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Abstract

A computational framework is developed that researchers in the field can easily implement and subsequently use as an
fficient tool to study the immune-response to a vaccine injection. There are three main components to this work: Part I-

Digital-twin construction: An approach is developed that efficiently simulates the time-transient proliferation of cells/antibodies
(proteins) and regulator/antigens (deactivated toxin) to an injected vaccine within tissue possessing complex heterogeneous
microstructure. Here, we use the terms “cells” and “antibodies”, as well as “regulator” and “antigen” interchangeably.
The approach utilizes two strongly-coupled conservation laws: (a) Conservation Law 1: comprises (a) rate of change
of cells/antibodies, (b) cellular/antibody migration, (c) cellular/antibody proliferation controlled by a cell/antibody mitosis
regulating chemical (antigen), (d) cell/antibody apoptosis and (b) Conservation Law 2: comprises (a) rate of change of
the cell/antibody mitosis chemical regulator/antigen, (b) regulator/antigen diffusion, (c) regulator production by cells/antibody
and (d) regulator/antigen decay. Part II-Efficient computation: A technique based on a voxel (3D “volume pixels”)
epresentation of tissue microstructures and corresponding digital solution methods is developed for the calculations, which
voids computationally expensive steps involved in usual Finite Element procedures such as topologically conforming meshing,
apping, volume integration, stiffness matrix generation and matrix-based solution methods. The process proceeds by converting

he tissue microstructure into voxels. The problem then becomes “digital” on a regular “voxel-grid”, directly manipulating voxel
alues, allowing extremely fast methods to be used to construct derivatives and to iteratively solve the system with minimal
emory requirements. Part III-Machine-learning: The rapid and efficient computation allows for many vaccines to be tested

uickly and uses a genomic-based Machine-Learning Algorithm to optimize the system. This is particularly useful for rapid
esign of next-generation vaccines and boosters for disease strain mutations. Numerical examples are provided to illustrate
he results, with the overall goal being to provide a computational framework to rapidly design and deploy a vaccine for a
argeted response.

2022 Elsevier B.V. All rights reserved.
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1. Introduction

A vaccine is a treatment that supplies acquired immunity to a particular disease. Vaccines greatly reduce the risk
f infection by working with the body’s natural defense to safely develop immunity to the disease. They typically
ontain a substance that resembles the actual disease micro-organism, that is not harmful, for example, weakened
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forms of the infectious disease, such as disabled forms of the microbes and weakened forms of the associated toxin
or surface proteins. The substance (“vaccine”) stimulates and trains the immune system to attack and destroy the
infectious disease. The World Health Organization (WHO) indicates that there are 25 preventable infectious diseases
that have licensed vaccines, such as polio, measles, tetanus, chickenpox, etc.

1.1. Brief history

In 1798, Edward Jenner used cowpox (“smallpox of cows”, variolae vaccinae) to make humans immune to
mallpox by opening a small wound and placing cowpox (into the wound), making the person slightly ill, but
ventually immune to smallpox. In the mid-1700s, John Williams also used weaken smallpox (weakened by
ubjecting samples to smoke, camphor and underground burial) to similarly inoculate people. It is notable to remark
hat these types of approaches had been used in the eastern population centers (such as Constantinople) for centuries
efore. In 1881, Pasteur suggested that these types of processes be called “vaccinations”, in honor of Jenner. As an
xample of vaccine efficacy, consider the measles in the United States. In 1958, before the measles vaccine, there
ere 768,094 cases of the measles (552 deaths). The next year (1959) after mass inoculation, there were 150 cases.

t is estimated that 1,000,000 lives are saved from measles per year worldwide by vaccination [1].

.2. Types of vaccines

There are a variety of vaccine types:

• Attenuated-type: live attenuated (cultivated) micro-organisms with disabled virulence,
• Inactivated-type: previously virulent micro-organisms that have been previously irradiated or chemically

destroyed — they are an empty bacterial cell envelope,
• Toxoid-type: inactivated toxins that come from the microorganisms,
• Subunit-type: fragments of micro-organisms, for example only the surface proteins,
• Conjugate-type: combines a weak antigen with a strong antigen as a carrier, so that the immune system has

a stronger response to the weak antigen,
• Outer membrane vesicle-type: OMV’s are naturally immunogenic and can be manipulated to produce

vaccines,
• Heterotypic-type: “Jennerian Vaccines” use pathogens of other animals that do not cause the full disease in

humans, but give immunity,
• Viral vector-type: use a safe virus to insert pathogen genes into the body to produce antigens to stimulate an

immune response and
• mRNA-type: composed of the nucleic acid pf RNA packaged within a vector such as lipid nanoparticles-the

synthetic RNA stimulates the immune system.

accine licensing follows multiple phases in order to demonstrate safety as a given dose, effectiveness in preventing
nfections for target populations and an enduring preventive effects. Prominent regulatory bodies include the WHO,
DA (Food and Drug Association) and EMA (European Medicine Association). For Covid-19, vaccines include:

• Pfizer-Biotech: mRNA-type,
• Moderna: mRNA-type,
• AstraZeneca: heterotypic-type genetically-modified chimpanzee adenovirus (such as colds),
• Sputnik: vector-type genetically-modified common cold viruses,
• Sinopharm: inactivated-type Covid-19 viruses and
• Johnson and Johnson: vector-type genetically modified human adenovirus.

.3. Vaccine efficacy

The key to any vaccine efficacy (such as the above) is that the immune system, when properly trained on a
eakened version of the infectious disease (or surrogate), “remembers” its strategy and is able to fight off the real
ersion by recognizing that protein coat on the virus and preparing a response by (1) neutralizing the target “agent”
efore it enters the cells and (2) recognizing and destroying infected cells before the disease can multiply in vast
umbers. Two key terms are:
2



T.I. Zohdi Computer Methods in Applied Mechanics and Engineering 401 (2022) 115315

w
a
i
h
d
s
a
t
e
a
a

i
a

Fig. 1. A combined Machine-Learning and Digital-Twin model workflow.

• Antigen: a toxin or foreign substance that induces an immune response in the body-for example the production
of “antibodies”.

• Antibody: a blood protein produced in response to and countering an “antigen”. Antibodies chemically combine
with entities that the body identifies as alien-bacteria viruses and other foreign bodies in the blood, etc.

