2, · · · ,

vnx−2,2, v2,3, v3,3, · · · , vnx−2,3, · · · v2,ny−2, v3,ny−2, · · · , vnx−2,ny−2)
T with superscript T standing for the transpose operation

and f u :Rnxy ×Rnxy →Rnxy and f v :Rnxy ×Rnxy →Rnxy are in the form

f u(U , V) = − 1

�x
U
 (MU − bux1) − 1

�y
V
 (N U − buy1

)
+ 1

Re�x2 (DxU + bux2) + 1

Re�y2

(
D y U + buy2

)
f v(U , V) = − 1

�x
U
 (M V − bvx1) − 1

�y
V
 (N V − bv y1

)
+ 1

Re�x2 (Dx V + bvx2) + 1

Re�y2

(
D y V + bv y2

)
where

M =
⎡
⎢⎣

Mb
. . .

Mb

⎤
⎥⎦

nxy×nxy

, Mb =

⎡
⎢⎢⎢⎣

1
−1 1

. . .
. . .

−1 1

⎤
⎥⎥⎥⎦

(nx−2)×(nx−2)

,

N =

⎡
⎢⎢⎢⎣

Nb
−Nb Nb

. . .
. . .

−Nb Nb

⎤
⎥⎥⎥⎦ , Nb =

⎡
⎢⎣

1
. . .

1

⎤
⎥⎦

(nx−2)×(nx−2)

,

nxy×nxy

21

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
bux1 =
((

u1,2, u1,3, · · · , u1,ny−1
)

1×(ny−2)
⊗ (1,0, · · · ,0)1×(nx−2)

)T
,

buy1 =
(
(1,0, · · · ,0)1×(ny−2) ⊗ (u2,1, u3,1, · · · , unx−1,1

)
1×(nx−2)

)T
,

bvx1 =
((

v1,2, v1,3, · · · , v1,ny−1
)

1×(ny−2)
⊗ (1,0, · · · ,0)1×(nx−2)

)T
,

bv y1 =
(
(1,0, · · · ,0)1×(ny−2) ⊗ (v2,1, v3,1, · · · , vnx−1,1

)
1×(nx−2)

)T
,

Dx =
⎡
⎢⎣

Dxb
. . .

Dxb

⎤
⎥⎦

nxy×nxy

, Dxb =
⎡
⎢⎣

−2 1

1
. . . 1
1 −2

⎤
⎥⎦

(nx−2)×(nx−2)

,

D y =
⎡
⎢⎣

−2D yb D yb

D yb
. . . D yb

D yb −2D yb

⎤
⎥⎦

nxy×nxy

, D yb =
⎡
⎢⎣

1
. . .

1

⎤
⎥⎦

(nx−2)×(nx−2)

,

bux2 = (u1,2,0, · · · ,0, unx,2, u1,3,0, · · · ,0, unx,3, · · · , u1,ny−1,0, · · · ,0, unx,ny−1)
T ,

buy2 = (u2,1, u3,1, · · · , unx−1,1,0, · · · ,0, u2,ny , u3,ny , · · · , unx−1,ny)
T ,

bvx2 = (v1,2,0, · · · ,0, vnx,2, v1,3,0, · · · ,0, vnx,3, · · · , v1,ny−1,0, · · · ,0, vnx,ny−1)
T ,

bv y2 = (v2,1, v3,1, · · · , vnx−1,1,0, · · · ,0, v2,ny , v3,ny , · · · , vnx−1,ny)
T

with
 and ⊗ denoting the element-wise multiplication and the Kronecker product, respectively.
For a time integrator, we use the backward Euler scheme with time step size �t = 2

nt
, where nt is the number of time

steps. We set nx = 60, ny = 60, and nt = 1500.
For the training process, we collect solution snapshots associated with the parameter μ ∈ Dtrain = {0.9, 0.95, 1.05, 1.1}

such that ntrain = 4 at which the FOM is solved. Then, the number of train data points is ntrain · (nt + 1) = 6004 and 10% of
the train data are used for validation purpose. We employ the Adam optimizer [37] with the SGD and the initial learning
rate of 0.001, which decreases by a factor of 10 when a training loss stagnates for 10 successive training epochs. Here,
we have two autoencoders. One for U vector and the other for V vector. The reason why we have such two autoencoders
is that we can use less memory for training process compared to one autoencoder for (U T , V T)T vector and train both of
them at the same time. We set the number of nodes in hidden layer in the encoder, M1 = 6728, and the number of nodes in
hidden layer in the decoder, M2 = 33730. The weights and bias of the autoencoder are initialized via Kaiming initialization
[32] as in the first numerical example. The size of the batch is 240 and the maximum number of epochs is 10, 000. The
training process is stopped if the loss on the validation dataset stagnates for 200 epochs.

After the training is done, the NM-ROMs and LS-ROMs solve the Eq. (6.4) with the target parameter μ = 1, which is not
included in the train dataset for training the autoencoder and the linear subspace. Fig. 13 shows the relative error versus
the reduced dimension ns for both NM-ROMs and LS-ROMs. It also shows the projection errors for LS-ROMs and NM-ROMs,
which are defined in (6.1) and (6.2). These are the lower bounds for LS-ROMs and NM-ROMs, respectively. As expected
the relative errors for the NM-ROMs are lower than the ones for the LS-ROMs. We even observe that the relative errors
of NM-LSPG are even lower than the lower bounds of LS-ROMs. One notable observation is that NM-Galerkin is not able
to achieve a good accuracy, while the NM-LSPG does. Another observation is that LS-ROMs struggle more for this problem
than the 1D invisid Burgers’ equations, e.g., some LS-ROMs fail to converge.

