
Computational Mechanics
https://doi.org/10.1007/s00466-022-02212-8

ORIG INAL PAPER

An adaptive digital framework for energy management of complex
multi-device systems

T. I. Zohdi1

Received: 16 April 2022 / Accepted: 29 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Energy Management Systems (EMS) refer to frameworks that control the energy generation, transmission and storage for
multiple devices which are coupled together. These can range from nationwide grids, utility-scale systems, microgrids, data-
centers to electric vehicles and can consist of renewable energy sources, fossil-fuel energy, transmission lines, batteries,
generators, ultracapacitors and transformers, to name a few. The goals of such systems are typically to balance the load,
guarantee the power supply for each device, maximize overall efficiency and to minimize overall losses. Remarkable increases
in desktop computing have opened up the possibility for researchers and practitioners to construct and tailor simulation
paradigms for their own specific system’s needs. Accordingly, the objective of this work is to develop a flexible and rapidly
computable framework that researchers can easily alter and manipulate for their specific system. The approach taken in this
work is to study a model problem, consisting of an energy supplier and a large number of strongly coupled devices with
specific needs. The framework computes an energy balance for each device in the system and ascertains what the energy
supplier must deliver or extract from the device to allow it to meet a specific target state while accounting for transmission
losses. A digital-twin is created of such a system that is capable of running at extremely high speeds and which is coupled
to a genetic-based machine-learning algorithm in order to optimize the operation of the supplier. Numerical examples are
provided to illustrate the approach.

Keywords Energy management systems · Digital-twin · Machine-learning

1 Introduction

Energy Management Systems (EMS) refer to frameworks
that control the energy generation, transmission and storage
for multiple devices which are coupled together. These can
range from nationwide grids, utility-scale systems, micro-
grids, data-centers and electric vehicles (Fig. 1) and can
consist of renewable energy sources, fossil-fuel energy,
transmission lines, batteries, generators, ultracapacitors and
transformers. The goals of such systems are typically to bal-
ance the load, guarantee the power supply for each device,
maximize overall efficiency and to minimize overall losses.

B T. I. Zohdi
zohdi@berkeley.edu

1 Department of Mechanical Engineering, University of
California, Berkeley, CA 94720-1740, USA

1.1 Motivation

One motivation for the development of next generation
Energy Management Systems that are flexible and easy to
tailor to specific needs is the exponential rise of data-centers.
Massive increases in internet users worldwide has led to
significant demand for data-center services, and subsequent
energy use. Following a review of Zohdi [59], we define data-
centers as locations dedicated to housing computer systems
comprised of data handling units, telecommunications, high-
performance computing devices and associated equipment.
Between 2010 and 2018, the global quantity of data travers-
ing the internet increased more than ten-fold, while global
data-center storage capacity increased by a factor of 25 in
parallel (Masanet et al. [44]). At the largest industrial-scale,
the energy usage of such systems is huge, requiring large-
scale cooling and air conditioning. Such systems started in
the 1940s with the advent of the first computers and have
grown with the rise of industrial-scale computation at mili-
tary installations, research labs, banks, to name a few. The
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Fig. 1 Left: Modules in a renewable grid (Public domain: https://pixnio.com). Right: City scale management (Public domain: https://pixabay.com)