The following are common efficacy problems:

• vaccine attenuation over time (thus warranting “boosters”),
• host immune deficiency due to age, ethnicity and individual genetic variations, etc.,
• lack of “B-cells”, which generate antibodies to react and bind with pathogen antigens,
• slow development of immunity and
• antibodies which cannot completely disable the pathogen (although the vaccine still has a positive effect since

it reduces the mortality rate).

Further issues controlling the effectiveness are (1) the type of disease, (2) strain of the disease and the (3) vaccination
schedule. There are of course potential adverse effects from a vaccine such as fever, pain and muscle aches.

1.4. Objectives of this work

Advances in data science and machine-learning are transforming society and engineering. An objective of this
ork is to harness these advances for vaccine design. Specifically, there have been dramatic advances in technologies

ssociated with autonomous operations across many industries. These have the potential to drastically improve
ndustrial efficiency, quality and safety. Some approaches are methodical and systematic, while others are ad-
oc and haphazard. In the world of systems engineering, increasingly sophisticated and integrated approaches for
igital systems are appearing at a rapid rate. Key tools include digital-twins, which are digital replicas of complex
ystems which can be safely manipulated and optimized in a virtual world and then deployed in the physical world
fterwards, reducing costs of experiments and accelerating development of new technologies. This process involves
he application of machine-learning to digital-twins, whereby they learn from their mistakes/errors and constantly
volve to improve in a virtual environment. Digital-twins can also run in tandem with real systems and thereby serve
s controllers. These concepts, which leverage the data-centric world, and the corresponding modeling paradigms,
re increasingly used in fields outside of traditional Computational Mechanics (Fig. 1).

Accordingly, in this work, a computational approach is developed that researchers in the field can easily
mplement and subsequently use as an efficient tool to study the immune-response to a vaccine injection. There
re three main components to this work:
3
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Fig. 2. Model Problem: an injection into a representative volume element of heterogeneous “marbled” tissue. The injection site is given
high concentration of antibodies/cells and antigens/regulator.

1. Digital-twin construction: The work develops a computational framework that efficiently simulates the
time-transient proliferation of cells/antibodies (proteins) and regulator/antigens (deactivated toxin) to an
injected vaccine within tissue possessing complex heterogeneous microstructure. We use the terms “cells”
and “antibodies” interchangeably and “regulator” and “antigen” interchangeably. The approach utilizes two
strongly-coupled conservation laws: (1) one for the antibodies and (2) one for the antigens.

2. Efficient computation: A technique based on voxel (3D “volume pixels’) representation of tissue mi-
crostructures and corresponding digital solution methods is developed for the calculations, which avoids
computationally expensive steps involved in usual Finite Element procedures such as topologically conform-
ing meshing, mapping, volume integration, stiffness matrix generation and matrix-based solution methods.
The process proceeds by converting the material tissue microstructure into voxels. The problem then becomes
“digital” on a regular “voxel-grid”, directly manipulating voxel values, allowing extremely fast methods to
be used to construct derivatives and to iteratively solve the system with minimal memory requirements.

3. Machine-Learning: The rapid and efficient computation allows for many vaccines to be tested quickly and
uses a genomic-based Machine-Learning Algorithm to optimize the system. This is particularly useful for
rapid design of next-generation vaccines and boosters for disease strain mutations.

umerical examples are provided to illustrate the results, with the overall goal being to provide a computational
ramework to rapidly design and deploy a vaccine for a targeted response.

. A flexible immune-response digital-twin

We start by developing a flexible model for the time-transient proliferation of cells/antibodies (proteins) and
egulator/antigens (deactivated toxin) to an injected vaccine within tissue possessing heterogeneous “marbled”
icrostructure (Fig. 2). We develop two strongly-coupled conservation laws:

• Conservation Law 1: comprises (a) rate of change of cells/antibodies, (b) cellular/antibody migration,
(c) cellular/antibody proliferation controlled by a cell/antibody mitosis regulating chemical (antigen), (d)
cell/antibody apoptosis and

• Conservation Law 2: comprises (a) rate of change of the cell/antibody mitosis chemical regulator/antigen,
(b) regulator/antigen diffusion, (c) regulator production by cells/antibody and (d) regulator/antigen decay.

hroughout the construction of the model, we consider infinitesimal deformations, (̇) =
∂()
∂t |. In other words, the

domain does not change its shape or geometry with changes in concentration. The “cell/antibody” balance (c)
per unit volume and a cell/antigen’ mitosis regulating chemical (s) denoted by the normalized concentration of c
4
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Fig. 3. Left: a material microstructure and Right: a voxel representation of the microstructure.

(cells/antibodies), in an arbitrary subvolume of material contained within Ω , denoted ω, consists of a concentration
(storage) term c, an inward normal migration flux term, −m · n, a proliferation term, r (s), and a cell/antibody
poptosis term, τ (c) < 0, leading to

∂

∂t

∫
ω

c dω  
antibody storage

= −

∫
∂ω

m(c) · n da  
antibody migration

+

∫
ω

r (s) dω  
antibody proli f eration

+

∫
ω

τ (c) dω  
antibody apoptosis

. (2.1)

and simultaneously the balance of a cell/antibody mitosis regulating chemical/antigen (s)
∂

∂t

∫
ω

s dω  
antigen storage

= −

∫
∂ω

f (s) · n da  
antigen di f f usion

+

∫
ω

p(c) dω  
antigen production

+

∫
ω

γ (s) dω  
antigen loss

, (2.2)

where s is the cell/antibody mitosis regulator/antigen concentration, −f ·n is an inward normal migration flux term,
p(c) is a production term and γ (s) < 0 is a regulator loss term. After using the divergence theorem on the flux terms,
since the volume ω is arbitrary, one obtains a diffusion–reaction model in strong form (assuming a Fickian-type
law, m = −DDD · ∇c and f = −KKK · ∇s)

∂c
∂t

= ∇ ·DDD · ∇c + r (s) + τ (c) (2.3)

and simultaneously the balance of a mitosis regulating chemical (s)
∂s
∂t

= ∇ ·KKK · ∇s + p(c) + γ (s). (2.4)

here is extensive literature on the construction of the functions r (s), τ (c), p(c) and γ (s) for specific types of
roblems, such as wound healing and infection response. See Murray [2] for an extensive review, with early
xperimental studies dating back at least to Lindquist [3], Van den Brenk [4], Crosson et al. [5], Zieske et al. [6],
ranz et al. [7] and Sherratt and Murray [8]. Such a coupled system can represent a variety of biological systems,
uch as growth in biological scaffolding, proliferation of damaged cellular tissue, etc. The modeling of this process
as a close similarity to multicomponent diffusion–reaction industrial processes, and we refer the reader to Zohdi
9–12].

