
Computational Mechanics
https://doi.org/10.1007/s00466-022-02216-4

ORIG INAL PAPER

A note on rapid genetic calibration of artificial neural networks

T. I. Zohdi1

Received: 19 June 2022 / Accepted: 15 July 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Artificial Neural Nets (ANN) have received huge attention in the scientific community over the last decade and are based
on layered input-output type frameworks that are essentially adaptive nonlinear regressions of the form O = B(I,w), where
O is a desired output and B is the ANN comprised of (1) synapses, which multiply inputs (I1, I2, . . . , IM) by weights
(w1, w2, . . . , N) that represent the input relevance to the desired output, (2) neurons, which aggregate outputs from all
incoming synapses and apply activation functions to process the data and (3) training, which calibrates the weights to match
a desired overall output. A primary issue with ANN is the calibration of the synapse weights. This calibration can be cast
as a nonconvex optimization problem, whereby the cost/error function represents the normed difference between observed
data and the output of the ANN for a selected set of weights. The objective is to select a set of weight which minimizes
the cost/error. One family of methods that are extremely well-suited for this process are genetic-based machine-learning
algorithms. The goal of this short communication is to illustrate this process on a clear model problem.

Keywords Neural-net · Calibration · Genetic algorithm

1 Introduction

Artificial Neural Nets (ANN) are based on layered input-
output type frameworks that are essentially adaptive nonlin-
ear regressions of the form

O = B(I1, I2, . . . , IM , w1, w2, . . . , wN), (1.1)

whereO is a desired output and B is the ANN comprised of:

• Synapses, which multiply inputs (I1, I2, . . . , IM) by
weights (w1, w2, . . . , wN) that represent the input rel-
evance to the desired output,

• Neurons, which aggregate outputs from all incoming
synapses and apply activation functions to process the
data and

• Training, which calibrates theweights tomatch a desired
overall output.

For example, Fig. 1 illustrates a detailed ANN comprised of
(1) Five layers (one input layer and four hidden layers) (2)

B T. I. Zohdi
zohdi@berkeley.edu

1 Department of Mechanical Engineering, University of
California, Berkeley, CA 94720-1740, USA

35 activation neurons (3+5+7+9+11) and (3) 223 weighted
synapses. The primary issue with ANNs is the calibration or
“training” of the synapse weights. The key components of
an ANN can be summarized as follows (which is centered
around training):

• STEP1:Guess a set of trialweights (trials, J = 1, 2, . . .),
given by the vector wJ=1, for the synapse weights and
insert into theANN (detailed construction shown shortly)

B(I,wJ) = OJ , (1.2)

which produces an overall trial output (J th trial).
• STEP 2: Compute the error for the J th trial

E J def= ||Odesired − OJ ||, (1.3)

where Odesired is the desired output, which could come
from experimental/field data or results from a complex
computational model of a system, where a reduced com-
plexity ANN may be useful to represent the system.

• STEP 3: The minimization of the error by adjusting the
weights, for the next trial (J + 1):

wJ+1 = wJ + �wJ (1.4)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-022-02216-4&domain=pdf

Computational Mechanics

Fig. 1 Top: An ANN comprised of (1) Five layers (one input layer and
four hidden layers) (2) 35 activation neurons (3+5+7+9+11) and (3)
223 weighted synapses. The color-coding represents the value of the
synapse weights, in this case scaled by a factor of 10 (dark blue=-10
and bright red=+10). Bottom: Various neuron activation functions: (1)
Linear (2) Sigmoid and (3) Double Sigmoid

• STEP 4: Repeat Steps 1-3 (trials J = 1, 2, . . .) until the
best set of weights are found to minimize the error.

The determination of the synapse weights can be cast as
a nonconvex optimization problem, whereby the cost/error
function represents the normed difference between observed
data and the output of the ANN for a selected set of weights.
The objective is to select a set ofweightswhichminimizes the
cost/error. One family of methods that are extremely well-
suited for this process are genetic-based machine-learning
algorithms. The goal of this short communication is to illus-
trate this process.