To see the trends regarding the number of training parameter instances, we increase the number of parameters starting
from ntrain = 2 with the fixed reduced dimension ns = 5 to achieve less than 1% maximum relative error for NM-ROMs. In
Fig. 14, we observe that ntrain = 4 is enough.

Both NM-Galerkin and LS-ROMs without a hyper-reduction do not achieve any speed-up with respect to the correspond-
ing FOM simulation. For example, the FOM simulation takes 140.67 seconds, while the NM-Galerkin, NM-LSPG, LS-Galerkin,
and LS-LSPG with ns = 5 takes 143.41, 78.22, 519.12 and 2193.70 seconds, respectively. Although NM-LSPG is able to
achieve a speed-up, it is not considerable. Therefore, the hyper-reduction is essential to achieve a considerable speed-up
with a reasonable accuracy.

We compute the maximum relative error by choosing the larger of the two errors between the maximum relative error
of u and the maximum relative error of v . We vary the number of residual basis and residual samples, with the fixed
number of training parameter instances ntrain = 4 and the reduced dimension ns = 5, and measure the wall-clock time. The
results are shown in Table 3. Although the LS-LSPG-HR can achieve better speedup than the NM-LSPG-HR, the relative error
of the LS-LSPG-HR is too large to be reasonable, e.g., the relative errors of around 37%. On the other hand, the NM-LSPG-HR
achieves much better accuracy, i.e., a relative error of around 1%, than the LS-LSPG-HR with a good speedup, i.e., a speedup
of higher than 11.
22

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
Fig. 13. 2D Burgers’ equation. Relative errors vs reduced dimensions. A maximum relative error that is 1 means the ROM failed to solve the problem.

Fig. 14. 2D Burgers’ equation. Relative errors vs the number of parameter instances. The following parameter sets are used: Dtrain =
{0.9, 1.1} for ntrain = 2, Dtrain = {0.9, 0.95, 1.05, 1.)} for ntrain = 4, Dtrain = {0.9, 0.9 + 1

30 , 0.9 + 2
30 , 1 + 1

30 , 1 + 2
30 , 1.1} for ntrain = 6, Dtrain =

{0.9, 0.925, 0.95, 0.975, 1.025, 1.05, 1.075, 1.1} for ntrain = 8, and Dtrain = {0.9, 0.92, 0.94, 0.96, 0.98, 1.02, 1.04, 1.06, 1.08, 1.1} for ntrain = 10.

Table 3
The top 6 maximum relative errors and wall-clock times at different numbers of residual basis and samples which range from 40 to 60.

NM-LSPG-HR LS-LSPG-HR

Residual basis 55 56 51 53 54 44 59 53 53 53 53 53
Residual samples 58 59 54 56 57 47 59 58 59 56 55 53
Max. rel. error (%) 0.93 0.94 0.95 0.97 0.97 0.98 34.38 37.73 37.84 37.95 37.96 37.97
Wall-clock time (sec) 12.15 12.35 12.09 12.14 12.29 12.01 5.26 5.02 4.86 5.05 4.75 7.18
Speed-up 11.58 11.39 11.63 11.58 11.44 11.71 26.76 28.02 28.95 27.83 29.61 19.58

Fig. 15 shows solutions at the last time step of FOM, NM-LSPG-HR, and LS-LSPG-HR with the reduced dimension being
ns = 5. For NM-LSPG-HR, 55 residual basis dimension and 58 residual samples are used and for LS-LSPG-HR, 59 residual
basis dimension and 59 residual samples are used. Both FOM and NM-LSPG-HR show good agreement in their solutions,
while the LS-LSPG-HR is not able to achieve a good accuracy. In fact, the NM-LSPG-HR is able to achieve an accuracy as
good as the NM-LSPG for some combinations of the small number of residual basis and residual samples as in Section 6.1.

We look into the numerical tests to see the generalization capability of the NM-LSPG and NM-LSPG-HR, i.e., the ro-
bustness of the NM-LSPG and NM-LSPG-HR outside of the trained domain. The training sample point set, μ ∈ Dtrain =
{0.9, 0.95, 1.05, 1.1}, is used to train a NM-LSPG-HR. Then the trained NM-LSPG-HR model is used to predict the follow-
ing parameter points, μ ∈ Dtest = {μ|μ = 0.85 + 0.01i, i = 0, 1, · · · , 30}. The residual basis dimension and the number of
residual samples for each test case are given in Table 4. Fig. 16 shows the maximum relative error over the test range
of the parameter points. Note that the NM-LSPG and NM-LSPG-HR are the most accurate within the range of the training
points, i.e., [0.9, 1.1]. As the parameter points go beyond the training parameter domain, the accuracy of the NM-LSPG and
NM-LSPG-HR start to deteriorate gradually. This implies that the NM-LSPG and NM-LSPG-HR have a trust region. Its trust
region should be determined by an application. For example, if the application is okay with the maximum relative error
of 10%, then the trust region of this particular NM-LSPG-HR is [0.85, 1.15]. However, if the application requires a higher
23

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
Fig. 15. Solution snapshots of FOM, NM-LSPG-HR, and LS-LSPG-HR at t = 2.

Fig. 16. The comparison of the NM-LSPG-HR and NM-LSPG on the maximum relative error vs μ.

accuracy, e.g., the maximum relative error of 2%, then the trust region of the NM-LSPG-HR is [0.87, 1.08]. Note that the
average speed-up of the NM-LSPG-HR for all the test cases is 10.61 (see Table 4).