. Rapid voxel based computation

In many methods that analyze micro-heterogeneous materials, the computation of the response of multiple
epresentative volume elements (RVE) of heterogeneous materials are required. The RVE domain is usually taken
o be cubical, but contains complex microstructure, for example randomly distributed particulates representing
unctionalizing dopants in a binding matrix material. Two frequent applications where this occurs are:

• Material design optimization, where the microstructures are constantly being changed during the search
process. Usually, the Finite Element Method (FEM) is the default method used for such an analysis.
5
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• Multiscale methods, where the FEM is used on the macroscale and then it is also used on microscale RVE-like
problems which are solved at select locations throughout the domain. This is sometimes referred to as F E2.

he fundamental problem is that the FEM is computationally expensive for microscale problems with a cubical
VE domain, due to the “ingredients” involved in the usual Finite Element process: meshing, mapping, volume

ntegration, stiffness matrix generation and matrix-based solution methods. This computational expense is even
ore unwarranted when there is an interest in time-dependent regimes. An alternative family of techniques that is

aturally suited for these types of problems are so-called “Digital/Voxel-Image” methods, which convert the material
icrostructure into voxels (3D “volume pixels”; see Fig. 3 and Fig. 4). The problem then becomes “digital” on a

egular “voxel-grid”, directly manipulating voxel values. Extremely fast methods can then be used to construct
erivatives and solve the system.

The use of volume pixels, so-called “voxels” (Foley et al. [13]), is widespread in the visualization and analysis of
edical and scientific data (Chmielewski et al. [14]) and in the video-gaming industry. The well-known video-game

Outcast”, and others in the 1990s employed this graphics technique for effects such as reflection and bump-mapping
nd usually for terrain rendering, although other techniques have overtaken it as the method of choice. However,
he most widely used application of a voxel is to represent material properties. For example, in CT scans, so-called
ounsfield units are used which measure the opacity of material to X-rays Novelline [15]. There are approximately
0 different types of values acquired from MRI or ultrasound. Thus, in many cases, the voxels are already supplied,
nd it makes little sense to employ the usual Finite Element machinery: topologically conforming meshing, mapping,
olume integration, stiffness matrix generation, etc. In this work, we illustrate the process of voxelization, derivative
onstruction and solution methods. Additionally, we also supply an analysis of the operation counts. Numerical
xamples are provided to illustrate the approach.

. Numerical simulation of the coupled system

The present section develops a flexible and robust solution strategy to resolve the coupled system. There are two
ain components to the computational approach:

• Spatio-temporal discretization of the diffusive continuum model,
• Iterative staggering to solve the coupled system, whereby the time-steps are adaptively adjusted to control the

error associated with the incomplete resolution of the concentration fields.

.1. Discretization of the c- and s-fields

The concentration field will require spatial discretization with some type of mesh, for example using a finite
ifference, finite volume or finite element method.

.1.1. Temporal approximation
For the c-concentration field, we write
∂c
∂t

= ∇ ·DDD · ∇c + r (s) + τ (c) def
= L . (4.1)

We discretize for time=t + φ∆t , and using a trapezoidal “φ − scheme” (0 ≤ φ ≤ 1)

c(t + ∆t) ≈ c(t) + ∆t (φL(t + ∆t) + (1 − φ)L(t)) . (4.2)

imilarly for s-field,

∂s
∂t

= ∇ ·KKK · ∇s + p(c) + γ (s) def
= M. (4.3)

and

s(t + ∆t) ≈ s(t) + ∆t φM(t + ∆t) + (1 − φ)M(t) . (4.4)
( )

6
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Fig. 4. Sequentially finer voxel representations of slightly overlapping particles in a matrix: for 41 × 41 × 41 (206763 DO F) voxel-mesh,
or 61 × 61 × 61 (680943 DO F) voxel-mesh and for 81 × 81 × 81 (1594323 DO F) voxel-mesh. Top row: Microstructure/marbled tissue
particles and matrix). Second row: Just tissue (matrix). Third row: Just marbling (particles). Bottom row: Just interfaces (between marbling
nd matrix).
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4.1.2. Spatial discretization of the fields
Numerically, the components of the gradient of c are approximated by central finite difference stencils of the

basic form, for example for c, for example ∂
∂x1

∂c
∂x1

|(x1,x2,x3) ≈
c(x1+∆x1,x2,x3)−c(x1−∆x1,x2,x3)

2∆x1
(4.5)

for each of the (x1, x2, x3)-directions, in order to form the terms needed. This is a second-order accurate stencil. For
a generic second order scheme spatial derivative for an arbitrary flux component in the x1 direction (components
of ∇ · F)

∂F1

∂x1
|(x1,x2,x3) ≈

F1(x1 +
∆x1

2 , x2, x3) − F1(x1 −
∆x1

2 , x2, x3)
∆x1

, (4.6)

where generically, for example with an arbitrary material coefficient for example DDD(x) = DDD(x)1⎛⎜⎜⎜⎝DDD
∂c
∂x1  
F1

⎞⎟⎟⎟⎠ |
(x1+

∆x1
2 ,x2,x3)

≈ DDD(x1 +
∆x1

2
, x2, x3)

c(x1 + ∆x1, x2, x3) − c(x1, x2, x3)
∆x1  

∂c
∂x1

|
(x1+

∆x1
2 ,x2,x3)

(4.7)

and ⎛⎜⎜⎜⎝DDD
∂c
∂x1  
F1

⎞⎟⎟⎟⎠ |
(x1−

∆x1
2 ,x2,x3)

≈ DDD(x1 −
∆x1

2
, x2, x3)

c(x1, x2, x3) − c(x1 − ∆x1, x2, x3)
∆x1  

∂c
∂x1

|
(x1−

∆x1
2 ,x2,x3)