2 Construction of an ANN

The specifics of ANN construction are as follows:

• Step 1: Assign initial starting “guessed” weights to
the synapses; this is the number of unknowns to be
updated/optimized: wJ , for trials J = 1, 2, . . .

• Step 2: Collect (sum) the input (Ik , k = 1, . . . ,
synapses, Fig. 1) from each synapse input to each neu-
ron:

• Neuron 1: I1w1→N1 + I2w2→N1 + . . . = SN1 , Neuron 2:
I1w1→N2 + I2w2→N2 + . . . = SN2 , etc.

• Step 3: For each neuron, apply an activation function
(Fig. 1) to process input: Neuron 1: AN1(SN1),Neuron 2:
AN2(SN2), etc.

• Linear activation: A(x) = x which provides proportional
feedback

• Sigmoid/logistical activation: A(x) = 1
1+e−x , reinforces

input for x → ∞ and deletes input for x → −∞
• Double-sigmoid activation: A(x) = 1−e−x

1+e−x , reinforces
input for x → ∞ and negates input for x → −∞

• Step 4: The output function sums contributions from the
last layer:

O(�
Nlast
i=1 wNi→O ANi (SNi))

def= OJ . (2.1)

• Step 5: Compute the error E J = ||ODesired − OJ ||, in
the appropriate problem specific norm, where ODesired

is observed data to be matched.
• Step 6: Repeat Steps 1-5 with an updated (improved) set

of weights until a cost function �(�J)
def= E J is mini-

mized by varying a design vector �J def= {�J
1 ,�J

2 , . . . ,

�J
N } = {w J

1 , w J
2 , . . . , w J

N }. This is the key step, referred
to as training or calibration.

3 Genetic-basedmachine-learning
optimization

The objective now is to minimize the cost function

�(�J
1 , . . . , �J

N)
def= E J = ||ODesired − OJ ||, (3.1)

by varying the design vector �J def= {�J
1 ,�J

2 ,�J
3 , . . . ,

�J
N } = {w J

1 , w J
2 , w J

3 , . . . , w J
N }, for repeated trials J =

1, 2, In order to cast the objective mathematically, we
set the problem up as a genetic-based machine-learning
algorithm, which is well-suited for nonconvex optimiza-
tion. Following Zohdi [21–27], we formulate the objective
as a cost function minimization problem that seeks sys-
tem parameters that match a desired response, in this case
a minimum of the neural network error in matching the
given data, represented by �(�J

1 , . . . �J
N). We systemat-

ically minimize Eq. 3.1, min�J �, by varying the design

parameters: �J def= {�J
1 ,�J

2 ,�J
3 , . . . , �J

N }. The system
parameter search is conducted within the constrained ranges
of �

(−)
1 ≤ �J

1 ≤ �
(+)
1 , �(−)

2 ≤ �J
2 ≤ �

(+)
2 , �(−)

3 ≤ �J
3 ≤

�
(+)
3 , etc. These upper and lower limits are dictated by what

is physically feasible.

123

Computational Mechanics

Fig. 2 The basic action of a
genetic-based machine-learning
algorithm (Zohdi [21–27])

3.1 Genetic-basedmachine-learning algorithm

Cost functions such as � are nonconvex in design parameter
space and often nonsmooth. Their minimization is usually
difficult with direct application of gradient-based methods.
This motivates nonderivative search methods, for example
those found in machine-learning algorithms (MLAs). One of
the most basic subsets of MLAs are so-called Genetic Algo-
rithms (GAs). For a review of GAs, see the pioneering work
of John Holland ([10,11]), as well as Goldberg [5], Davis
[1], Onwubiko [18] and Goldberg and Deb [6]. A descrip-
tion of the algorithm will be described next, following Zohdi
[21–27].

Remark 1 To be consistent with the genetic-algorithm ter-
minology, we shall us the term “trial” interchangeably with
“generation”.