7. Discussion & conclusion

In this work, we have successfully developed an accurate and efficient nonlinear manifold based reduced order model.
We demonstrated that the linear subspace based reduced order model is not able to represent advection-dominated or
sharp gradient solutions of 1D inviscid Burgers’ equation and 2D viscous Burgers’ equation with a high Reynolds number.
However, our new approach, NM-LSPG-HR, solves such problems accurately and efficiently. For 1D case, the NM-LSPG-HR
method achieves a good accuracy i.e., the maximum relative error of around 1% with the speed-up of higher than 2. For 2D
case, the NM-LSPG-HR method was able to achieve even better accuracy, i.e., the maximum relative error of less than 1%,
with even better speed-up of around 12 than the 1D case. We also presented a posteriori error bounds for NM-Galerkin-HR
and NM-LSPG-HR. The speed-up of the NM-LSPG-HR is achieved by choosing the sparse shallow decoder as the nonlinear
manifold and applying the efficient hyper-reduction computation, which can be done by constructing a subnet. Furthermore,
we expect more speed-up as the FOM size increases because the difference in the computational cost between the FOM and
NM-LSPG-HR increases as shown in Fig. 17.
24

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
Table 4
The residual basis dimension and the number of residual samples for each test parameter μ. The wall-clock time and the speed-up of the NM-LSPG-HR
with respect to the corresponding FOM are also reported.

μ Residual basis Residual samples Wall-clock time (sec) Speed-up
0.85 47 59 13.65 10.31
0.86 50 50 13.19 10.66
0.87 45 45 12.61 11.16
0.88 49 50 12.69 11.08
0.89 52 52 13.41 10.49
0.90 53 57 13.35 10.54
0.91 59 59 13.60 10.34
0.92 55 58 13.41 10.49
0.93 51 54 13.17 10.68
0.94 54 57 13.32 10.56
0.95 55 58 13.52 10.40
0.96 55 58 13.54 10.39
0.97 54 57 13.39 10.51
0.98 52 55 13.20 10.66
0.99 52 55 13.18 10.67
1.00 55 58 13.38 10.51
1.01 46 49 12.80 10.99
1.02 50 53 13.35 10.54
1.03 50 53 13.40 10.50
1.04 52 53 13.40 10.50
1.05 46 58 13.21 10.65
1.06 54 57 13.58 10.36
1.07 45 57 13.20 10.66
1.08 45 57 13.23 10.63
1.09 43 55 13.27 10.60
1.10 44 48 13.31 10.57
1.11 40 43 12.79 11.00
1.12 48 59 13.66 10.30
1.13 42 51 13.25 10.62
1.14 46 49 13.10 10.74
1.15 40 50 13.11 10.73

Fig. 17. Computational cost vs FOM size. The figure shows that the higher the speed up will be achieved, the larger the underlying FOM problem is. The
graph is generated based on the computational cost analysis done in Appendix B.

Compared with the deep neural networks for computer vision and natural language processing applications, our neural
networks are shallow with a small number of parameters. However, these networks were able to capture the variation in
our 1D and 2D Burgers’ simulations. A main future work for transferring this work to more complex simulations, will be to
find the right balance between a shallow network that is large enough to capture the data variance and yet small enough to
run faster than the FOM. Another future work will be to find an efficient way of determining the proper size of the residual
basis and the number of sample points a priori. To find the optimal size of residual basis and the number of sample points
for hyper-reduced ROMs, we relied on test results. This issue is not just for NM-LSPG-HR but also for LS-LSPG-HR.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This work was performed at Lawrence Livermore National Laboratory and was supported by the LDRD program (project
20-FS-007). Youngkyu was also supported for this work through generous funding from DTRA. Lawrence Livermore National
25

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear
Security Administration under Contract DE-AC52-07NA27344 and LLNL-JRNL-814844.

Appendix A. Time integrators

A.1. The linear multistep methods

Applying a linear k-step method to numerically solve Eq. (2.1) yields an O�E characterized by the following system of
nonlinear algebraic residual function that needs to be solved for the numerical solution xn ∈RNs at each time instance:

rn(xn; xn−1 . . . , xn−k(tn),μ) :=
k(tn)∑
j=0

αn
j xn− j − �t

k(tn)∑
j=0

βn
j f n− j

= 0, n ∈N(Nt),

where coefficients αn
j , β

n
j ∈R , j = 0, . . . , k(tn) define a particular linear multistep scheme. It is necessary for consistency to

have αn
0 �= 0 and

∑k(tn)
j=0 αn

j = 0. Here, k(tn)(≤ n) denotes the number of steps used by the linear multistep method at time
instance n. The linear multistep methods include the one-step Euler methods, the implicit Adams–Moulton methods, the
explicit Adams–Bashforth methods, and the Backward Differentiation Formulas (BDFs).

The second order Adams–Bashforth (AB) method numerically solves Eq. (2.1), by solving the following nonlinear system
of equations for xn at n-th time step:

xn − xn−1 = �t

(
3

2
f n−1 − 1

2
f n−2

)
.

The residual function of the second AB method is defined as

rn
AB(xn; xn−1,μ) := xn − xn−1 − �t

(
3

2
f n−1 − 1

2
f n−2

)
.

The second order Adams–Moulton (AM) method numerically solves Eq. (2.1), by solving the following nonlinear system
of equations for xn at n-th time step:

xn − xn−1 = 1

2
�t(f n + f n−1).

The residual function of the second AM method is defined as

rn
AM(xn; xn−1,μ) := xn − xn−1 − �t

1

2
(f n + f n−1). (A.1)

The 2-step BDF numerically solves Eq. (2.1), by solving the following nonlinear system of equations for xn at n-th time
step:

xn − 4

3
xn−1 + 1

3
xn−2 = 2

3
�t f n.

