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Abstract
In this work, a thermal Finite Element model is developed to simulate the performance of a blade-like tool for robotic work
cells performing automated garment production using a novel thermoplastic stiffening layer. Uncertainty quantification and
sensitivity analysis are applied to determine the most important design properties and optimize key performance metrics
for swift and reliable garment assembly. Attention is focused on the geometric and thermal design properties that minimize
sensitivity to environmental conditions while maximizing expected productivity. An example design is shown for illustrative
purposes. Thisworkmay inform future design innovation for similar heating tools and reduce the need for physical experiments
and long calibration times on the factory floor.
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1 Introduction

1.1 Current state of the garments industry

The garment industry is a collection of supply chains, primar-
ily comprised of fiber production, yarn and fabric production,
and finally the assembly of consumer products.

While recent technological advances have enabled robots
to manufacture high-value goods like car parts and electron-
ics, the garment industry is still largely reliant on manual
labor. Some assembly steps, such as attaching buttons and
zippers, have been automated; these tasks are performed by
single-purpose machines which are inherently more costly
and more difficult to change between tasks compared to
humanworkers. Little significant automation currently exists
for the labor-intensive cutting and sewing steps required for
garment assembly. With cheap labor readily available and
international supply chains historically dependable, there has
been little incentive to innovate [1,2]. However, there have
been several recent initiatives put forth by non-governmental
organizations, researchers, and other stakeholder organi-
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zations to calculate and determine local living wages for
garmentworkers [3], generating pressures on clothing brands
and factories to identify other cost-effective fabrication pro-
cesses. For this reason and in the spirit of the Industrial
Revolution 4.0, the development of automation technologies
for cut-and-sew operations is a promising avenue for mod-
ernizing garment assembly supply chains.

1.2 Challenges with automation

On the technical side, handling limp textiles is more chal-
lenging for robots than handling rigid objects. Unlike a rigid
body, a piece of fabric may be folded, wrinkled, or other-
wise distorted, presenting challenges for both the mechanics
of grasping and for computer vision algorithms. This makes
manipulating textiles a challenge for robotic systems [4].

One method to address this challenge is to stiffen textiles
during assembly and reverse the process once finished [5]. A
novel process may be used to treat textiles with a thermoplas-
tic laminating layer. The laminating material can be removed
with hot water to produce a conventional final garment. Stiff-
ening the fabric sheets in this manner allows mature robotic
technologies from other industries to be used in the garment
industry, but requires the development of newmanufacturing
processes and tools to work with the novel textile-polymer
sheets.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-022-02215-5&domain=pdf


Computational Mechanics

To introduce permanent bends easily and repeatedly along
straight lines, this work will consider a process that uses heat
to soften the thermoplastic binder, then applies mechanical
force to bend the sheet along the softened line. Once the bend
cools, the sheet solidifies and can be manipulated as a rigid
body for additional assembly steps. One potential workflow
using this idea involves supplying small robotic arms with a
constantly heated metal attachment. To remain comparable
to a humanworker, the robotic armsmust be general-purpose
units capable of picking up, sewing, and bending a variety of
work pieces.

The design of the bending tool was inspired by a “blade”
tool used in robotic origami folding by researchers at
CarnegieMellonUniversity [6] with the addition of a heating
element. If this blade tool is hotter than the working temper-
ature of the stiffening agent, it will greatly reduce the effort
required to create permanent bends.

1.3 Variability and uncertainty in manufacturing

The study of UQ can be traced back to Sir Ronald Fisher’s
seminal paper, The Design of Experiments [7] published
in 1935, where he discussed the principles of experimen-
tal design for the agricultural industry. Since then the study
of variability and uncertainty has been widely used in wide-
ranging applications such as the Antarctic ice sheet melting
model [8], computational mechanics models [9], human tox-
icity dose estimation models [10], among others. Sacks et. al
[11] provide a window into the state of the art of UQ in the
late 1980s and Abdar et. al [12] gives a more contemporary
review of the role of UQ in deep learning applications for
optimization and decision making.