3.2 Algorithmic structure

TheMLA/GA approach is extremelywell-suited for noncon-
vex, nonsmooth, multicomponent, multistage systems and,
broadly speaking, involves the following essential concepts
(Fig. 2):

1. POPULATION GENERATION: Generate a parameter
population i = 1, 2, . . . , S of genetic strings for the J th
generation: �J ,i

2. PERFORMANCE EVALUATION: Compute perfor-
mance of each genetic string: �(�J ,i)

3. RANK STRINGS: Rank them �J ,i , i = 1, 2, . . . , S
from best to worst

4. MATING PROCESS: Mate pairs/produce offspring
5. GENE ELIMINATION: Eliminate poorly performing

genetic strings
6. POPULATION REGENERATION: Repeat process

with updated gene pool and new random genetic strings
7. SOLUTION POST-PROCESSING: Employ gradient-

based methods afterwards in local “valleys”-if smooth
enough

Remark 2 In order to make the upcoming presentation of the
algorithm as clear as possible, we will write �i = �J ,i ,
where it is assumed that this is the i th genetic string in the
population at J th trial/generation.

3.3 Specifics

Following Zohdi [21–27]. the algorithm is as follows:

• STEP 1: Randomly generate a population of S starting
genetic strings,�i , (i = 1, 2, . . . , S), each containing N
synapse weights:

�i def=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�i
1

�i
2

�i
3

. . .

�i
N

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3.2)

• STEP 2: Compute fitness of each string�(�i), (i=1,…,
S)

• STEP 3: Rank genetic strings:�i , (i=1,…, S) from best
to worst

• STEP 4: Mate nearest pairs and produce two offspring,
(i=1,…, S):

λi
def= � ◦ �i + (1 − �) ◦ �i+1

def=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ1�
i
1

φ2�
i
2

φ3�
i
3

. . .

φN�i
N

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 − φ1)�
i+1
1

(1 − φ2)�
i+1
2

(1 − φ3)�
i+1
3

. . .

(1 − φN)�i+1
N

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(3.3)

and

123

Computational Mechanics

λi+1 def= � ◦ �i + (1 − �) ◦ �i+1

def=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψ1�
i
1

ψ2�
i
2

ψ3�
i
3

. . .

ψN�i
N

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 − ψ1)�
i+1
1

(1 − ψ2)�
i+1
2

(1 − ψ3)�
i+1
3

. . .

(1 − ψN)�i+1
N

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(3.4)

where for this operation, the φi and ψi are random num-
bers, such that 0 ≤ φi ≤ 1, 0 ≤ ψi ≤ 1, which are
different for each component of each genetic string

• STEP 5: Eliminate the bottom M strings and keep
top K parents and their K offspring (K offspring+K
parents+M=S)

• STEP 6: Repeat STEPS 1-5 with top gene pool (K off-
spring and K parents), plus M new, randomly generated,
strings

Remark 3 If one selects the mating parameters φ′s and ψ ′s
to be greater than one and/or less than zero, one can induce
“mutations”, i.e. characteristics that neither parent possesses.
However, this is somewhat redundant with introduction of
new random members of the population in the current algo-
rithm. If one does not retain the parents in the algorithm
above, it is possible that inferior performing offspring may
replace superior parents. Thus, top parents should be kept
for the next generation. Retained parents do not need to be
reevaluated, thus also making the algorithm less computa-
tionally expensive. Numerous studies of the author (Zohdi
[21–27]) have shown that the advantages of parent retention
outweighs inbreeding, for sufficiently large population sizes.

Remark 4 One can refocus search around best performing
parameter set every few generations, thus concentrating the
computation effort around the most promising (optimal)
areas of design space. This often has advantages for highly
nonconvex problems.1

Remark 5 After application of such a global search algo-
rithm, one can apply a gradient-based method around the
best performing parameter set, if the objective function is
sufficiently smooth in that region of the parameter space.
In other words, if one has located a convex portion of the
parameter spacewith a global genetic search, one can employ
gradient-based procedures locally to minimize the objective
function further, since they are generallymuchmore efficient
for convex optimization of smooth functions. An exhaus-
tive review of these methods can be found in the texts of
Luenberger [14] and Gill, Murray and Wright [4]. However,
refocussing usually makes this extra step unnecessary, since
the search eventually concentrates the computational effort
locally around the best parameter set beforehand.