heat produced by such systems is immense, thus warrant-
ing sophisticated cooling systems. While the analysis of the
energy trends are hotly debated, one point of agreement is
that the volume of data-centers is consistently increasing,
year by year. The reader is referred to [4,5,7,11,13,17,23,27–
33,37,42,43,46,48,49,51,53,54,57] for a wide swath of the
literature on this topic. All data indicate that the costs of
such systems is huge and growing rapidly. The basic trends
on energy consumption by data-centers can be found in
the extensive report of Shehabi et al [50]. Therein, the
authors have made accurate estimates of data-center energy
consumption from 2000-2016, relying on previous studies,
historical data and forecasted consumption. That report states
that in 2014, data-centers in the U.S. consumed an esti-
mated 70 billion kWh, representing about 1.8 % of total
U.S. electricity consumption. Their analysis also indicates
data-center electricity consumption increased by about 4 %
from 2010-2014, a large shift from the 24% percent increase
estimated from 2005-2010 and a nearly 90 % increase esti-
mated from 2000-2005. The trends of approximately 1 %
increase each year have been consistent over the last decade.
In 2017, US based data-centers alone used up more than 90
billion kilowatt-hours of electricity and consumed around
205 terawatt-hours (TWh) in 2018, or approximately 1 % of
global electricity use (Masanet et al. [44]), and continues to
grow, even through the era of pandemic. The massive growth
in data-centers has led to increased interest and regulations
for management of waste heat and its utilization. In Zohdi
[59], an in-depth analysis was conducted to optimize a data-
center’s power management. That work sought to develop
a combined digital-twin (a digital “replica”) and machine-
learning framework to optimize such systems by controlling
both the surrounding ventilation and base foundation cool-
ing of the data processors in the system. That framework
ascertained optimal cooling strategies to deliver a target tem-
perature in the system using a minimum amount of energy. A
model problem was constructed for a data-center, where the
design variables are the flow rates and air-cooling at multiple

ventilation ports and ground-level, conduction-based, base-
cooling of processors. A thermo-fluid model, based on the
Navier-Stokes equations and thefirst lawof thermodynamics,
for the data-center was constructed and a rapid, voxel-based,
iterative solutionmethod was developed. This was then com-
bined with a genetic-based machine-learning algorithm to
develop a digital-twin of the system that could run in real-
time or faster than the actual physical system, making it
suitable as either a design tool or an adaptive controller. The
present work extends such an analysis to entire networks of
multiple data-centers or other energy-driven units referred to
as “devices” (Fig. 2).

1.2 Restrictions

Much of the present work is motivated by recent governmen-
tal restrictions on energywaste for such systems. This has led
to interest in developing EMS that power data-centers effi-
ciently. A key aspect is the modularity of such frameworks
and the ability to rapidly plan and configuremulti-device sys-
tems. The power needed for a data-center can range from a
few kilowatts for a small set of units to megawatts for a large-
scale operation. There are a variety of performance metrics
used, such as the power usage effectiveness ratio (PUE),
which is the ratio of the total operational power used by the
data-center divided by the power used by purely data pro-
cessing equipment. It is an indicator of the overhead power
consumption, such as cooling and lighting. Typical data-
centers have a PUE of approximately 2, while the state of
the art systems have a PUE ≈ 1.2. In 2014, the California
Code of Regulationsmandated energy efficiency regulations,
in particular on airflow. In 2015, theUnited States enacted the
Energy Efficiency ImprovementAct, which requires efficient
operation of federal facilities, including data-centers. World-
wide, in particular throughout theEU, there have been a series
of similar legislation. However, even if one puts legislation
aside, the sheer cost of running a data-center approaches the
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Fig. 2 Network model and an energy balance and a close-up for a device

construction costs.1 This is one example of many modern,
ultra-complex, energymanagement system problems that are
now facing our society. It has now become critical to develop
Energy Management Systems that employ simulation based
models to rapidly guide operations.

1.3 EnergyManagement Systems

Remarkable increases in desktop computing have opened up
the possibility for researchers and practitioners to construct
and tailor simulation paradigms for their own specific sys-
tem’s needs. Accordingly, the objective of this work is to

1 For very energy intensive data-centers, electricity can account for over
10 % of the cost of ownership.

develop a flexible and rapidly computable framework that
researchers can easily alter and manipulate for their specific
system. The approach taken in this work is to study a model
problem, consisting of an energy supplier and a large number
of strongly coupled devices with specific needs. The model
problem (Fig. 2) has as theminimization of the overall energy
that the supplier must deliver to the system as its main objec-
tive. The key points in the model problem are:

• The design variables are the positions of the devices in
the system.

• The devices generate and consume energy locally and
may extract or return power to supplier.

• The supplier must make up deficits to the devices.
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The main assumptions are:

• There is a specified, fixed, nonnegotiable connectivity
between system devices.

• There is a unique specified energy level needed at any
given time for each device.