Several UQ frameworks have been constructed for perfor-
mance evaluation of awide array ofmanufacturing processes.
These frameworks have shown merit in that they showcase
how different sources of uncertainty in complex models can
interact with each other, even in the total or partial absence of
experimental data. Typically, Bayesian approaches estimate
the network of uncertainty sources through a manufacturing
system and then Monte Carlo approaches serve to calibrate
the system for maximizing the accuracy of the UQ frame-
work. In subtractive manufacturing, UQ has been performed
for fatigue life predictions of welded structures [13] by
studying variations in weld shape, residual stress, loading
conditions and microstructure, as well as data uncertainty
from measurement and numerical errors. UQ has also been
used in milling stability region estimation in the parameter
space [14] and in a deep drawing process [15] based on vari-
ations of material properties and friction forces inherent in
the drawing operation. More recently, UQ frameworks have
provided excellent approaches for studying highly complex
methods such as selective electron beam melting (SEBM)
[16]. Additionally, Hu and Mahadevan [17] provide a sur-

vey of current work in UQ for additive manufacturing and
immediate needs. Lastly, Nannapaneni and Mahadevan [18]
provide a systematic framework that propagate epistemic or
aleatoric source of uncertainty in any manufacturing process
application, showcasing examples in an injection molding
process and a welding operation.

This work develops a thermal finite element model of the
proposed garment assembly tool. This model is then used
to assess the sensitivity of tool designs to environmental
conditions such as the ambient temperature, and design spec-
ifications such as the blade dimensions or the input power. In
Sect. 2, we provide more information about the construction
of the blade tool, the formulation of a governing equation to
solve for the thermal field, and the theory and uses of uncer-
tainty quantification. Then, in Sect. 3 we apply the governing
equation to a Finite Element Method (FEM) solver and how
we use the thermal field solution to analyze the blade design
for calculating sensitivities, characterizing the design space,
and propagating uncertainties through the solver. We then
show blade designs and a series of UQ examples in Sect. 4
before we provide our concluding remarks.

2 Background

2.1 Tool design

The tool considered in this work is inspired by an origami
folding robot developed by Balkcom et al. [6] composed of
an arm equipped with a long blade and a table top with a long
opening.A sheet of paper is placed over the table opening and
the robot arm guides the blade downwards, wiping the sheet
of paper into the long opening. Then, a clampmounted on the
under side of the table closes the table opening, thus fixing
the fold on the sheet of paper. Finally, the clamp retracts and
the folded paper releases.

This work will focus exclusively on a part similar to the
blade of the origami folding device, which directly con-
tacts the sheet of paper. A simple framework for designs
of our blade is shown in Fig. 1 and can be described by
six dimensions: the thickness of the sheet metal used (not
shown in figure), three lengths and two heights, each denoted
L1, L2, L3 and H1, H2 respectively. This geometry allows
enoughflexibility for awide range of designs andminimizing
the number design parameters. Future work could broaden
the scope of possible designs by using amore complex geom-
etry.

2.2 Governing equations

This work requires determining the thermal field resulting
from a given heat source, surface losses, and internal con-
duction. Analysis is simplified using following assumptions:
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Fig. 1 Generic tool profile

• The thermal properties of the tool are not temperature-
dependent in the regime of interest.

• Thermal expansion and other deformations are negligi-
ble.

• Thermal radiation may be approximated as black body
radiation.

• The environment can be treated as an infinite heat sink,
e.g., the ambient temperature is not coupled to the tool.

• Interactions between surfaces can be neglected, e.g., radi-
ation from one area of the domain is not absorbed at
another.