1 We also note that this algorithm is extremely easy to parallelize.

Fig. 3 A particle-functionalized material for structural applications

4 Example: Genetic training of an ANNwith
synthetic data material data

As an example, we consider a model problem in compos-
ite material design. The industrial use of particle-enhanced
composite materials in structural applications is increasing
(Fig. 3).Analysts are nowaffordedwithmanyparticle-matrix
choices for possible material combinations. However, due to
the nature of such applications, experiments to determine
the appropriate combinations of particle and matrix materi-
als are time-consuming and expensive, and it is advantageous
to characterize such materials analytically and computation-
ally, in order to reduce product development time and costs.
In order to characterize the effective macroscale (structural)
material response of such materials, a relation between aver-
ages,

〈σ 〉� = IE∗ : 〈ε〉�, (4.1)

is sought, where

〈·〉� def= 1

|�|
∫

�

· d�, (4.2)

and where, throughout the structure, the mechanical proper-
ties of microheterogeneous materials are characterized by a
spatially variable elasticity tensor IE = IE(x) and σ and ε

are the stress and strain tensor fields within a Representative
Volume Element (RVE) of volume |�|. The quantity IE∗ is
known as the effective property. It is the elasticity tensor used
in usual structural (macroscale) analyses. The internal fields,
which are to be volumetrically averaged, can be computed by
solving a series of boundary value problems with test load-

123

Computational Mechanics

ings over anRVEusing the Finite ElementMethod.However,
this is extremely computationally intensive (Zohdi andWrig-
gers [28]) and oftentimes, faster approximate methods are
sought. Such approximations are important as a design tool.
We will concentrate on isotropic materials. In the case of
isotropic overall responses, we may write

〈
trσ

3

〉

�

= 3κ∗
〈
trε

3

〉

�

(4.3)

and

〈σ ′〉� = 2μ∗〈ε′〉�, (4.4)

where κ∗ and μ∗ are the effective bulk and shear moduli,
trσ
3 is the dilatational stress, trε

3 is the dilatational strain, σ ′
is the deviatoric stress and ε′ is the deviatoric strain. For
an authoritative review of the general theory of random het-
erogeneous media see, for example, see Torquato [20] for
general interdisciplinary discussions, Jikov et. al. [12] for
more mathematical aspects, Hashin [7] or Mura [17] for
solid-mechanics inclined accounts of the subject, for analy-
ses of defect-laden, porous and crackedmedia, seeKachanov,
Tsukrov and Shafiro [13] and for computational aspects see
Ghosh [2], Ghosh and Dimiduk [3] and Zohdi and Wriggers
[28].

4.1 Effective property estimates

The literature on methods to estimate the overall macro-
scopic properties of heterogeneous materials dates back at
least to the 1800’s by the pioneering works of Maxwell
[15,16] and Lord Rayleigh [19], with an extremely impor-
tant contribution being the Hashin-Shtrikman bounds during
the 1960’s (Hashin and Shtrikman [8,9], Hashin [7]). The
Hashin-Shtrikman bounds are the tightest possible bounds
on isotropic effective responses, generated from isotropic
microstructures, where the volumetric data and phase con-
trasts of the constituents are the only data known. They are
as follows, for the bulk modulus:

κ∗,− def= κ1 + v2
1

κ2−κ1
+ 3(1−v2)

3κ1+4μ1

≤ κ∗ ≤ κ2 + 1 − v2
1

κ1−κ2
+ 3v2

3κ2+4μ2

def= κ∗,+,

(4.5)

and for the shear modulus

μ∗,− def= μ1 + v2
1

μ2−μ1
+ 6(1−v2)(κ1+2μ1)

5μ1(3κ1+4μ1)

≤ μ∗ ≤ μ2 + (1 − v2)