• There are losses in power transmission per length and
load magnitude.

The framework computes an energy balance for each device
in the system and ascertains what the energy supplier must
deliver or extract from the device to allow it to meet a spe-
cific target state while accounting for transmission losses.
A digital-twin is created of such a system that is capable of
running at extremely high speeds and which is coupled to a
genetic-based machine-learning algorithm in order to opti-
mize the operation of the supplier. Numerical examples are
provided to illustrate the approach.

2 Model problem: a coupledmulti-device
system

There are two main entities in the system:

• The supplier, which delivers energy to and from each
device in the system.

• The devices, whose energy states are denoted Di , i =
1, 2, . . . , N , which can consume and generate energy, as
well as transfer energy to and from other units and the
system supplier.

For each device in the system, i = 1, 2, . . . N (Fig. 2), con-
sider a control volume tracking its energy state. Each device’s
energy state (Joules) at time t + �t , denoted Di (t + �t), is
equal to the device state at time t , denoted Di (t), plus the total
input/output of external energy from time t to time t + �t ,
denoted �Etot

i (t → t + �t)

Di (t + �t) = Di (t) + �Etot
i (t → t + �t). (2.1)

By subtracting Di (t) from both sides and dividing by �t
yields

Di (t + �t) − Di (t)

�t
= �Etot

i

�t
. (2.2)

Taking the limit as �t → 0 yields the “power equation” for
each device:

dDi

dt
= dEtot

i

dt
= Ptot

i = Total Power . (2.3)

The breakdown of the components that comprise Ptot
i , i =

1, 2, . . . , N is discussed next.

2.1 Components of power

For each device, i = 1, . . . , N (Fig. 2), we consider the
following breakdown of the total power:

dDi

dt
= Ptot

i = Gi − Ci − �N
j=1Fi↔ jαi j + Ps↔i , (2.4)

leading to

Di (t + �t) = Di (t) + �t(Gi − Ci − �N
j=1Fi↔ jαi j

+Ps↔i ), (2.5)

where

• Gi is the power generated,
• Ci is the power consumed,
• Fi↔ j is the net flux between devices i and j , with the

following unilateral conditions:
• If Fi↔ j > 0, then power is sent to device j and αi j = 1,

with a loss at j
• If Fi↔ j ≤ 0, then power is sent from device j and with
a loss at receiver i , αi j = e−κdi j , where κ is the power
loss per unit length and di j is the distance between device
i and device j .

Regardless of whether the device i sends or receives from j ,
the loss between them is

Li j = ||Fi↔ j ||(1 − e−κdi j ). (2.6)

The term Ps↔i is determined from the needs of the device,
dictated by γsi

γsi
def= dDi

dt
− (Gi − Ci − �N

j=1Fi↔ jαi j ), (2.7)

where

• If γsi > 0, then power needs to be sent to device i from
the supplier,

• If γsi ≤ 0, then power will be sent from device i to the
supplier.

2.2 Targeted energy supply

If we set the target value at any time to be D∗
i (t + �t), then

• If there is an energy deficit to be supplied to unit i from S,
then wemaywrite that the externally needed is (factoring
in the losses)
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P∗
s↔i

def= P∗,+
s↔i e

−κdsi = D∗
i (t + �t) − Di (t)

�t
− (Gi − Ci − �N

j=1Fi↔ jαi j ), (2.8)

with connectivity losses of

Li j = ||P∗,+
s↔i ||(1 − e−κdsi ). (2.9)

• If there is excess energy is to be returned from unit i to
S, then we may write

P∗
s↔i

def= P∗,−
s↔i = D∗

i (t + �t) − Di (t)

�t
− (Gi − Ci − �N

j=1Fi↔ jαi j ) (2.10)

with connectivity losses of

Li j = ||P∗,−
s↔i ||(1 − e−κdsi ), (2.11)

where P∗,−
s↔i leaves unit i , which then arrives at S as

P∗,−
s↔i e

−κdsi .

This is computed for each device at every time step and
changes continuously, based on the individual needs and its
energy exchange with the surroundings.