The governing equation for this thermal problem is a for-
mulation of the first law of thermodynamics, written as:

ρcṪ
︸︷︷︸

thermal power

= ∇ · (k∇T )
︸ ︷︷ ︸

conduction

+ q
︸︷︷︸

source

− l
︸︷︷︸

losses

(1)

Theflux termsq and l require surface integrals, approximated
for a given element e using Gaussian integration as:

Se =
∫

δ�e
φTφd A =

g
∑

p=1

g
∑

q=1

φTφ Jwpwq (2)

This model assumes that both convection and radiation con-
tribute to the balance of energy. The thermal loss l is thus
given by:

l = c+ r (3)

Here, the vectors c and r represent surface area integrals of
the domain.

c = hS
︸︷︷︸

C

(T − Ta), r = σ S
︸︷︷︸

R

(T4 − T4
a) (4)

Where σ is the Boltzmann constant and h is the convective
loss coefficient. The shorthand C and R is used for these
surface integral matrices for convection and radiation losses,
respectively, in further derivations.

The convective loss term enforces a Robin boundary con-
dition [19] since it creates a linear relationship between the

value and the gradient of the thermal field at some bound-
ary locations. The radiation term is similar but enforces a
nonlinear relationship.

2.3 Uncertainty quantification

The practice of uncertainty quantification (UQ) attempts to
measure the sources of variation that affect the output of
experimental systems and computational models. In manu-
facturing, UQ is used to study the contributions of aleatoric
uncertainties such as the seemingly random effects from
external, environmental effects or the local variations in the
microstructure of the material that is being processed. These
sources of variation can be modeled via Monte Carlo (MC)
[20] or polynomial chaos methods [21], the former typically
acting as the benchmark to the latter. Uncertainty can also be
epistemic, dealing with errors due to the lack of knowledge
or measurements.

UQ methods are normally used to solve forward uncer-
tainty propagation problems. In these scenarios, previously-
measured or estimated distributions of the inputs are prop-
agated through a numerical solver to estimate the expected
variations of the output. This topic has been studied exten-
sively, for example in the application of structural mechanics
[22]. An MC simulation is a simple and effective method for
propagating the uncertainties since a set of input test points
can be generated by randomly sampling each input variable’s
distribution. With enough input points, the variation of the
output becomes evident and it can be quantified.

Another powerful use of UQ is to compute the sensitivity
of the output with respect to each input individually. Perturb-
ing any input within a small range, via a central difference
scheme, for example, is a common strategy to locally approx-
imate the derivative. However, the true sensitivity is defined
in the limit as the perturbation range is reduced to zero, but
it can also be computed analytically, if attainable, through
direct differentiation of the governing equation. A high sensi-
tivity to the perturbed inputwill yield relatively large changes
to the output, and, inversely, a low sensitivity describes a rel-
atively small to no change of the output value. Understanding
these sensitivities can aid in design optimization [23–25].

Throughout this paper, the terms sensitivity and deriva-
tives are used interchangeably.

When performing UQ for fitness of the design, an impor-
tant output parameter, commonly referred as a quantity of
interest (QoI), must be identified. In a typical application, a
numerical simulation is used to produce a measure of a field,
from which a chosen QoI can be calculated through post-
processing. The QoI serves as a proxy for the effectiveness
of a combination of input parameter values. Typical QoIs
in structural simulations include maximum stress [26] and
structural compliance [27], both calculated form themechan-
ical field of a deforming body.

123



Computational Mechanics

This work presents a set of utilities for performing UQ
for the design of the robotic bending attachment shown in
Fig. 1. Our approach applies MC sampling and propagates
uncertainties through a thermal FEM solver, computes the
sensitivity of the QoI, and defines a hypersurface for design
space characterization. The QoI selected in this study sum-
marizes the temperature profile at the blade tool working
edge, identified in Fig. 2 to aid us in predicting an acceptable
or unacceptable fold procedure on the garment.

3 Methods

3.1 Thermal FEM solver

Using a standard FEM formulation with thermal stiffness
matrix K and mass matrix M, Eq. 1 may be written as:

Ṫ = M−1
(

KT − C(T − Ta) − R(T4 − T4
a) + q

)

(5)

whereT is a vector of temperature values for all nodes andT a

stores the ambient temperature. Using Forward Euler time
integration, the discretized matrix-vector equation used to
update the nodal temperatures:

Tn+1 = Tn + �t Ṫ . (6)

3.2 Steady state solver

While transient temperature profiles, the response to pertur-
bations, and properties such as the time required to reach
operating temperatures all require time integration, the most
important aspects of a tool’s performance can be directly
extracted from the temperature field at steady state. To
resolve steady state thermal profiles, an efficient approxi-
mation method is necessary.