1
μ1−μ2

+ 6v2(κ2+2μ2)
5μ2(3κ2+4μ2)

def= μ∗,+,

(4.6)

where κ2 and κ1 are the bulk moduli and μ2 and μ1 are the
shearmoduli of the respective phases (κ2 ≥ κ1 andμ2 ≥ μ1),
and where v2 is the second phase volume fraction. Phase 2 is
the stiffer of the two constituents (which usually corresponds
to the particles)2. One can form estimates for the effective
properties by forming a convex combination of them, such
as

κ∗ ≈ ηκ∗,+ + (1 − η)κ∗,− def= κ∗,η (4.7)

and

μ∗ ≈ ημ∗,+ + (1 − η)μ∗,− def= μ∗,η (4.8)

where 0 ≤ η ≤ 1 is a parameter such that:

• If η = 0 we have the lower bound,
• If η = 1 we have the upper bound and
• If η = 1/2 we have the average of the bounds.

Remark 6 If needed, one can post-process the effective bulk
and shear modulus to obtain the effective Poisson ratio ν∗ =
3κ∗−2μ∗
2(3κ∗+μ∗) and the effective Young’s modulus E∗ = 2μ∗(1+
ν∗) = 3κ∗(1 − 2ν∗).

4.2 Generation of a synthetic data set

As a test problem, we apply a neural net representation of
the following effective property expression:

�(μ1, μ2, κ1, κ2, v2) = c1μ
∗,η + c2κ

∗,η, (4.9)

where c1 = c2 = 1. Explicitly, we evaluated � at D=1000
random combinations of (μ2, κ2, v2), with matrix material
(μ1, κ1) = (0.1, 0.2) fixed (the averaging parameter was
also fixed η = 0.5), generated between

• 1.75μ1 = μ−
2 ≤ μ2 ≤ μ+

2 = 2.25μ1,
• 1.75κ1 = κ−

2 ≤ κ2 ≤ κ+
2 = 2.25κ1 and

• 0.25 = v−
2 ≤ v2 ≤ v+

2 = 0.75.

4.3 Selected neural net configuration and cost
function

As an example, we use anANN (Fig. 1) comprised of (1) Five
layers (one input layer and four hidden layers) (2) 35 activa-
tion neurons (3+5+7+9+11) and (3) 223 weighted synapses.
Our objective is the use of genetic-basedmachine-learning to
calibrate the 223 weights for the synapses. The cost function
is

2 Note that no geometric or statistical information is required for the
bounds.

123

Computational Mechanics

Fig. 4 The evolution of the best synapse weights, which stabilized after about 25 generations. From left to right and top to bottom at generations
1, 5, 10, 15, 20 and 25. The color-coding represents the value of the synapse weights, in this case scaled by a factor of 10 (dark blue=-10 and bright
red=+10)

123

Computational Mechanics

�(�i) = �D=1000
j=1 |�(μ

j
2, κ

j
2 , v

j
2) − O(�i , μ

j
2, κ

j
2 , v

j
2)|,
(4.10)

where �i = wi is the design vector of synapse weights to
be calibrated with the genetic-based machine-learning algo-
rithm.

4.4 Algorithmic settings

In the upcoming example:

• Search parameter ranges: �−
i = −10 ≤ �i ≤ �+

i = 10
for the 223 synapse weights,

• Number of design variables: 223,
• Population size per generation: 24,
• Number of parents to keep in each generation: 6,
• Number of children created in each generation: 6,
• Number of completely new genes created in each gener-
ation: 12,

• Number of generations for re-adaptation around a new
search interval: 20 and

• Number of generations: 50.

A double sigmoid function (Fig. 1) was used. Any advantage
of one type of activation function over another, when training
with genetic algorithms, is problem specific.