3 Genetic-basedmachine-learning
optimization

The objective now is to minimize the energy needed to be
delivered by the supplier to the devices in the system:

�o(�1, . . . , �N )
def= �N

i=1

∫ T

0
P∗
s↔i (�, t) dt, (3.1)

where we consider a design vector �
def= {�1,�2,�3, . . . ,

�N }, which represents the positions of the devices andwhere
the cost is the power integrated over the course of time. In
order to avoid clustering of the devices, we enforce a spac-
ing penalty for a configuration consisting of a proximity
penalization function summing all individual pairwise device
separation distances

ζ
def=

√
�N
i=1�

N
j=1φi j (||ri − r j || − d∗)2

Nd∗ , (3.2)

where ri is the position vector of device i , r j is the position
vector of device j , d∗ is a critical separation distance and
where:

• If ||ri − r j || ≤ d∗ then φi j = 1,

• If ||ri − r j || > d∗ then φi j = 0.

The function is then included to penalize clustering via

�(�1, . . . , �N ) = (1 + wζ)�o(�1, . . . , �N ), (3.3)

where w ≥ 0 is a penalty weight. The rapid rate at which
these simulations can be completed allows the exploration
of inverse problems seeking to determine what parameter
combinations can deliver a desired result (Fig. 3). In order to
cast the objective mathematically, we set the problem up as
a machine-learning algorithm (MLA), specifically a genetic
algorithm (GA) variant, which is well-suited for nonconvex
optimization. Following Zohdi [59–65], we formulate the
objective as a cost function minimization problem that seeks
system parameters that match a desired response, in this case
a minimum of �(�1, . . . �N ). We systematically minimize

Eq. (3.1), min��, by varying the design parameters: �
def=

{�1,�2,�3, . . . , �N }. The system parameter search is con-
ducted within the constrained ranges of �

(−)
1 ≤ �1 ≤ �

(+)
1 ,

�
(−)
2 ≤ �2 ≤ �

(+)
2 , �(−)

3 ≤ �3 ≤ �
(+)
3 , etc. These upper

and lower limits are dictated by what is physically feasible.

3.1 Machine-learning algorithm (MLA)

Cost functions such as � are nonconvex in design parameter
space and often nonsmooth. Their minimization is usually
difficult with direct application of gradient-based methods.
This motivates nonderivative search methods, for example
those found in machine-learning algorithms (MLAs). One
of the most basic subsets of MLAs are so-called Genetic
Algorithms (GAs). For a review of GAs, see the pioneering
work of John Holland ([24,25]]), as well as Goldberg [20],
Davis [10], Onwubiko [45] and Goldberg and Deb [21]. A
description of the algorithmwill be described next, following
Zohdi [59–65].

3.2 Algorithmic structure

TheMLA/GA approach is extremelywell-suited for noncon-
vex, nonsmooth, multicomponent, multistage systems and,
broadly speaking, involves the following essential concepts
(Fig. 3):

1. POPULATION GENERATION: Generate a parameter
population of genetic strings: �i

2. PERFORMANCE EVALUATION: Compute perfor-
mance of each genetic string: �(�i )

3. RANK STRINGS: Rank them �i , i = 1, . . . , S from
best to worst

4. MATING PROCESS: Mate pairs/produce offspring
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Fig. 3 The basic action of a machine-learning/genetic algorithm (Zohdi [59–65])

5. GENE ELIMINATION: Eliminate poorly performing
genetic strings

6. POPULATION REGENERATION: Repeat process
with updated gene pool and new random genetic strings

7. SOLUTION POST-PROCESSING: Employ gradient-
based methods afterwards in local “valleys”-if smooth
enough

3.3 Specifics

Following Zohdi [59–65]. the algorithm is as follows:

• STEP 1: Randomly generate a population of S starting
genetic strings, �i , (i = 1, 2, 3, . . . , S) :

�i def=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�i
1

�i
2

�i
3

. . .