The residual function of the two-step BDF method is defined as

rn
BDF(xn; xn−1, xn−2,μ) := xn − 4

3
xn−1 + 1

3
xn−2 − 2

3
�t f n. (A.2)

A.2. The midpoint Runge–Kutta method

The midpoint method, a 2-stage Runge–Kutta method, takes the following two stages to advance at n-th time step of
Eq. (2.1):

xn− 1
2

= xn−1 + �t

2
f n−1

xn = xn−1 + �t f 1 .
n− 2

26

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
Appendix B. Computational costs

Let’s denote the size of FOM and ROM as m and f , respectively. Because of mathematical models that require local
information, we need not only the indices selected from the hyper-reduction, but also their neighbors. We denote the total
number of indices as z and assume z � m, z2 < m and z > f (e.g., z = 10 f). For simplicity, we assume the mask matrix
for the sparse decoder has the same structure as the mask matrix for 1D Burgers equation as depicted in Section 3.2. To
generate the mask matrix, two variables b and δb are used, where b denotes the number of nodes in the hidden layer to
compute single output element and δb denotes the amount by which the block of b nodes shifts. Then, the number of nodes
in the hidden layer can be computed as M2 = b + (m − 1)δb.

B.1. Computational costs of NM-LSPG

Since the decoder is a single hidden layer neural network, the cost of the decoder and its Jacobian evaluation is O(mb) +
O(M2 f) and O(f M2) +O(mbf), respectively. Computing residual, r̃, includes only element-wise vector calculation, resulting
in O(m). Jacobian of the residual, J̃ , can be computed using row-wise multiplication of matrix and vector because of local
connectivity of mathematical model (e.g., discrete 1D and 2D Burgers equation) in O(f m). For the Gauss–Newton method,
we need to construct r̂ = J̃ T r̃ and Ĵ = J̃ T J̃ , which requires O(f m) and O(f 2m), respectively. It also takes O(f 2) to compute
each update, δu = − Ĵ−1r̂, iteratively. Assuming the number of Gauss–Newton iterations is in the same order for the given
governing equation, we can factor out the number of iterations. Thus, the total computational costs of NM-LSPG for each
time step is O(f M2) +O(mbf) +O(f 2m). With the assumption of M2 ≈ mδb, f < b, and δb < b, we have O(mbf).

B.2. Computational costs of NM-LSPG-HR

The size of the weight matrix connecting the hidden layer and the output layer is reduced to z by βM2, where β = z
m

for the best case (z successive points are selected) and β = 1 for the worst case (z uniformly separate points are selected).
Note that when z is small, it is possible to have β < 1 even for the worst case. Then, replacing m with z and M2 with
βM2 in the decoder and its Jacobian evaluation gives us O(zb) + O(βM2 f) and O(f βM2) +O(zbf), respectively. Costs of
computing residual, r̃H R = Z T r̃ and its Jacobian, J̃ H R = Z T J̃ for NM-LSPG-HR are O(z) and O(f z), respectively because the
sampling matrix Z T selects z elements of the residual and z rows of its Jacobian without constructing the sampling matrix.
For the Gauss–Newton method, we need to construct r̂ = J̃ T

H RP r̃H R and Ĵ = J̃ T
H RP J̃ H R , where P is the pre-computed z × z

matrix, which require O(f z) + O(z2) and O(f z2) + O(f 2z), respectively. It also takes O(f 2) to compute each update,
δu = − Ĵ−1r̂, iteratively. Assuming the number of Gauss–Newton iterations is in the same order for the given governing
equation, we can factor out the number of iterations. Thus, the total computational costs of NM-LSPG-HR for each time step
is O(f βM2) +O(zbf) +O(f z2). With the assumption of M2 ≈ δbm, we have O(f βδbm) +O(zbf) +O(f z2). For the best
case, β = z

m , the computational costs is O(f zδb) +O(zbf) +O(f z2). Assuming δb < b, we have O(zbf) +O(f z2). For the
worst case, β = 1, we have O(f δbm) +O(zbf) +O(f z2).

B.3. Computational costs of LS-LSPG

The decoder g(x̂) and its Jacobian J g(x̂) are replaced with �x̂ and �, respectively. Thus, the cost of �x̂ is O(mf) and the
cost of its Jacobian evaluation is zero. The costs of computing residual and its Jacobian are the same as for NM-LSPG. Also,
the costs of the Gauss–Newton method is the same as in Section B.1. Assuming the number of Gauss–Newton iterations is in
the same order for the given governing equation, we can factor out the number of iterations. Thus, the total computational
costs of LS-LSPG for each time step is O(f 2m).

B.4. Computational costs of LS-LSPG-HR

For LS-LSPG-HR, we construct reduced model with the size of basis matrix �H R being z by f , where �H R := Z T �. Thus,
the costs of �H R x̂ is O(zf) and the cost of its Jacobian evaluation is zero. The costs of computing residual and its Jacobian
are the same as for NM-LSPG-HR. Also, the costs of the Gauss–Newton method is the same as in Section B.2. Assuming the
number of Gauss–Newton iterations is in the same order for the given governing equation, we can factor out the number of
iterations. Thus, the total computational costs of LS-LSPG-HR for each time step is O(f 2z) +O(f z2).

References

[1] Rémi Abgrall, David Amsallem, Roxana Crisovan, Robust model reduction by l1-norm minimization and approximation via dictionaries: application to
nonlinear hyperbolic problems, Adv. Model. Simul. Eng. Sci. 3 (1) (2016) 1–16.

[2] David Amsallem, Matthew Zahr, Youngsoo Choi, Charbel Farhat, Design optimization using hyper-reduced-order models, Struct. Multidiscip. Optim.
51 (4) (2015) 919–940.

[3] Harbir Antil, Matthias Heinkenschloss, Ronald H.W. Hoppe, Christopher Linsenmann, Achim Wixforth, Reduced order modeling based shape optimiza-
tion of surface acoustic wave driven microfluidic biochips, Math. Comput. Simul. 82 (10) (2012) 1986–2003.
27

http://refhub.elsevier.com/S0021-9991(21)00736-1/bib71A4AB935D9564F92325CAE5051996FCs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib71A4AB935D9564F92325CAE5051996FCs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib27AFD7810741CEB1B7CC70CB689CD789s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib27AFD7810741CEB1B7CC70CB689CD789s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib4928C0840F24F977B4D86622D819D803s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib4928C0840F24F977B4D86622D819D803s1

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
[4] Christian Beck, E. Weinan, Arnulf Jentzen, Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations
and second-order backward stochastic differential equations, J. Nonlinear Sci. 29 (4) (2019) 1563–1619.