The steady state temperature may be defined by setting
Ṫ = 0 in Eq. 5. This system is nonlinear and lends itself to
an iterative solution scheme. To solve this system, Newton’s
method may be used to successively solve linearized approx-
imations of the true system until a satisfactory numerical
tolerance is achieved.

The inverse mass matrix M−1 from Eq. 6 may be factored
out of non-trivial solutions:

Ṫ = 0 → KT − C(T − Ta) − R(T4 − T4
a) + q = 0 (7)

where Ta is the ambient temperature.
Update terms are determined to refine the solution:

T i+1 = T i + �T i . (8)

Fig. 2 Thermal field along the working edge, highlighted, is the key
QoI for the bending process

Here, i represents the number of iterations. Substituting this
update rule into Eq. 7 yields:

K (T i + �T i ) − C(T i + �T i − Ta)

−R
(

(T i + �T i )
4 − T4

a

)

+ q = 0 (9)

Afirst-order Taylor expansion of the system about T i with
offset size �T i may be used to linearize the system:

(T i + �T i )
4 ≈ T4

i + (4T3
i )�T i (10)

Substituting the approximation from Eq. 10 into Eq. 9 and
rearranging yields:

(

C − K + 4RT3
i

)

︸ ︷︷ ︸

A

�T i
︸︷︷︸

x

= (K − C) T i − RT4
i +

(

RT4
a + q + CTa

)

︸ ︷︷ ︸

b

(11)

Using this formulation, the steady state temperature may
be iteratively determined to arbitrary precision.

For the remaining statistical analysis, the thermal solver
may be treated as a black box that generates the nodal tem-
perature array T (t) over time. Illustrative results are shown
in Fig. 5.

3.3 Thermal field uncertainty quantification

In addition to directly improving key performance metrics,
it is also desirable to ensure that the performance of the
blade tool is predictable and agnostic to environmental distur-
bances or imprecise tool construction. First, sensitivity data
can inform the tool designers about design options that yield
increasingly robust designs. Resiliency of the output thermal
field to perturbations of a certain input parameter translates to
a viable blade design. Second, parameter studies give insight
about the design space and the output’s expectation.
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3.3.1 The quantity of interest

The design of a thermal blade tool requires defining its geom-
etry, as well as construction material and a heat source, in
hopes of contributing to a desired performance. The metric
for the desired performance is what is called a quantity of
interest (QoI). Typically, QoI data is a single scalar value for
a given design point, and the output of a post-processing step
on the field solution from the numerical solution.

The primary QoI selected for this study is the temperature
range along the working edge of the blade at steady state.
This region of interest is shown in Fig. 2.

Minimizing this QoI is a proxy for a consistent folding
operation on the garment work piece. A wide temperature
range at this edge will create uneven softening and result
in unpredictable bending characteristics. Accordingly, suc-
cessful tool designs will minimize temperature ranges in this
area.

There are a myriad of QoI metrics that we can analyze
with our UQ utility. An example would be the time the blade
requires to reach operating temperatures. We estimate that a
bladewith rough outer dimensions of 0.2×0.35m can take up
to 20minutes to reach its steady state temperature. Long wait
times will reduce productivity on the manufacturing floor,
driving the need for designs that minimize this particular
QoI.

3.3.2 Data generation

The structure of the output UQ data is a 2-dimensional array
with labeled columns and rows, sized m × (n + 1), where m
is the number of queried design points and n is the number of
input parameters and the extra column stores QoI data. We
can then analyze the design of the blade tool in three ways:
sensitivity computations, design space characterization, and
the propagation of uncertainty through the solver.