�i
N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.4)

• STEP 2: Compute fitness of each string �(�i ), (i=1,
…, S)

• STEP 3: Rank genetic strings: �i , (i=1, …, S) from
best to worst

• STEP 4: Mate nearest pairs and produce two offspring,
(i=1, …, S):

λi
def= � ◦ �i + (1 − �) ◦ �i+1 def=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ1�
i
1

φ2�
i
2

φ3�
i
3

. . .

φN�i
N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − φ1)�
i+1
1

(1 − φ2)�
i+1
2

(1 − φ3)�
i+1
3

. . .

(1 − φN )�i+1
N

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.5)

and

λi+1 def= � ◦ �i + (1 − �) ◦ �i+1 def=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ1�
i
1

ψ2�
i
2

ψ3�
i
3

. . .

ψN�i
N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − ψ1)�
i+1
1

(1 − ψ2)�
i+1
2

(1 − ψ3)�
i+1
3

. . .

(1 − ψN )�i+1
N

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.6)

where for this operation, the φi and ψi are random num-
bers, such that 0 ≤ φi ≤ 1, 0 ≤ ψi ≤ 1, which are
different for each component of each genetic string

• STEP 5: Eliminate the bottom M strings and keep
top K parents and their K offspring (K offspring+K
parents+M=S)

• STEP 6: Repeat STEPS 1-5 with top gene pool (K off-
spring and K parents), plus M new, randomly generated,
strings

• REFOCUS OPTION: One can refocus search around
best performingparameter set every fewgenerations, thus
concentrating the computational effort around the most
promising (optimal) areas of design space.

Remark 1 If one selects the mating parameters φ′s and ψ ′s
to be greater than one and/or less than zero, one can induce
“mutations”, i.e. characteristics that neither parent possesses.
However, this is somewhat redundant with introduction of
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Fig. 4 An example of one-hundred specified device energies that must
be met locally by the supplier. In this test case, they fluctuated between
0.5 and 1.5

new random members of the population in the current algo-
rithm. If one does not retain the parents in the algorithm
above, it is possible that inferior performing offspring may
replace superior parents. Thus, top parents should be kept for
the next generation.Retainedparents donot need to be reeval-
uated, making the algorithm less computationally expensive.
In the absence of refocussing, numerous studies of the author
(Zohdi [59–65]) have shown that the advantages of parent
retention outweighs inbreeding, for sufficiently large popu-
lation sizes. Finally, we observe that this algorithm is easy to
parallelize.

Remark 2 After application of such a global search algo-
rithm, one can apply a gradient-based method around the
best performing parameter set, if the objective function is
sufficiently smooth in that region of the parameter space.
In other words, if one has located a convex portion of the
parameter spacewith a global genetic search, one can employ
gradient-based procedures locally to minimize the objective
function further, since they are generallymuchmore efficient
for convex optimization of smooth functions. An exhaus-
tive review of these methods can be found in the texts of
Luenberger [35] and Gill, Murray and Wright [18]. How-
ever, refocussing usually makes this extra step unnecessary,
since the search eventually concentrates the computational
effort locally around the best parameter set beforehand.

3.4 Algorithmic settings

In the upcoming example, search parameter ranges were
used �−

i = −10 ≤ �i ≤ �+
i = 10 for 200 planar

coordinate variables, �i = (xi , 0, zi ), i = 1, . . . , 100 (200
variables). Specifically, we used the followingMLA settings:

• Number of design variables: 200,
• Population size per generation: 24,
• Number of parents to keep in each generation: 6,
• Number of children created in each generation: 6,
• Number of completely new genes created in each gener-
ation: 12,

• Number of generations for re-adaptation around a new
search interval: 20 and

• Number of generations: 4000.

3.5 Parameter search ranges and results

The system parameter setting for were set as follows:

• Transmission losses: the loss per unit length: L = 0.05,
• Connectivity: for any given device, i , 50 % of the other
system units were connected to it,

• Target desired device energy values (Fig. 4): fixed over
the time interval with a randomvariation of Di = Do(1+
A × RAND), where −1 ≤ RAND ≤ 1, Do = 1,
A = 0.01,

• Inter-device fluxes: during the time interval, the fluxes
were were set to vary randomly between: −100 ≤
Fi↔ j ≤ 100,

• Energy generated: during the time interval (Fig. 4), the
energies generated locally were set to vary randomly
between: −100 ≤ Gi ≤ 100,

• Energy consumed: during the time interval, the energies
consumed locally were set to vary randomly between:
−100 ≤ Ci ≤ 100,

• The following search parameter ranges were used �−
i =

(−10, 0,−10)m ≤ �i ≤ �+
i = (10, 0, 10)m for

200 planar coordinate variables, �i = (xi , 0, zi ), i =
1, . . . , 100 (200 variables).