[5] Peter Benner, Serkan Gugercin, Karen Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev.
57 (4) (2015) 483–531.

[6] Jens Berg, Kaj Nyström, A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing 317
(2018) 28–41.

[7] Gal Berkooz, Philip Holmes, John L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech. 25 (1)
(1993) 539–575.

[8] Léon Bottou, Olivier Bousquet, The tradeoffs of large scale learning, in: Advances in Neural Information Processing Systems, 2008, pp. 161–168.
[9] Kevin Carlberg, Adaptive h-refinement for reduced-order models, Int. J. Numer. Methods Eng. 102 (5) (2015) 1192–1210.

[10] Kevin Carlberg, Matthew Barone, Harbir Antil, Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction, J. Comput. Phys. 330
(2017) 693–734.

[11] Kevin Carlberg, Charbel Bou-Mosleh, Charbel Farhat, Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compres-
sive tensor approximations, Int. J. Numer. Methods Eng. 86 (2) (2011) 155–181.

[12] Kevin Carlberg, Youngsoo Choi, Syuzanna Sargsyan, Conservative model reduction for finite-volume models, J. Comput. Phys. 371 (2018) 280–314.
[13] Kevin Carlberg, Charbel Farhat, Julien Cortial, David Amsallem, The gnat method for nonlinear model reduction: effective implementation and applica-

tion to computational fluid dynamics and turbulent flows, J. Comput. Phys. 242 (2013) 623–647.
[14] Saifon Chaturantabut, Danny C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput. 32 (5) (2010) 2737–2764.
[15] Ricky T.Q. Chen, Yulia Rubanova, Jesse Bettencourt, David K. Duvenaud, Neural ordinary differential equations, in: Advances in Neural Information

Processing Systems, 2018, pp. 6571–6583.
[16] Youngsoo Choi, Gabriele Boncoraglio, Spenser Anderson, David Amsallem, Charbel Farhat, Gradient-based constrained optimization using a database of

linear reduced-order models, J. Comput. Phys. (2020) 109787.
[17] Youngsoo Choi, Peter Brown, Bill Arrighi, Robert Anderson, Kevin Huynh, Space–time reduced order model for large-scale linear dynamical systems

with application to Boltzmann transport problems, J. Comput. Phys. (2020) P109845.
[18] Youngsoo Choi, Kevin Carlberg, Space–time least-squares Petrov–Galerkin projection for nonlinear model reduction, SIAM J. Sci. Comput. 41 (1) (2019)

A26–A58.
[19] Youngsoo Choi, Deshawn Coombs, Robert Anderson, Sns: a solution-based nonlinear subspace method for time-dependent model order reduction,

SIAM J. Sci. Comput. 42 (2) (2020) A1116–A1146.
[20] Youngsoo Choi, Geoffrey Oxberry, Daniel White, Trenton Kirchdoerfer, Accelerating design optimization using reduced order models, arXiv preprint,

arXiv:1909 .11320, 2019.
[21] P.G. Constantine, G. Iaccarino, Reduced order models for parameterized hyperbolic conservations laws with shock reconstruction, in: Center for Turbu-

lence Research Annual Brief, 2012.
[22] George Cybenko, Math. Control Signals Syst. 2 (1989) 303.
[23] Gabriel Dimitriu, Ionel M. Navon, Răzvan Ştefănescu, Application of pod-deim approach for dimension reduction of a diffusive predator-prey system

with Allee effect, in: International Conference on Large-Scale Scientific Computing, Springer, 2013, pp. 373–381.
[24] M.W.M.G. Dissanayake, N. Phan-Thien, Neural-network-based approximations for solving partial differential equations, Commun. Numer. Methods Eng.

10 (3) (1994) 195–201.
[25] Zlatko Drmac, Serkan Gugercin, A new selection operator for the discrete empirical interpolation method—improved a priori error bound and exten-

sions, SIAM J. Sci. Comput. 38 (2) (2016) A631–A648.
[26] Zlatko Drmac, Arvind Krishna Saibaba, The discrete empirical interpolation method: canonical structure and formulation in weighted inner product

spaces, SIAM J. Matrix Anal. Appl. 39 (3) (2018) 1152–1180.
[27] Richard Everson, Lawrence Sirovich, Karhunen–Loeve procedure for gappy data, JOSA A 12 (8) (1995) 1657–1664.
[28] Hongfei Fu, Hong Wang, Zhu Wang, Pod/deim reduced-order modeling of time-fractional partial differential equations with applications in parameter

identification, J. Sci. Comput. 74 (1) (2018) 220–243.
[29] Mohamadreza Ghasemi, Eduardo Gildin, Localized model reduction in porous media flow, IFAC-PapersOnLine 48 (6) (2015) 242–247.
[30] Jiequn Han, Arnulf Jentzen, E. Weinan, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. 115 (34) (2018)

8505–8510.
[31] Juncai He, Lin Li, Jinchao Xu, Chunyue Zheng, Relu deep neural networks and linear finite elements, arXiv preprint, arXiv:1807.03973, 2018.
[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Delving deep into rectifiers: surpassing human-level performance on imagenet classification, in:

Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034.
[33] Michael Hinze, Stefan Volkwein, Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal

control, in: Dimension Reduction of Large-Scale Systems, Springer, 2005, pp. 261–306.
[34] Harold Hotelling, Analysis of a complex of statistical variables into principal components, J. Educ. Psychol. 24 (6) (1933) 417.
[35] Rui Jiang, Louis J. Durlofsky, Implementation and detailed assessment of a gnat reduced-order model for subsurface flow simulation, J. Comput. Phys.