(4.8)

where

DDD(x1 +
∆x1

2
, x2, x3) ≈

1
2

(DDD(x1 + ∆x1, x2, x3) +DDD(x1, x2, x3)), (4.9)

and

DDD(x1 −
∆x1

2
, x2, x3) ≈

1
2

(DDD(x1, x2, x3) +DDD(x1 − ∆x1, x2, x3)). (4.10)

hese approximations are made for all components and combinations in DDD ∂c
∂x j

appearing in the field equations.
The mathematical representation of the derivatives can be summarized in the following manner ( j = 1, 2, 3), for
example for j = 1:

1. VOXEL-GRADIENT: DDD ∂c
∂x1

≈ DDD(x1, x2, x3) c(x1+∆x1,x2,x3)−c(x1−∆x1,x2,x3)
2∆x1

2. VOXEL-LAPLACIAN:

∂

∂x1

(
DDD
∂c
∂x1

)
≈

(
DDD ∂c

∂x1

)
|
(x1+

∆x1
2 ,x2,x3)

−

(
DDD ∂c

∂x1

)
|
(x1−

∆x1
2 ,x2,x3)

∆x1

=
1

∆x1

[
DDD(x1 +

∆x1

2
, x2, x3)

(
c(x1 + ∆x1, x2, x3) − c(x1, x2, x3)

∆x1

)]
−

1
∆x1

[
DDD(x1 −

∆x1

2
, x2, x3)

(
c(x1, x2, x3) − c(x1 − ∆x1, x2, x3)

∆x1

)]
3. VOXEL-INTERFACE: DDD(x1 ±

∆x1
2 , x2, x3) ≈

1
2 (DDD(x1 ± ∆x1, x2, x3) +DDD(x1, x2, x3))

emark. To illustrate second-order accuracy, consider a Taylor series expansion for an arbitrary function u

c(x1 + ∆x1, x2, x3) = c(x1, x2, x3) +
∂c
∂x1

|(x1,x2,x3)∆x1 +
1
2
∂2c
∂x2

1
|(x1,x2,x3)(∆x1)2x1

+
1 ∂3c

3 |(x1,x2,x3)(∆x1)3
+ O((∆x1)4) (4.11)
6 ∂x1

8
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and

c(x1 − ∆x1, x2, x3) = c(x1, x2, x3) −
∂c
∂x1

|(x1,x2,x3)∆x1 +
1
2
∂2c
∂x2

1
|(x1,x2,x3)(∆x1)2x1

−
1
6
∂3c
∂x3

1

|(x1,x2,x3)(∆x1)3
+ O((∆x1)4). (4.12)

ubtracting the two expressions yields

∂c
∂x1

|(x1,x2,x3) =
c(x1 + ∆x1, x2, x3) − c(x1 − ∆x1, x2, x3)

2∆x1
+ O((∆x1)2). (4.13)

ll other derivatives follow from this basic process, which is relatively standard in the all stencil-based discretiza-
ions. For the s-field, the discretization is the same.

emark. At the length-scales of interest, it is questionable whether the ideas of a sharp material interface are
ustified. Accordingly, later, we simulated the system with and without Laplacian smoothing, whereby one smooths
he material data by post-processing the original material data, voxel by voxel, to produce a smoother material
epresentation, for example, for D̂DD (using the previous voxel approximations and nodal subscript notation):

∇
2DDD =

1
(∆xi )2

(
DDDi+1, j,k − 2DDDi, j,k +DDDi−1, j,k

)
+

1
(∆x j )2

(
DDDi, j+1,k − 2DDDi, j,k +DDDi, j−1,k

)
+

1
(∆xk)2

(
DDDi, j,k+1 − 2DDDi, j,k +DDDi, j,k−1

)
= 0 (4.14)

hich yields a smoother value of DDDi, j,k , denoted D̂DDi, j,k , given by

∇
2DDD = 0 ⇒ D̂DDi, j,k =

1
6

(
DDDi+1, j,k +DDDi−1, j,k +DDDi, j+1,k +DDDi, j−1,k +DDDi, j,k+1 +DDDi, j,k−1

)
. (4.15)

he same process was applied to the other parameters, generically denoted, A(x), by enforcing ∇
2
x A = 0, as well

s for any other material data. The simulations were run with and without data smoothing, with the results being
egligibly different for sufficiently fine voxel-meshes.

.2. Iterative (implicit) solution method

Implicit time-stepping methods, with time-step size adaptivity, built on approaches found in Zohdi [9–12,16],
ill be used throughout the upcoming analysis. In order to introduce basic concepts, we consider a first order
ector-valued differential equation

U̇ = F(U), (4.16)

hich, after being discretized using a trapezoidal “φ-method” (0 ≤ φ ≤ 1)

UL+1
= UL

+ ∆t
(
φF(UL+1) + (1 − φ)F(UL )

)
, (4.17)

ields the following abstract form

L+1
A(U ) = B. (4.18)

9
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Explicitly, U is the vector of all voxel values in the system

U def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1
c2
c3
...

cN

s1
s2
s3
...

sN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.19)

t is convenient to write

A(UL+1) − B = G(UL+1) − UL+1
+ R = 0, (4.20)

here R is a remainder term that does not depend on the solution, i.e. R ̸= R(UL+1). A straightforward iterative
cheme can be written as

UL+1,K
= G(UL+1,K−1) + R, (4.21)

here K = 1, 2, 3, . . . is the index of iteration within time-step L + 1. The convergence of such a scheme is
ependent on the behavior of G. Namely, a sufficient condition for convergence is that G is a contraction mapping
or all UL+1,K , K = 1, 2, 3... In order to investigate this further, we define the iteration error as

ϖ L+1,K def
= UL+1,K

− UL+1. (4.22)

necessary restriction for convergence is iterative self consistency, i.e. the “exact” (discretized) solution must be
epresented by the scheme

G(UL+1) + R = UL+1. (4.23)

nforcing this restriction, a sufficient condition for convergence is the existence of a contraction mapping