Figure 5 illustrates the results for the cost function for the
best performing gene (red) as a function of successive gen-
erations, as well as the average performance cost function of
the entire population of genes (green). Starting at the top left
and moving to the right, we allowed the MLA/GA to readapt
every 20 generations. Often, this action is more efficient
than allowing the algorithm not to readapt, since it probes
around the current optimum for better local alternatives. The
total cost function was initially �total ≈ 10.7 Megawatts
and was reduced to �tot ≈ 4.7 Megawatts, a reduction of
10.7−4.7

10.7 → 56%. The entire 4000 generation simulation,
with 24 genes per evaluation (96,000 total designs) took a
few minutes on a laptop,making it ideal as a design tool.We
note that, for a given set of parameters, a complete simula-
tion takes a fraction of a second, thus hundreds of thousands
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Fig. 5 Successive generations and a zoom: The following search
parameter ranges were used �−

i = (−10, 0,−10) ≤ �i ≤ �+
i =

(10, 0, 10) for 200 planar coordinate variables, �i = (xi , 0, zi ), i =
1, . . . , 100 (200 variables). This figure illustrates the results for the
cost function for the best performing gene (red) as a function of suc-
cessive generations, as well as the average performance cost function
of the entire population of genes (green). Starting at the top left and

moving to the right, we allowed the MLA/GA to readapt every 20 gen-
erations. Often, this action is more efficient than allowing the algorithm
not to readapt, since it probes around the current optimum for better
local alternatives. The total cost function was initially �total ≈ 10.7
Megawatts and was reduced to �tot ≈ 4.7 Megawatts, a reduction of
10.7−4.7

10.7 → 56%

Fig. 6 The starting configuration (before MLA optimization) and the final (tightest) configuration associated with the global optimum

Fig. 7 Modules in agrophotovoltaic facilities (Public domain: https://pixnio.com and https://pixabay.com)
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of parameter sets can be evaluated in an hour, without even
exploiting the inherent parallelismof theMLA/GA. The speed
at which the overall process can be completedmakes it a suit-
able digital-twin of the system that can run in real-time or
faster than the actual physical system, making it suitable as
either a design tool or an adaptive controller. Figure 6 illus-
trates the final tightest configuration.

Remark 3 There are other machine-learning type paradigms
that complement genetic-based approaches, such asArtificial
Neural Networks (ANN). ANN have received huge attention
in the scientific community over the last decade and are based
on layered input-output type frameworks that are essentially
adaptive nonlinear regressions of the form O = B(I,w),
where O is a desired output and B is the ANN comprised of
(1) synapses, which multiply inputs (Ii , i = 1, 2, . . . , M)
by weights (wi , i = 1, 2, . . . , N ) that represent the input
relevance to the desired output, (2) neurons, which aggre-
gate outputs from all incoming synapses and apply activation
functions to process the data and (3) training, which cali-
brates the weights to match a desired overall output.

4 Summary

In summary, the objective of this work was to develop a
flexible and rapidly computable framework that researchers
can easily adapt and manipulate for their specific system.
The approach taken in this work was to study a model prob-
lem, consisting of an energy supplier and a large number
of strongly coupled devices with specific energy needs. The
framework computes an energy balance for each device in the
system and ascertains what the energy supplier must deliver
or extract from the device to allow it to meet a specific tar-
get state while accounting for transmission losses, as well
as local energy consumption and generation. A digital-twin
was created of such a system that is capable of running at
extremely high speeds and which is coupled to a genetic-
based machine-learning algorithm in order to optimize the
operation of the supplier. Numerical examples were provided
to illustrate the approach.