379 (2019) 192–213.
[36] Yuehaw Khoo, Jianfeng Lu, Lexing Ying, Solving parametric pde problems with artificial neural networks, arXiv preprint, arXiv:1707.03351, 2017.
[37] Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization, 2014.
[38] Michael Kirby, Dieter Armbruster, Reconstructing phase space from pde simulations, Z. Angew. Math. Phys. 43 (6) (1992) 999–1022.
[39] Mark A. Kramer, Nonlinear principal component analysis using autoassociative neural networks, AIChE J. 37 (2) (1991) 233–243.
[40] Karl Kunisch, Stefan Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, SIAM J. Numer. Anal.

40 (2) (2002) 492–515.
[41] Isaac E. Lagaris, Aristidis Likas, Dimitrios I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural

Netw. 9 (5) (1998) 987–1000.
[42] Kookjin Lee, Kevin Carlberg, Deep conservation: a latent dynamics model for exact satisfaction of physical conservation laws, arXiv preprint, arXiv:

1909 .09754, 2019.
[43] Kookjin Lee, Kevin T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders, J. Comput. Phys.

404 (2020) 108973.
[44] Randall J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, SIAM, 2007.
[45] L. Ljung, System Identification: Theory for the User. Prentice Hall Information and System Sciences Series, Prentice Hall PTR, 1999.
[46] Michel Loeve, Probability Theory, D. Van Nostrand, New York, 1955.
[47] Zichao Long, Yiping Lu, Xianzhong Ma, Bin Dong Pde-net, Learning pdes from data, in: International Conference on Machine Learning, 2018,

pp. 3208–3216.
[48] Lu Lu, Pengzhan Jin, George Em Karniadakis, Deeponet: learning nonlinear operators for identifying differential equations based on the universal

approximation theorem of operators, arXiv preprint, arXiv:1910 .03193, 2019.
28

http://refhub.elsevier.com/S0021-9991(21)00736-1/bib6ED11D96508CDA7E6A1477CAEFC07C60s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib6ED11D96508CDA7E6A1477CAEFC07C60s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib6E696847B7E75BF93368F876DE0935EDs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib6E696847B7E75BF93368F876DE0935EDs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibB81B07E1ABB63F522FD16E14210BE6B7s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibB81B07E1ABB63F522FD16E14210BE6B7s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib47BED375904AEFF8FD55CDED08AA9AB3s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib47BED375904AEFF8FD55CDED08AA9AB3s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibD8873DD8703DBA783F843A44D2546298s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib22671E64899014C2151557667F0D3A56s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib0EEC26415297A3A04A3D340DB2C56A10s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib0EEC26415297A3A04A3D340DB2C56A10s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib3C5E99A537AC3A3CD17EA4059C77A873s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib3C5E99A537AC3A3CD17EA4059C77A873s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib8356048E5F6FBEDB7BB568D6EFF2D85Fs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib8FAD4E4CA77852CFB26D6BF017AA8858s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib8FAD4E4CA77852CFB26D6BF017AA8858s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib1632E7B34E5A546D6CAB59A758CC43F1s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib75044DCECA97FD1B79C00596D122B9FBs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib75044DCECA97FD1B79C00596D122B9FBs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibEAB71FCBF71EE83CF2EDBBA95CCCC934s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibEAB71FCBF71EE83CF2EDBBA95CCCC934s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib7C510087F64F55F0F1606AAACE4DAF2Cs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib7C510087F64F55F0F1606AAACE4DAF2Cs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib9F62AD58E419732226A5EC67BC1BA73Es1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib9F62AD58E419732226A5EC67BC1BA73Es1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib09031F53B03FF1089D6236C38CC81B17s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib09031F53B03FF1089D6236C38CC81B17s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib703A1AA88214EA8CFF1A49CE311CBFAEs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib703A1AA88214EA8CFF1A49CE311CBFAEs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibB866D129228C852C3E6C573F8AE8206As1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibB866D129228C852C3E6C573F8AE8206As1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib298DDE17229DBA32771497936B8DECC4s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibA2B9D6513D10E06B65560FB30D193327s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibA2B9D6513D10E06B65560FB30D193327s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib6F61703F07A2466167D962A6FB23EBEBs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib6F61703F07A2466167D962A6FB23EBEBs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib8D0895FE8740495C7BE8F82DE210CA67s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib8D0895FE8740495C7BE8F82DE210CA67s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib28E7581E870AF1BE27D85EC99439ABB6s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib28E7581E870AF1BE27D85EC99439ABB6s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibD2356B7359901FB6D81DAC8C27C0B0B0s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib0C147299DA5109B621A2748856554987s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib0C147299DA5109B621A2748856554987s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibDABCA14C980C0EC0E92BF9A0BA8BA621s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib8CA40B5FB63ACBACC3522FE830F81DF5s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib8CA40B5FB63ACBACC3522FE830F81DF5s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibAE226B6937514C50AE01D199AEBE296Fs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib4367FD9C17EA8F0310AA489697E82CD8s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib4367FD9C17EA8F0310AA489697E82CD8s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibF41BC133E83B36809FE9FBEA5F4BA15Cs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibF41BC133E83B36809FE9FBEA5F4BA15Cs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib793C8FF6B380D4A57607D08F8801CD2Cs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibEDF840DDFA074FC9B60232D48D419942s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibEDF840DDFA074FC9B60232D48D419942s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibFEBD4FDB2059E7ECA110DE72CFC5828Fs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib13FDD9E11F7A5B6247F5AD960EF8CF40s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib0E19C22B1127517F50DC1BBD43E95F38s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibE967B23C4C1DABF6658C1B182FF89A43s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibE967B23C4C1DABF6658C1B182FF89A43s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib3BAB71061A41AAFC901D883266809035s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib3BAB71061A41AAFC901D883266809035s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib1890D4606116A64688B60B0701A97660s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib1890D4606116A64688B60B0701A97660s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib5BF75C8A51C20680552760C21C78F7EFs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib5BF75C8A51C20680552760C21C78F7EFs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibEDE2CC30EFFE2499CBBE2C4EC5DD77DCs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib24211296E195DEDA52EBC24F08213E00s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib1F678823227ABD58B914A49F16811614s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibA07AAF53CB14FE4D8A140661B34CBDBFs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibA07AAF53CB14FE4D8A140661B34CBDBFs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib23E38C199B2207CC4F12E545FB59F6D7s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib23E38C199B2207CC4F12E545FB59F6D7s1