ϖ L+1,K
= ∥UL+1,K

− UL+1
∥ = ∥G(UL+1,K−1) − G(UL+1)∥

≤ ηL+1,K
∥UL+1,K−1

− UL+1
∥, (4.24)

here, if 0 ≤ ηL+1,K < 1 for each iteration K , then ϖ L+1,K
→ 0 for any arbitrary starting value UL+1,K=0,

s K → ∞. This type of contraction condition is sufficient, but not necessary, for convergence. Inserting these
pproximations into U̇ = F(U) leads to

UL+1,K
≈ ∆t

(
φF(UL+1,K−1)

)  
G(UL+1,K−1)

+∆t(1 − φ)F(UL ) + UL  
R

, (4.25)

whose contraction constant is scaled by η ∝ φ∆t . Therefore, if convergence is slow within a time-step, the time-step
ize, which is adjustable, can be reduced by an appropriate amount to increase the rate of convergence. Decreasing
he time-step size improves the convergence, however, we want to simultaneously maximize the time-step sizes to
ecrease overall computing time, while still meeting an error tolerance on the numerical solution’s accuracy. In order
o achieve this goal, we follow an approach found in Zohdi [9] originally developed for continuum thermo-chemical

ultifield problems in which one first approximates

ηL+1,K
≈ S(∆t)p (4.26)

(S is a constant) and secondly one assumes the error within an iteration to behave according to

(S(∆t)p)Kϖ L+1,0
= ϖ L+1,K , (4.27)

K = 1, 2, . . ., where ϖ L+1,0 is the initial norm of the iterative error and S is intrinsic to the system.1 Our goal is
o meet an error tolerance in exactly a preset number of iterations. To this end, one writes

(S(∆ttol)p)Kdϖ L+1,0
= Ctol , (4.28)

1 For the class of problems under consideration, due to the quadratic dependency on ∆t , p ≈ 1.
10
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where Ctol is a (coupling) tolerance and where Kd is the number of desired iterations.2 If the error tolerance is not
met in the desired number of iterations, the contraction constant ηL+1,K is too large. Accordingly, one can solve
or a new smaller step size, under the assumption that S is constant,

∆ttol = ∆t

⎛⎝ ( Ctol
ϖ L+1,0 )

1
pKd

(ϖ
L+1,K

ϖ L+1,0 )
1

pK

⎞⎠ . (4.29)

he assumption that S is constant is not critical, since the time-steps are to be recursively refined and unrefined
hroughout the simulation. Clearly, the expression in Eq. (4.29) can also be used for time-step enlargement, if
onvergence is met in less than Kd iterations.3 Specifically, the solution steps are, within a time-step (Fig. 5):

• (1): Start a global fixed iteration (set i = 1, . . . , Nn (voxel counter) and K = 0 (iteration counter))
• (2): If i > Nn then go to (4)
• (3): If i ≤ Nn then:

(a) Compute the concentration cL+1,K
i

(b) Go to (2) for the next voxel (i = i + 1)
• (4): Repeat steps 1–3 for the voxels, i = 1, . . . , Nn .
• (5): Measure error (normalized) quantities (where wc is a weight on the cell contribution and ws is a weight

on the regulator contribution)

(a) ϖ L+1,K def
= wc

∑Nn
i=1 ∥cL+1,K

i − cL+1,K−1
i ∥∑Nn

i=1 ∥cL+1,K
i ∥

+ ws

∑Np
i=1 ∥sL+1,K

i − sL+1,K−1
i ∥∑Np

i=1 ∥sL+1,K
i ∥

(b) EK
def
=
ϖ L+1,K

T O L
where T O L is an error tolerance.

(c) ΛK
def
=

⎛⎝ ( T O L
ϖ L+1,0 )

1
pKd

(ϖ
L+1,K

ϖ L+1,0 )
1

pK

⎞⎠.

• (6): If the tolerance is met: EK ≤ 1 and K < Kd then
(a) Increment time: t = t + ∆t
(b) Construct the next time-step: (∆t)new

= ΛK (∆t)old ,
(c) Select the minimum size: ∆t = M I N ((∆t)lim, (∆t)new) and go to (1)

• (7): If the tolerance is not met: EK > 1 and K < Kd then
(a) Update the iteration counter: K = K + 1
(b) Reset the voxel counter: i = 1
(c) Go to (2)

• (8): If the tolerance is not met (EK > 1) and K = Kd then
(a) Construct a new time-step: (∆t)new

= ΛK (∆t)old

(b) Restart at time t and go to (1)

ime-step size adaptivity is critical, since the system’s dynamics can dramatically change over the course of time,
ossibly requiring quite different time-step sizes to control the iterative error. However, to maintain the accuracy of
he time-stepping scheme, one must respect an upper bound dictated by the discretization error, i.e., ∆t ≤ ∆t lim .

Note that in step (5), ΛK may enlarge the time-step if the error is lower than the preset tolerance. At a given time,
once the process is complete, the time is incremented forward and the process is repeated. The overall goal is to
deliver solutions where the iterative error is controlled and the temporal discretization accuracy dictates the upper
limit on the time-step size (∆t lim). Clearly, there are various combinations of solution methods that one can choose
from. For example, for the overall field coupling, one may choose implicit or explicit staggering and within the
staggering process, either implicit (0 < φ ≤ 1) or explicit time-stepping (φ = 0), and, in the case of implicit
ime-stepping, iterative or direct solvers. Furthermore, one could employ internal iterations for each field equation,
hen update, more sophisticated metrics for certain components of the error, etc. For example, we utilized an error

2 Typically, Kd is chosen to be between five to ten iterations, although this is problem and analyst dependent.
3 At the implementation level, since the exact solution is unknown, the following relative error term is used, ϖ L+1,K def

= UL+1,K
−

UL+1,K−1.
11
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Fig. 5. The overall iterative (left) solution and the matrix-free approach using a moving front through the voxels (right) During the iterative
olution process, the most current value of a voxel is used in any calculation, for example a construction of the Laplacian, or any other
erm in the governing differential equations.

easure that used the concentrations at the voxels of the Finite Difference grid, but other metrics are certainly
ossible. For details see Zohdi [9–12,16].

emark 1. Because the internal system solvers within the staggering scheme are also iterative and use the
reviously converged solution as their starting value to solve the system of equations, a field that is relatively
nsensitive at given stage of the simulation will converge in very few internal iterations (perhaps even one).
taggering schemes are widely used in the computational mechanics literature, dating back, at least, to Zienkiewicz
17] and Zienkiewicz et al. [18]. For in depth overviews, see the works of Lewis and Schrefler (Lewis et al. [19] and
ewis and Schrefler [20]) and a series of works by Schrefler and collaborators: Schrefler [21], Turska and Schrefler

22], Bianco et al. [23] and Wang and Schrefler [24].

emark 2. During the iterative solution process, the most current value of a voxel is used in any calculation, for
xample a construction of the Laplacian, or any other term in the governing differential equations.

emark 3. At the length-scales of interest, it is questionable whether the ideas of a sharp material interface are
ustified. Accordingly, we simulated the system with and without Laplacian smoothing, whereby one smooths the

aterial data by post-processing the material data, voxel by voxel, to produce a smoother material representation.
he simulations were run with and without data smoothing, with the results being negligibly different for sufficiently
ne meshes.