At the outset of the work, one motivation provided was
the massive growth of data-centers and the corresponding
need for precise energy management. In Zohdi [59], a more
detailed system at the unit level was developed combining
a digital-twin and machine-learning framework to optimize
such systems by controlling both the ventilation system and
the cooling of the base supports of the data processing units in
the system. That framework ascertained the optimal cooling
strategies needed to deliver a target temperature in the system
using a minimum amount of energy. A model problem was
studied, where the design variables were the flow rates and
air-cooling of the multiple ventilation ports and ground-level

conduction-based base-cooling of processors. A fast solution
method, basedon aCFDrepresentationof the data-centerwas
developed using a voxel-based discretization of the Navier-
Stokes equations and the first law of thermodynamics, which
was combined with a genetic-based machine-learning algo-
rithm todevelop adigital-twinof the system,which is suitable
as either a design tool or a controller, when coupled to an
overall Energy Management System, such as the one pre-
sented in this work. However, there are many more societal
areas that strongly motivate simulation based Energy Man-
agement Systems. For example, on the large infrastructural
scale, it is important to highlight that more heterogeneous
energy systems are being introduced into the market, driven
largely by renewable energy being blended into societal sys-
tems. For example, agrophotovoltaic (APV) systems (Fig. 7)
attempt to co-develop the same area of land for both solar
photovoltaic power and agriculture. APV systems were pio-
neered in the 1980s (Goetzberger and Zastrow [19]) and
have steadily grown as photovoltaic systems have become
more robust and inexpensive. We refer the reader to [1–
3,6,8,9,12,14–16,19,22,26,34,36,38–41,47,52,55,56,58] for
a broad survey of such systems.2 Regardless of the exact type
of blended system, there is a necessity to optimize these com-
plex heterogeneous systems so that they operate smoothly.
If configurations are properly optimized, for example in the
context of APVs, the approach can yield the best of both
worlds, yielding energy and abundant agriculture. For exam-
ple, in Zohdi [65], the focuswas on developing a digital-Twin
framework to track and optimize the flow of optical power
through complex APV facilities. The optical power flow was
rapidly computed with a reduced order model of Maxwell’s
equations, based on a high-frequency decomposition of opti-
cal power into multiple rays, which were propagated forward
in time to ascertain multiple reflections and absorption for
various system configurations, varying multi-panel inclina-
tion, tracking, refractive indices, sizes, shapes and ground
refractive properties. The method allowed for a solar instal-
lation to be tested from multiple source directions quickly
and uses a genetic-basedmachine-learning algorithm to opti-
mize the system. This is particularly useful for planning of
complex next-generation solar farm systems involving bifa-
cial (double-sided) panelling, which are capable of capturing
ground albedo reflection, exemplified by APV systems.

The presented Energy Management System work aug-
ments the previous applications (such as data-centers and
APV’s), with the key goal being to develop an easy simula-
tion tool that is computationally inexpensive and accessible
to a wide range of researchers. A central component of this
framework was the digital-twin paradigm of physical reality,
i.e. a digital replica of a complex system that can then be

2 APV systems can involve a variety of aspects, even utilizing pollinat-
ing insects, such as bees, to “solar grazing” systems.
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inexpensively and safely manipulated, improved and opti-
mized in a virtual setting. The computationally designed
system can then be deployed in the physical world after-
wards, reducing the potential costs of experiments associated
with bringing new technologies to the market. One impor-
tant issue how to seamlessly couple complex subsystems
to Energy Management Systems, for example using “sub-
grid” simulation, whereby a more complex simulation is
activated either before the network model starts, in order
to pre-calibrate (“train”) the reduced-order model, or, dur-
ing the simulation, at select time intervals, in order to
recalibrate the system. A corresponding pictorial frame-
work can be found in Fig. 8, where the subgrid models
(such as data-centers or agrophotovoltaic subsystems) are
shown underneath the reduced-order blocks. The hybrid
use of digital-twins, genetic-based machine-learning, Artifi-
cial Neural Networks and multiscale simulation is currently
under investigation by the author.
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