Y. Kim, Y. Choi, D. Widemann et al. Journal of Computational Physics 451 (2022) 110841
[49] Lu Lu, Xuhui Meng, Zhiping Mao, George E. Karniadakis, Deepxde: a deep learning library for solving differential equations, arXiv preprint, arXiv:
1907.04502, 2019.

[50] Andrew J. Meade Jr, Alvaro A. Fernandez, The numerical solution of linear ordinary differential equations by feedforward neural networks, Math.
Comput. Model. 19 (12) (1994) 1–25.

[51] M. Mordhorst, Timm Strecker, D. Wirtz, Thomas Heidlauf, Oliver Röhrle, Pod-deim reduction of computational emg models, J. Comput. Sci. 19 (2017)
86–96.

[52] Guofei Pang, Lu Lu, George Em Karniadakis, fpinns: fractional physics-informed neural networks, SIAM J. Sci. Comput. 41 (4) (2019) A2603–A2626.
[53] Eric J. Parish, Kevin T. Carlberg, Windowed least-squares model reduction for dynamical systems, arXiv preprint, arXiv:1910 .11388, 2019.
[54] David B. Parker, Learnins logic, Technical Report, 1985.
[55] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et

al., Pytorch: an imperative style, high-performance deep learning library, in: Advances in Neural Information Processing Systems, 2019, pp. 8026–8037.
[56] Benjamin Peherstorfer, Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling, arXiv preprint, arXiv:

1812 .02094, 2018.
[57] Allan Pinkus, Approximation theory of the mlp model in neural networks, Acta Numer. 8 (1) (1999) 143–195.
[58] Rajat Raina, Anand Madhavan, Andrew Y. Ng, Large-scale deep unsupervised learning using graphics processors, in: Proceedings of the 26th Annual

International Conference on Machine Learning, 2009, pp. 873–880.
[59] Maziar Raissi, Paris Perdikaris, George E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[60] Julius Reiss, Philipp Schulze, Jörn Sesterhenn, Volker Mehrmann, The shifted proper orthogonal decomposition: a mode decomposition for multiple

transport phenomena, SIAM J. Sci. Comput. 40 (3) (2018) A1322–A1344.
[61] Donsub Rim, Scott Moe, Randall J. LeVeque, Transport reversal for model reduction of hyperbolic partial differential equations, SIAM/ASA J. Uncertain.

Quantificat. 6 (1) (2018) 118–150.
[62] Donsub Rim, Benjamin Peherstorfer, Kyle T. Mandli, Manifold approximations via transported subspaces: model reduction for transport-dominated

problems, arXiv preprint, arXiv:1912 .13024, 2019.
[63] Donsub Rim, Luca Venturi, Joan Bruna, Benjamin Peherstorfer, Depth separation for reduced deep networks in nonlinear model reduction: distilling

shock waves in nonlinear hyperbolic problems, arXiv preprint, arXiv:2007.13977, 2020.
[64] David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams, Learning representations by back-propagating errors, Nature 323 (6088) (1986) 533–536.
[65] Justin Sirignano, Konstantinos Spiliopoulos, Dgm: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018)

1339–1364.
[66] R. Ştefănescu, Ionel Michael Navon, Pod/deim nonlinear model order reduction of an adi implicit shallow water equations model, J. Comput. Phys. 237

(2013) 95–114.
[67] Tommaso Taddei, Lei Zhang, Space-time registration-based model reduction of parameterized one-dimensional hyperbolic pdes, arXiv preprint, arXiv:

2004 .06693, 2020.
[68] B.Ph. van Milligen, V. Tribaldos, J.A. Jiménez, Neural network differential equation and plasma equilibrium solver, Phys. Rev. Lett. 75 (20) (1995) 3594.
[69] E. Weinan, Bing Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (1)

(2018) 1–12.
[70] G. Welper, Transformed snapshot interpolation with high resolution transforms, SIAM J. Sci. Comput. 42 (4) (2020) A2037–A2061.
[71] Paul Werbos, Beyond regression: new tools for prediction and analysis in the behavioral sciences, Ph. D. dissertation, Harvard University, 1974.
[72] Dunhui Xiao, Fangxin Fang, Andrew G. Buchan, Christopher C. Pain, Ionel Michael Navon, Juan Du, G. Hu, Non-linear model reduction for the Navier–

Stokes equations using residual deim method, J. Comput. Phys. 263 (2014) 1–18.
[73] Huanhuan Yang, Alessandro Veneziani, Efficient estimation of cardiac conductivities via pod-deim model order reduction, Appl. Numer. Math. 115