The aim of sensitivity computations is to approximate the
local gradient of the QoI with respect to the design parame-
ters. A typical method is using central differences. This type
of analysis runs on a single query point, returning its QoI
value and its partial derivatives. Explicitly, the user-specified
query point P(v1, v2, . . . , vn) is perturbed independently on
each variable via a user-specified resolution, δ. The pertur-
bation of design variable v j is computed by:

Pv j+ = P
(

v1, v2, . . . , (1 + δ)v j , . . . , vn
)

Pv j− = P
(

v1, v2, . . . , (1 − δ)v j , . . . , vn
)

.

The QoI value is calculated by Q+ = f
(

Pv j+
)

and Q− =
f
(

Pv j−
)

, where function f represents the thermal FEM

solver. The sensitivity due to v j is:

S j = ∂Q
∂v j

≈ Q+ − Q−

Pv j+ − Pv j−
. (12)

The MC simulation can also be leveraged to explore the
design space, either across the entire space within its bound-
aries or in a particular region of interest. The design space
may be defined with an orthogonal basis, where each dimen-
sion corresponds to a design parameter. In this study, a
predetermined number of query points are generated from
a translational propagation Latin hypercube (TPLH) sam-
pling design algorithm by [28]. This algorithm ensures a fast,
high-quality sampling design that is modular depending on
the chosen number of query points. Table 1 showcases a sam-
ple symbolic design with 4 design points, and thus 4 levels
are queried per variable (low, mid-low, mid-high, and high).
In the spirit of Latin hypercube sampling, note that each level
is represented once for each input variable.

Lastly, we can propagate the distributions of the inputs
through the solver to discover a resulting output distribution
of the QoI. Typically, the distributions of the inputs have
been previously measured experimentally or they may be
estimates. The design points can then be randomly sampled
from these input distributions until a pre-determined number
of samples has been reached, or until the QoI distribution
does not change, outside a tolerance, with subsequent sam-
ples.

Aided by the definition of sensitivity analysis by [29],
we can see that this type of analysis attempts to explain the
individual contributions of each design parameter to the out-
put distribution. In other words, the major contributors to the
uncertainty of the QoI can be identified, know as factor prior-
itization, and the least influential parameters can be removed
from the set of design inputs, know as factor fixing.

As a best practice, experimental data should calibrate esti-
mates of the input distributions, e.g. with Bayesian inference
methods. However, this is beyond the scope of this study. Our
computational thermal tool for garment fabrication is agnos-
tic to the distributions of the inputs and so it is the user’s task
to identify the most accurate data to employ.

4 Results

In this section, numerical thermal field results are shown for a
characteristic thin, rectilinear tool with a slot geometry sub-
jected to varied thermal loads. The resulting thermal field
data will be queried for the range of steady state tempera-
tures at the working edge (the QoI). We will showcase the
usefulness of this data: calculate local sensitivities, map out
the design space, and quantify the uncertainty of the QoI via
MC propagation.
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Table 1 Example of a sampling
design from the translational
propagation Latin hypercube
algorithm by [28] with 4 data
points. Therefore, each input
variable is discretized into 4
levels: low, mid-low, mid-high,
and high

Convection Coeff. Reflectivity Base Height Left Pad Width

Design point 1 low med-low med-high low

Design point 2 med-high med-high high med-low

Design point 3 high low low med-high

Design point 4 med-low high med-low high

The meshing and simulation tool is able to simulate and
visualize the performance of varied blade designs. For mod-
erate resolutions like those shown below, the entire meshing,
numerical solution with Eq. 11, and plotting procedure takes
up to 4 seconds per design on a modern laptop.

4.1 Numerical example

The thermal simulation model takes selected geometric and
thermal design parameters and solves for the resulting ther-
mal field at steady state and over time starting with given
initial conditions.