5 Discussion and summary

Figure 5 illustrates the data points used to train the algorithm.
The sequence in Fig. 4 shows the changes in the weights at
various stages of genetic calibration (generations 1, 5, 10,
15, 20 and 25). The weights were chosen to vary between
-10 and +10, but of course there is nothing stopping choices
outside of this range. This was done simply to allow for a
clear presentation in the example. Figure 6 illustrates the
results for the cost function for the best performing gene
(red) as a function of successive generations, as well as the
average performance cost function of the entire population of
genes (green), and also shows the optimized synapseweights.
The refocussing was implemented at generation 20, which
reduced the best gene’s cost function from approximately
� ≈ 0.55 to � ≈ 0.135 over the course of 5 genera-
tions. The best gene’s cost function stabilized at � ≈ 0.135
from a start of � ≈ 6; a reduction of error by a factor of
44.44. The approach is quite simple to implement and the
entire 50 generation simulation, with 24 genes per evalua-
tion (1,200 total designs) took under a second on a laptop,
making it ideal as a design tool. This example was represen-
tative how this algorithm performed across a wide range of
problems. The provided example, pertaining to the design of

Fig. 5 One thousand synthetic data points used to train the Neural Net:
ODesired

a heterogeneous isotropic material, was selected to be eas-
ily understandable by a wide audience. Of course, one could
extend this type of example to more complex anisotropic
materials, etc. However, the overall objective of this brief
note is to illustrate how the genetic-calibration works for a
neural network representation of any system, arising from
solid mechanics, fluid mechanics, electromagnetics, etc. The
physical problem used to generate the calibration data is
somewhat irrelevant. Setting the number of data points to
1000 was arbitrary.

In summary, ANN are based on layered input-output type
frameworks that are adaptive nonlinear regressions of the
form OUT PUT = B(I,w), comprised of (1) synapses and
(2) neurons. A primary issue with ANN is the calibration of
the synapseweights. This calibration can be cast as a noncon-
vex optimization problem, whereby the cost/error function
represents the normed difference between observed data and
the output of theANNfor a selected set ofweights. Theobjec-
tive is to select a set ofweightwhichminimizes the cost/error.
The goal of this short communication was to illustrate a
straightforward genetic-based calibration approach on a sim-
ple model problem. Genetic-based methods are extremely
well-suited for this calibration process and quite easy to
implement. Generally, it is vigorously debated as to what the
balance should be between the number of data points used
and the number of synapses (and hence synapse weights). It
is the opinion of the author that this balance is very problem
specific, due to the inherent nonconvexity of the underlying
system to be optimized. However, the utility of the presented
algorithm is that it is extremely fast and efficient, thus allow-
ing one to easily explore adding/subtracting more synapse
weights, varying layers, utilizing more data points, etc., in

123

Computational Mechanics

Fig. 6 Left: The cost/error
function associated with the best
performing gene (red) and the
average of the population
(green). Right: The values
optimized (223) synapse
weights that comprise the design
vector

order to test various neural network combinations, with the
goal being to provide the best possible accuracy for the spe-
cific problem at hand.

Acknowledgements This work has been partially supported by the UC
Berkeley College of Engineering and the USDA AI Institute for Next
Generation Food Systems (AIFS), USDA award number 2020-67021-
32855.

References

1. Davis L (1991)Handbook ofGeneticAlgorithms. ThompsonCom-
puter Press

2. Ghosh S (2011) Micromechanical Analysis and Multi-Scale Mod-
eling Using the Voronoi Cell Finite Element Method. CRC
Press/Taylor & Francis

3. Ghosh S, Dimiduk D (2011) Computational Methods for
Microstructure-Property Relations. Springer, NY

4. Gill P, Murray W, Wright M (1995) Practical optimization. Aca-
demic Press

5. Goldberg DE (1989) Genetic algorithms in search, optimization &
machine learning. Addison-Wesley

6. Goldberg DE, Deb K (2000) Special issue on Genetic Algorithms.
Computer Methods in Applied Mechanics & Engineering. 186(2–
4):121–124

7. Hashin Z (1983) Analysis of composite materials: a survey. ASME
Journal of Applied Mechanics. 50:481–505

8. Hashin Z, Shtrikman S (1962) On some variational principles in
anisotropic and nonhomogeneous elasticity. J Mech Phys Solids
10:335–342

9. Hashin Z, Shtrikman S (1963) A variational approach to the theory
of the elastic behaviour of multiphase materials. Journal of the
Mechanics and Physics of Solids. 11:127–140