. Operation counts in a voxel-based method

The cost of constructing an array for a temporal update using a voxel calculation is:

• P × V , where V is the number of voxels and S = O(10) is, associated with summing up the terms needed
to construct L and M . Specifically, there are six Laplacian terms needed in Eqs. (2.3) and (2.4). To construct
each Laplacian term one must perform four operations. Thus, S = 24 operations in total.

• Thus, K × S ×V ≈ 24 KV, is the total count per time-step, where K is the number of iterations in a time-step.

The cost of constructing an array for temporal update using an FEM calculation is associated with (1) meshing
he microstructure (mappings, etc.) (2) numerically integrating the weak form (3) generating a stiffness matrix and
4) solving a system of equations. Specifically (Zohdi [25]):

• Construction of the stiffness matrix: P × E , where E is the number of elements and P = O(700) stems from
mapping and integrating the terms needed to construct the stiffness matrix associated with the weak form
O(10), of which there are 35 entries [8 × 8 = 64] in a (symmetric) linear diffusion element stiffness matrix

(linear hexahedra), which must be computed for both equations, yielding P = 70 × 10 = 700.

12
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• Iterative solution: I×Q, where I is the number of iterations associated with, for example, a Conjugate-Gradient
solver and Q is the cost of a matrix–vector multiplication. Q is on the order of N q , where N q is the number
of voxels in the system and 1 < q ≤ 2, and depends on the sparsity of the stiffness matrix. For example,
for linearized elasticity, using an element-by-element multiplier (not counting preconditioning), for linearized
elasticity and using linear hexahedra, Q = 70N . Thus, I × Q ≈ 70I N .

• Thus, a comparison of the total operation counts between the Voxel method and FEM is roughly
V oxel
F E M

≈
24K V

700E + 70I N
. (5.1)

Eq. (5.1) clearly shows the favorable ratio of operation counts of the voxel approach relative to FEM. In more
complex (nonlinear) problems, where the stiffness matrix would have to be reformed after each iteration, the
term 700E would need to be multiplied by I .

6. Numerical examples

As an example, we consider a cubical domain with an initial interior concentration of zero cells and zero
regulator. We inject both cells and regulator at a given location at the top (Fig. 2). The injection site has a controlled
concentration of both cells and regulator over time. The boundary conditions for the cells and regulator were held
to be zero, other than at the injection site. Key qualitative ratios can be identified by considering the special case
of steady state and spatially uniform fields:

∂c
∂t

= ∇ ·DDD · ∇c + r (s) + τ (c) = 0 ⇒ r (s) + τ (c) = 0 (6.1)

nd
∂s
∂t

= ∇ ·KKK · ∇s + p(c) + γ (s) = 0 ⇒ p(c) + γ (s) = 0. (6.2)

ssuming linear relationships yields (τ (c) = −τc < 0)

r (s) + τ (c) = rs − τc = 0 ⇒ c =
rs
τ

(6.3)

and (γ (s) = −γ s < 0)

p(c) + γ (s) = pc − γ s = 0 ⇒ c =
γ s
p
. (6.4)

This, while it is unrealistic that the field would ever be uniform, these ratios are key to understanding what
controls the growth of c. We considered a heterogeneous domain where the medium has a microstructure comprised
of randomly distributed spheres (occupying approximately 25% volume fraction) in a homogeneous matrix-an
idealization of “marbled” tissue. The following parameters were used (with standard metric units used throughout):

• size of the domain was 0.01 × 0.01 × 0.01 m,
• injection site, a controlled cell concentration c(t) = coeat , co = 1, a = 0.01,
• injection site, a controlled regulator concentration s(t) = soeat , so = 1, a = 0.01,
• injection site was 0.005 × 0.00125 m (elliptical cross-section) and 0.0025 m deep,
• total simulation time was T = 20 seconds,
• cell proliferation term, r (s) = +r̂ s, with a different r̂ for each material phase,
• cell apoptosis term, τ (c) = −τ̂c, with a different τ̂ for each material phase,
• regulator production term, p(c) = + p̂c, with a different p̂ for each material phase,
• regulator loss term, γ (s) = −γ̂ s, with a different γ̂ for each material phase,
• homogeneous base, r̂o = 20, r̂1R =

r̂1
r̂o

= 10,
• homogeneous base, τ̂o = 0.1, τ̂1R =

τ̂1
τ̂o

= 10,
• homogeneous base, p̂o = 0.001, p̂1R =

p̂1
p̂o

= 100,
• homogeneous base, γ̂o = 0.1, γ̂1R =

γ̂1
γ̂o

= 100,
• homogeneous base, DDD = D1, D = 10−6,
• homogeneous base, KKK = K 1, K = 10−7,
13
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• heterogeneous/marbled case, r̂o = 20, r̂1R =
r̂1
r̂o

= 10, r̂2R =
r̂2
r̂o

= 1,
• heterogeneous/marbled case, τ̂o = 0.1, τ̂1R =

τ̂1
τ̂o

= 10, τ̂2R =
τ̂2
τ̂o

= 1,
• heterogeneous/marbled case, p̂o = 0.001, p̂1R =

p̂1
p̂o

= 100, p̂2R =
p̂2
p̂o

= 1,
• heterogeneous/marbled case, γ̂o = 0.1, γ̂1R =

γ̂1
γ̂o

= 100, γ̂2R =
γ̂2
γ̂o

= 1,
• heterogeneous/marbled case, DDD1 = D11, D1 = 10−6 and DDD2 = D21, D2 = 10−7,
• heterogeneous/marbled case, KKK1 = K11, K1 = 10−7 and KKK2 = K21, K2 = 10−8.