Example results with two different heat sources and con-
struction materials are shown in Figs. 3 and 4 to demonstrate
the inputs for quantifying the uncertainty of the thermal field.
Four possible designs are considered, using either aluminum
or copper as a construction material and either a thin heated
wire through the middle of the tool or a pair of rectangular
thermoelectric pads on the sides. In all designs, 200 Watts
of thermal power is applied as a flux boundary condition
uniformly over the defined source geometry.

The thermal properties of aluminum and copper are
assumed to be constant with respect to temperature and are
given by Table 2.

The following dimensions were used for all example
designs:

• L1 = 7.5 cm
• L2 = 15 cm
• L3 = 15 cm
• H1 = 10 cm
• H2 = 5 cm
• thickness = 5 mm

Two different heat source geometries will be considered:
rectangular pads on the front side of the blade or a narrow
strip wrapped all the way around the blade to imitate a coil
of wire, referred to as the pad design and wire design. These
source regions will be idealized as constant within rectangu-
lar regions orthogonal to the ẑ direction, described by upper
and lower bounds in the x̂ and ŷ directions and an exact
coordinate ẑ.

Fig. 3 Schematic of example “pad” heat source

Fig. 4 Schematic of example “wire” heat source

Table 2 Thermal properties

Property Aluminum Copper

c [J/ (kg · K )] 920 375

ρ
[

kg/m3
]

2720 8960

k [W/ (m · K )] 237 400

For a specified power pi , a source term qi is modeled with
the following form:

qi (x, y, z) =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

(xmax,i ≥ x ≥ xmin,i ) &
pi
αi

(ymax,i ≥ y ≥ ymin,i ) &

(z = zi )

0 otherwise

(13)

Where αi is the area of a given source region:

αi = (xmax,i − xmin,i ) × (ymax,i − ymin,i ).

Note that numerical integration of step functions usingGaus-
sian quadrature is not exact since it is not possible to exactly
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Table 3 Dimensions for numerical examples in centimeters

i xmin,i xmax,i ymin,i ymax,i zi

1 1.875 5.625 2.500 12.500 0.500

2 31.875 35.625 2.500 12.500 0.500

3 0.000 37.500 6.167 7.167 0.000

4 0.000 37.500 6.167 7.167 0.500

Fig. 5 Example steady state thermal fields. Top to bottom: copper with
pads, copper with wire, aluminum with pads, aluminum with wire

fit a general step function with a polynomial. Any piece-wise
source term, regardless of form, may result in integration
errors. The impact of discontinuitiesmay be reduced by refin-
ing the mesh.

Both the pad and wire designs will have two source
regions, defined by

qpad = q1 + q2 and (14)

qwire = q3 + q4. (15)

The pad geometries are defined by the values shown in table
3.

All example source regions impart 100 W of thermal
power for a total of 200 W of thermal power per design. The
source regions with these parameters are shown in Figs. 3

Fig. 6 Example transient and steady thermal fields alongworking edge.
Top to bottom: copperwith pads, copperwithwire, aluminumwith pads,
aluminum with wire

and 4. Note that the second source region for the wire design
is on the bottom side of the blade, directly below the vis-
ible region. Elements colored white are entirely within the
source region, elements colored black are entirely outside,
and elements colored gray are on the border.

It can be seen both qualitatively in Fig. 5 and quantitatively
in Fig. 6 that the rectangular sources concentrate heat and cre-
ate a significant deviation in temperature. The wire sources
keep a much lower peak temperature since the source region
has a much larger perimeter for heat to dissipate outward
through. Additionally, since the wire source region is closer
to the working edge on average, it produces a more uniform
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profile as reflected in the greatly reduced gap between the
minimum and maximum edge temperatures shown in Fig. 6.

The thermal profiles at steady state with copper or alu-
minum construction are very similar with the exception of
higher edge temperatures with copper when combined with
pad heat sources since the higher conductivity of copper
spreads the hot spot under the source toward the edge more
effectively. Since neither material is clearly superior for the
quantities of interest in this study, considerations like weight
and cost should drive the selection of materials, not the ther-
mal profile along the front edge.