(2017) 180–199.
[74] Yanfang Yang, Mohammadreza Ghasemi, Eduardo Gildin, Yalchin Efendiev, Victor Calo, et al., Fast multiscale reservoir simulations with pod-deim model

reduction, SPE J. 21 (06) (2016) 2–141.
[75] Dongkun Zhang, Lu Lu, Ling Guo, George Em Karniadakis, Quantifying total uncertainty in physics-informed neural networks for solving forward and

inverse stochastic problems, J. Comput. Phys. 397 (2019) 108850.
[76] Pengfei Zhao, Cai Liu, Xuan Feng, Pod-deim based model order reduction for the spherical shallow water equations with Turkel-Zwas finite difference

discretization, J. Appl. Math. 2014 (2014).
[77] Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, Paris Perdikaris, Physics-constrained deep learning for high-dimensional surrogate mod-

eling and uncertainty quantification without labeled data, J. Comput. Phys. 394 (2019) 56–81.
29

http://refhub.elsevier.com/S0021-9991(21)00736-1/bib8AF5F62E353E3AEE3B439AFF95FE8623s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib8AF5F62E353E3AEE3B439AFF95FE8623s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib870ACA31DA4E967AEEF9FEEB0D4A4CE2s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib870ACA31DA4E967AEEF9FEEB0D4A4CE2s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibDF2409AE52A5970119B5F458EE27DF57s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibDF2409AE52A5970119B5F458EE27DF57s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibE733312D684714DB1C69B37C8A7D9083s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib4CB85D5E163911D93D00EDE422CD6D7Ds1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib3D0B34DA8445519350901624FF2258A8s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib508254D6C2AB42B9950CB7ED8924398As1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib508254D6C2AB42B9950CB7ED8924398As1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibEA08F01AB02A25A30A0F81C02F1414ABs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib44BEC0A082F4BF6EFD9880D4D2ED2065s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib44BEC0A082F4BF6EFD9880D4D2ED2065s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibAC33B5BB07FC367A2442C8FA1E3DD813s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibAC33B5BB07FC367A2442C8FA1E3DD813s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib11BDE4B09C963061A31CDA3D2BBFE022s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib11BDE4B09C963061A31CDA3D2BBFE022s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib9716AB8035171DFD2C687774E2C601D7s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib9716AB8035171DFD2C687774E2C601D7s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibA880B279B3E01B5718798E8444C9200Fs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibA880B279B3E01B5718798E8444C9200Fs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib27E94B0B35B67745000E9A326F99BFBDs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib8B90E81BB28AC40F01D08933FA24746Es1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib8B90E81BB28AC40F01D08933FA24746Es1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibE5EFA59D0A33C1334A2811A995D4D125s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibE5EFA59D0A33C1334A2811A995D4D125s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib6346C871BB591B96E498A0BD364A4370s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib6346C871BB591B96E498A0BD364A4370s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibB48DDB6BB45A404C9DB0F0C1A0FCDA2Cs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib67F4470D38CD48C122E6F9FB6BD2BE2Bs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib67F4470D38CD48C122E6F9FB6BD2BE2Bs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibD98F2C9539116F40042F1219F3789C7Fs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib5602C861627EBFA2FF02596FA73D1981s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib8571E4571254777204BFEB53545D5749s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib8571E4571254777204BFEB53545D5749s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib65D4D12FAF210BF6A4EB8941B972DA6Fs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib65D4D12FAF210BF6A4EB8941B972DA6Fs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib10B48D71C161FFAB785986FE3C996F49s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib10B48D71C161FFAB785986FE3C996F49s1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibAF4E87788B645CD56E3CB469CFE9B59Bs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibAF4E87788B645CD56E3CB469CFE9B59Bs1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib65EA0F656B90A6E0BD727FF3D9C7641As1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bib65EA0F656B90A6E0BD727FF3D9C7641As1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibA9CEDAFF449F99AF2ADC9EF8243EED8Es1
http://refhub.elsevier.com/S0021-9991(21)00736-1/bibA9CEDAFF449F99AF2ADC9EF8243EED8Es1

	A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder
	1 Introduction
	1.1 Nomenclature
	1.2 Organization of the paper

	2 Background
	2.1 Full order model
	2.2 Linear subspace reduced order model (LS-ROM)
	2.2.1 Linear subspace solution representation
	2.2.2 Linear subspace Galerkin projection
	2.2.3 Linear subspace least-squares Petrov--Galerkin projection

	3 Nonlinear manifold reduced order model (NM-ROM)
	3.1 Nonlinear manifold solution representation
	3.2 Shallow masked autoencoder
	3.3 Nonlinear manifold Galerkin projection
	3.4 Nonlinear manifold least-squares Petrov--Galerkin projection

	4 Hyper-reduction
	4.1 Nonlinear residual approximation
	4.2 Hyper-reduction for LS-ROM
	4.2.1 LS-Galerkin-HR
	4.2.2 LS-LSPG-HR

	4.3 Hyper-reduction for NM-ROM
	4.3.1 NM-Galerkin-HR
	4.3.2 NM-LSPG-HR

	4.4 Efficient hyper-reduction decoder computation
	4.4.1 Construction of a subnet

	5 Error analysis
	6 Numerical results
	6.1 1D inviscid Burgers’ equation
	6.2 2D Burgers’ equation

	7 Discussion & conclusion
	Declaration of competing interest
	Acknowledgements
	Appendix A Time integrators
	A.1 The linear multistep methods
	A.2 The midpoint Runge--Kutta method

	Appendix B Computational costs
	B.1 Computational costs of NM-LSPG
	B.2 Computational costs of NM-LSPG-HR
	B.3 Computational costs of LS-LSPG
	B.4 Computational costs of LS-LSPG-HR

	References