The time-steps were initially started to be quite small in order to allow the system to evolve the time-step size during
the beginning of the simulation. A trapezoidal time-stepping parameter of φ = 0.5 was chosen. In this case, we
tarted the time-step size at 0.001 s and allowed it to be enlarged up to 20 times that size, if the algorithm and error
stimates warranted it (which was the case in the examples given). During the computations with the heterogeneous
marbled” media, the spatial discretization meshes were repeatedly refined until the solutions did not exhibit any
ore sensitivity to further refinement of the grid-spacing. We started with meshes such as a 21 × 21 × 21 mesh,

rising from having a cubical mesh with 10 voxels from the centerline plane of symmetry and one voxel in the
iddle, and then repeatedly refined in the following sequential manner:

1. Mesh # 1: a 21 × 21 × 21 mesh, which has 9261 degrees of freedom per field, for a total of 18,522 degrees
of freedom,

2. Mesh # 2: a 41 × 41 × 41 mesh, which has 68,921 degrees of freedom per field, for a total of 137,842
degrees of freedom,

3. Mesh # 3: a 61 × 61 × 61 mesh which has 226,981 degrees of freedom per field, for a total of 453,962
degrees of freedom, etc.

pproximately between a 41-level and a 61-level mesh, the results stabilized, indicating that the results are
ssentially free of any appreciable numerical error. Fig. 6 illustrates the morphology of the tissue microstructure
s resolved by the grid. Fig. 7 shows cross-sections of the concentration of cells domain over time. Fig. 8 depicts
he evolution of the time-step size over time. The computations are designed so that they take a few minutes on a
tandard laptop. The selected parameter choices were provided to illustrate the overall working on the model, and
wide variety of parameter choices are possible, depending on the application. This is discussed further next.

. Genomic machine-learning framework

The rapid rate at which these simulations can be completed enables the ability to explore inverse problems seeking
o determine what parameter combinations can deliver a desired result. Following Zohdi [26–31], we formulate the
bjective as a cost function minimization problem that seeks system parameters that match a desired response by
inimizing a cost/error function Π (Λ). Specifically, we use

Π = w1
∥AN T I BO DI E S − T ARG ET1∥

∥T ARG ET1∥
+ w2

∥AN T I G E N S − T ARG ET2∥

∥T ARG ET2∥
. (7.1)

he system parameter search is conducted within the constrained ranges of Λ(−)
1 ≤ Λ1 ≤ Λ(+)

1 , Λ(−)
2 ≤ Λ2 ≤

(+)
2 and Λ(−)

3 ≤ Λ3 ≤ Λ(+)
3 , etc. These upper and lower limits would, in general, be dictated by what is

physically feasible. The system parameters to vary and optimize are the 20 parameters associated with injection
concentration of antibodies, injection concentration of antigens, antibody reaction rate constants, antigen reaction
rate constants, antibody diffusion constants, antigen diffusion constants, antibody regulator constants and antigen
regulator constants.

7.1. System parameter search/machine-learning algorithm

Cost functions such as Π are nonconvex in design parameter space and often nonsmooth. Their minimization
is usually difficult with direct application of gradient methods. This motivates nonderivative search methods, for
example those found in machine-learning algorithms. One of the most basic subsets of machine-learning algorithms
are so-called genetic algorithms. For a review of genetic algorithms, see the pioneering work of John Holland
[32,33], as well as Goldberg [34], Davis [35], Onwubiko [36] and Goldberg and Deb [37]. A description of the
algorithm will be described next (Zohdi [26–31]).
14
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7

Fig. 6. Left, the morphology of the tissue microstructure and, right, the morphology of the tissue microstructure and mesh.

.2. Algorithmic specifics

Following Zohdi [26–31] the algorithm is as follows (see Figs. 9 and 10)

• STEP 1: Randomly generate a population of S starting genetic strings, Λi , (i = 1, 2, 3, . . . , S) :

Λi def
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Λi

1
Λi

2
Λi

3
...

Λi
N

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (7.2)

The system parameter search is conducted within the constrained ranges of Λ(−)
1 ≤ Λ1 ≤ Λ(+)

1 , Λ(−)
2 ≤ Λ2 ≤

Λ(+)
2 and Λ(−)

3 ≤ Λ3 ≤ Λ(+)
3 , etc.

• STEP 2: Compute fitness of each string Π (Λi ), (i = 1, . . . , S)
• STEP 3: Rank genetic strings: Λi , (i = 1, . . . , S)
• STEP 4: Mate nearest pairs and produce two offspring, (i = 1, . . . , S):

λi def
= Φ ◦ Λi

+ (1 − Φ) ◦ Λi+1 def
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ1Λ

i
1

φ2Λ
i
2

φ3Λ
i
3

...

φNΛ
i
N

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ +

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 − φ1)Λi+1

1
(1 − φ2)Λi+1

2
(1 − φ3)Λi+1

3
...

(1 − φN )Λi+1
N

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (7.3)

and

λi+1 def
= Ψ ◦ Λi

+ (1 − Ψ ) ◦ Λi+1 def
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ1Λ

i
1

ψ2Λ
i
2

ψ3Λ
i
3

...

ψNΛ
i
N

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ +

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 − ψ1)Λi+1

1
(1 − ψ2)Λi+1

2
(1 − ψ3)Λi+1

3
...

(1 − ψN )Λi+1
N

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (7.4)

where for this operation, the φi and ψi are random numbers, such that 0 ≤ φi ≤ 1, 0 ≤ ψi ≤ 1, which are
different for each component of each genetic string

• STEP 5: Eliminate the bottom M strings and keep top K parents and their K offspring (K offspring+K
parents+M = S)

• STEP 6: Repeat STEPS 1–5 with top gene pool (K offspring and K parents), plus M new, randomly

generated, strings

15
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Fig. 7. The injection viewed from the exterior and the morphology of the microstructural-marbling. From left to right and top to bottom:
Cell concentration (c) and growth from an injection at the surface.