While inspection and comparison of possible designs is
one possible use of the thermal model of the bending tool,
using sensitivity analysis to compare designs automatically
can offer greater insight into the effectiveness of different
design choices.

4.2 Quantifying the uncertainty

Now, here we present sample UQ data structures and results
for the utilities introduced in Sect. 3.3: sensitivity calcula-
tions for a query point, characterizations of design space,
and propagation of the input uncertainties. For all results
that follow, the temperature range QoI is calculated as:

Q = max T̃ − min T̃ , (16)

where T̃ ∈ {T (x, y, z) | y = 0} for a blade tool oriented as
in Fig. 2.

The results that follow pertain to a copper tool heated via
two thermal pads mounted on the areas outlined by the white
grid cells in Fig. 3.

4.2.1 Sensitivity calculations

Here, we compute the gradient of Q with respect to each
design parameter as shown in Eq. 12. Table 4 demonstrates
the data structure of the output array: the query point, the
temperature range value, and the sensitivity values. This data
pertains to a relatively large perturbation, δ = 10−4, but the
sensitivities can be computed with any positive resolution.

At the chosen resolution, sensitivity results suggest that
all design variables have an inverse relation to the temper-
ature range at the working edge. These results confirm our
intuition. The environmental parameters will tend to quell
hot and cold spots, thus reducing local temperature spikes.
Low values of the geometric parameters enlarge the size of
the slot and this tends to constrain and guide the flow of
heat towards a particular region of the working edge, thus
producing warmer spots.

Finding actual deviations of the QoI �Q from a given
design parameter perturbation, e.g. perturbations of themate-

rial thermal reflectivity, can be accomplished by

�Q = ∂Q
∂ε

�ε, (17)

where �ε = ε − (1 − δ)ε = δε is the perturbation amount.
This computation also normalizes all sensitivities to the units
of the QoI for directly comparing the sensitivity ofQ due to
each design variable.

These sensitivity results are the cornerstone for gradient-
based optimization routines such as the gradient descent or
the conjugate gradient methods.

4.2.2 Characterizing the design space

This utility outputs data for building a response hypersur-
face of the design space, with its local value Qi at each
design point Pi (h, ε, H1, L1). From a predetermined axis-
aligned, 4-dimensional bounding cube and a chosen number
of design points, we sample the space using the fast, optimal
TPLH design. The data in Table 5 are results of a 4-point
sampling in our 4-dimensional design space following the
design example in Table 1. The design parameters spanned
the following bounds:

• h = [0.0, 100.0] W
m2·K• ε = [0.1, 1.0]

• H1 = [0.050, 0.150]m
• L1 = [0.050, 0.160]m

Of course, to effectively capture a useful hypersurface in a
4-dimensional space, the TPLH sampling design must incor-
porate a considerably higher quantity of design points than
shown in Table 5.

4.2.3 Propagating the uncertainties of the inputs

We now assume that we can estimate each design parame-
ter distribution based on typical laboratory settings. Our UQ
utility is capable of sampling any distribution in standard
Python packages in addition to any user-built density func-
tion, making it versatile for using corrected design parameter
distributions.

Here, we model the case where the blade tool is made of
copper and there is an environmental control in the laboratory.
Hence, the convection coefficient and the material reflectiv-
ity are only subject to random variations, best modelled by
a normal distribution with a standard deviation smaller than
10% of the mean. In the case of the geometrical parameters,
we can say that the user is interested in exploring all pos-
sible dimensions with equal interest and so H1 and L1 are
assigned uniform distributions, bounded by physical restric-
tions imposed by the thermal pad size. In summary:
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Table 4 Sample output from the design sensitivity utility via central differences and δ = 10−4. Included is the query design point, the temperature
range at the working edge (QoI) for the query design point, and the sensitivity of the QoI

Query Point Temp. Range Temperature Range Sensitivity

h ε H1 L1 Q ∂Q
∂h

∂Q
∂ε

∂Q
∂H1

∂Q
∂L1

[W/(m2 · K )] [m] [m] [K ] [K/( W
m2·K )] [K ] [K/m] [K/m]