10. Holland JH (1975) Adaptation in natural & artificial systems. Uni-
versity of Michigan Press, Ann Arbor, Mich

11. Holland JH, Miller JH (1991) Artificial Adaptive Agents in Eco-
nomic Theory (PDF). American Economic Review. 81 (2): 365-71.
Archived from the original (PDF) on October 27, 2005

12. Jikov VV, Kozlov SM, Olenik OA (1994) Homogenization of dif-
ferential operators and integral functionals. Springer-Verlag

13. Kachanov M, Tsukrov I, Shafiro B (1994) Effective moduli of
solids with cavities of various shapes. Appl Mech Rev 47:S151–
S174

14. Luenberger D (1974) Introduction to Linear &Nonlinear Program-
ming. Addison-Wesley, Menlo Park

15. Maxwell JC (1867) On the dynamical theory of gases. Philos.
Trans. Soc. London. 157:49

16. Maxwell JC (1873) A treatise on electricity and magnetism, 3rd
edn. Clarendon Press, Oxford

17. Mura T (1993) Micromechanics of defects in solids, 2nd edn.
Kluwer Academic Publishers

18. Onwubiko C (2000) Introduction to engineering design optimiza-
tion. Prentice Hall

19. Rayleigh JW (1892) On the influence of obstacles arranged in rect-
angular order upon properties of a medium. Phil Mag 32:481–491

20. Torquato S (2002) Random Heterogeneous Materials: Microstruc-
ture & Macroscopic Properties. Springer-Verlag, New York

21. Zohdi TI (2018) Dynamic thermomechanical modeling and sim-
ulation of the design of rapid free-form 3D printing processes
with evolutionarymachine learning. ComputerMethods inApplied
Mechanics and Engineering Volume 331, 1 April 2018, Pages 343-
362

22. ZohdiTI (2019)Electrodynamicmachine-learning-enhanced fault-
tolerance of robotic free-form printing of complex mixtures.
Computational Mechanics. 63, pages 913-929 (2019)

23. Zohdi TI (2021) ADigital-Twin andMachine-learning Framework
for the Design of Multiobjective Agrophotovoltaic Solar Farms.
Comput Mech. https://doi.org/10.1007/s00466-021-02035-z

24. Zohdi TI (2021) ADigital-Twin andMachine-learning Framework
for Ventilation System Optimization for Capturing Infectious Dis-
ease Respiratory Emissions. Archives of Computational Methods
in Engineering. https://doi.org/10.1007/s11831-021-09609-3

25. Zohdi TI (2022) A digital-twin and machine-learning framework
for precise heat and energy management of data-centers. Comput
Mech. https://doi.org/10.1007/s00466-022-02152-3

26. Zohdi TI (2020) A machine-learning framework for rapid adaptive
digital-twin based fire-propagation simulation in complex environ-
ments. Computer Methods Appl. Mech. Eng. 363:112907

27. Zohdi TI (2021) A digital twin framework for machine learning
optimization of aerial fire fighting and pilot safety. Comput Meth-
ods Appl Mech Eng 373(1):113446

28. Zohdi TI, Wriggers P (2008) Introduction to computational
micromechanics. Springer-Verlag

29. Zohdi TI, Monteiro PJM, Lamour V (2002) Extraction of elastic
moduli from granular compacts. The International Journal of Frac-
ture/Letters in Micromechanics. 115:L49–L54

123

https://doi.org/10.1007/s00466-021-02035-z
https://doi.org/10.1007/s11831-021-09609-3
https://doi.org/10.1007/s00466-022-02152-3

Computational Mechanics

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article
under a publishing agreementwith the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and appli-
cable law.

123

	A note on rapid genetic calibration of artificial neural networks
	Abstract
	1 Introduction
	2 Construction of an ANN
	3 Genetic-based machine-learning optimization
	3.1 Genetic-based machine-learning algorithm
	3.2 Algorithmic structure
	3.3 Specifics

	4 Example: Genetic training of an ANN with synthetic data material data
	4.1 Effective property estimates
	4.2 Generation of a synthetic data set
	4.3 Selected neural net configuration and cost function
	4.4 Algorithmic settings

	5 Discussion and summary
	Acknowledgements
	References