40 0.7 0.1 0.11 15.59 −0.086 −1.030 −141.0 45.2

Table 5 Sample output from the
design space characterization
utility. The design space is
4-dimensional and 4 design
points were output from a TPLH
sampling design. Included in the
data is are the design points and
the temperature range at the
working edge (QoI)

Design Parameters Temp. Range

h ε H1 L1 Q
[W/

(

m2 · K )

] [m] [m] [K ]

Design point 1 0.0 0.4 0.117 0.050 22.23

Design point 2 66.7 0.7 0.150 0.087 6.52

Design point 3 100.0 0.1 0.050 0.123 34.17

Design point 4 33.3 1.0 0.083 0.160 7.92

Fig. 7 Input distributions of the design parameters. A normal dis-
tribution is assumed for the environmental variables and a uniform
distribution is assumed for the geometrical variables. Clockwise from
top left: h, ε, left pad width, right pad width

• h ∼ N (40, 4.02)
• ε ∼ N (0.7, 0.12)
• H1 ∼ U(0.06, 0.14)
• L1 ∼ U(0.06, 0.165)

The output data structure is identical to Table 5. We have
decided to sample 1, 000 points, each taking in average of
3.67 s to generate a QoI value on a 2.3 GHz quad-core Intel
Core i7 processor. Fig. 7 has frequency plots for the input
parameter values that were sampled.

The MC simulation propagated the input distributions
through the thermal FEM solver. The output distribution for
the temperature range at the working edge QoI is shown as
a frequency plot and a kernel density estimation plot, Figs. 8

Fig. 8 Output distribution of the temperature range at theworking edge,
histogram

Fig. 9 Output distribution of the temperature range at theworking edge,
probability density
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Fig. 10 Pairwise plots for the design parameters and the temperature
range at the working edge. The diagonals showcase the continuous
probability density curve for each. The off-diagonals show relation-

ships between each pair. The bottom row shows the contributions of
each design parameter to the distribution of the QoI

and 9 , respectively. Note that theQoI distribution has grossly
deviated from the input distributions: it neither exhibits a
uniform nor a normal distribution. Also, since the output dis-
tribution is purely empirical, every set of data from different
batches of 1,000 sample points results in a slightly different
QoI distribution, but the shape will always exhibit a positive
third moment (skewness) measure.

Pairwise plots as the ones in Fig. 10 provide further insight
about theQoI uncertainty. Theplots on the off diagonals show
the 2-dimensional scatter, highlighting hidden relationships
between all input-input or input-QoI pairs. We can see that
on the bottom line of scatter plots, for all input variables, the
greatest density of points is manifested towards the lower
bound of the temperature range QoI. In other words, closer
to the Q = 0 K versus the 60 K vicinity. This pattern in the
scatter plots is the major contributor to a positive skewness
of the output distribution.

Furthermore, we can also observe from these scatter plots
that varying the environmental variables do not contribute
to large changes in the temperature range QoI. However, the
dimensions of the blade do contribute inversely to changes

in the expected value of the QoI. For instance, a base height
H1 dimension closer to the higher bound will contribute to
a lower expected temperature range QoI value than a shorter
base dimension.

Propagating the input uncertainties through the solver is
a powerful utility to set the expectations for the performance
of the system, in this case the blade tool temperatures. Let’s
say that for a particular folding procedure application a tem-
perature range at the working edge of more than 30 K is
unacceptable. Therefore, the blade tool designers must make
a decision whether the output distribution represented in
Figs. 8 and 9 represents a risk of undesirable performance
of the tool.

5 Conclusion

This work presents a design sensitivity analysis of a heated
blade tool for robotic folding of thermoplastic-stiffened cloth
for garment production. A numerical example showing how
this model can inform design decisions, and particularly
distinguish between strongly and weakly important design
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decisions, shows how a designer could use this model to
inform design iteration and improve key quantities of inter-
est for high performance on a production line.
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