• IMPORTANT OPTIONS: One can rescale and restart search around best performing parameter set every few
generations, thus refocussing computational effort around optimal locations in design parameter space. Thus,

one could use a genetic algorithm first in order to isolate multiple local minima, and then use a gradient-based

16
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Fig. 8. The evolution of the time-step size over time.

Fig. 9. The overall process for a genetic-based machine-learning algorithm.

algorithm in locally convex regions or reset the genetic algorithm to concentrate its search over these more
constrained regions.

Remark 1. If one selects the mating parameters φ’s and ψ’s to be greater than one and/or less than zero, one
can induce “mutations”, i.e. characteristics that neither parent possesses. However, this is somewhat redundant with
introduction of new random members of the population in the current algorithm.

Remark 2. If one does not retain the parents in the algorithm above, it is possible that inferior performing
offspring may replace superior parents. Thus, top parents should be kept for the next generation. Additionally,

retained parents do not have to be reevaluated in the next generation, making the algorithm less computationally

17



T.I. Zohdi Computer Methods in Applied Mechanics and Engineering 401 (2022) 115315

i
d
a
(
e

7

Fig. 10. The basic action of a genetic-based machine-learning algorithm.

expensive. Numerous studies of the author have shown that advantages parent retention outweighs inbreeding, for
sufficiently large population sizes. We also remark that this algorithm is easily parallelizable.

7.3. Algorithmic settings

In the upcoming example, the design parameters Λ = {Λ1,Λ2...ΛN } are optimized over the search intervals (20
variables): Λ−

i ≤ Λi ≤ Λ+

i , i = 1, 2, . . . , 20. Specifically, we varied the injection concentration of antibodies,
njection concentration of antigens, antibody reaction rate constants, antigen reaction rate constants, antibody
iffusion constants, antigen diffusion constants, antibody regulator constants and antigen regulator constants. Fig. 11
nd Fig. 12 show the reduction of the cost function for the 20 parameter set. Shown are the best performing gene
design parameter set, in red) as a function of successive generations, as well as the average performance of the
ntire population of the genes (designs, in green). We used the following settings:

• Number of design variables: 20,
• Population size per generation: 24,
• Number of parents to keep in each generation: 6,
• Number of children created in each generation: 6,
• Number of completely new genes created in each generation: 12,
• Number of generations for re-adaptation around a new search interval: 10,
• Number of generations: 200.

.4. Parameter search ranges and results

We considered a 20 parameter vaccine design. The following search parameter ranges were used (with w1 = 1
and w2 = 1):

• Λ1 = Injection concentration of Antibodies: Λ−

1 = 0.01 ≤ Λ1 ≤ Λ+

1 = 10,
• Λ2 = Injection concentration of Antigens: Λ−

2 = 0.1 ≤ Λ2 ≤ Λ+

2 = 10,
• Λ3 = Antibody reaction rate constant of media 1: Λ−

3 = 0.1 ≤ Λ3 ≤ Λ+

3 = 10,
• Λ4 = Antibody reaction rate constant of media 2: Λ−

4 = 0.1 ≤ Λ4 ≤ Λ+

4 = 10,
• Λ5 = Antibody reaction rate constant of media 3 : Λ−

5 = 0.1 ≤ Λ5 ≤ Λ+

5 = 10,
• Λ6 = Antigen reaction rate constant of media 1: Λ−

6 = 0.1 ≤ Λ6 ≤ Λ+

6 = 10,
• Λ7 = Antigen reaction rate constant of media 2: Λ−

7 = 0.1 ≤ Λ7 ≤ Λ+

7 = 10,
• Λ8 = Antigen reaction rate constant of media 3 : Λ−

8 = 0.1 ≤ Λ8 ≤ Λ+

8 = 10,
− +
• Λ9 = Antibody diffusion constant of media 1: Λ9 = 0.1 ≤ Λ9 ≤ Λ9 = 10,

18
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Fig. 11. Shown are the cost function for the best performing gene (red) as a function of successive generations, as well as the average cost
function of the entire population of genes (green). We allowed the genetic-base machine-learning algorithm to readapt every 10 generations,
leading to the (slight) nonmonotone reduction of the cost function. Often, this action is more efficient than allowing the algorithm not
to readapt, since it probes around the current optimum for better local alternatives. In this case, the algorithm makes slow progress until
generation 10, when a readaptation/recentering occurred, and then slowed reduced the cost function over 200 generations from approximately
Π ≈ 2 to Π = 0.4097. The algorithm produces a massive reduction of error from Π ≈ 50 to Π ≈ 0.4-a factor of 125. (For interpretation

f the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. ZOOM: Shown are the cost function for the best performing gene (red) as a function of successive generations, as well as the
average cost function of the entire population of genes (green). We allowed the genetic-based machine-learning algorithm to readapt every

0 generations, leading to the (slight) nonmonotone reduction of the cost function. Often, this action is more efficient than allowing the
lgorithm not to readapt, since it probes around the current optimum for better local alternatives. In this case, the algorithm makes slow
rogress until generation 10, when a readaptation/recentering occurred, and then slowed reduced the cost function over 200 generations from
pproximately Π ≈ 2 to Π = 0.4097. The algorithm produces a massive reduction of error from Π ≈ 50 to Π ≈ 0.4-a factor of 125. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

• Λ10 = Antibody diffusion constant of media 2: Λ−

10 = 0.1 ≤ Λ10 ≤ Λ+

10 = 10,
• Λ11 = Antibody diffusion constant of media 3 : Λ−

11 = 0.1 ≤ Λ11 ≤ Λ+

11 = 10,
− +
• Λ12 = Antigen diffusion constant of media 1: Λ12 = 0.1 ≤ Λ12 ≤ Λ12 = 10,
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Table 1
The system parameters (Λ1 − Λ20) for the best performing design (gene) with w1 = w2 = 1.

Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7 Λ8 Λ9 Λ10

0.119 0.168 7.185 9.043 8.114 2.562 6.988 1.873 0.543 8.641

Λ11 Λ12 Λ13 Λ14 Λ15 Λ16 Λ17 Λ18 Λ19 Λ20 Π

6.042 4.673 9.197 9.408 3.730 0.078 0.072 9.720 0.0016 0.061 0.4097

• Λ13 = Antigen diffusion constant of media 2: Λ−

13 = 0.1 ≤ Λ13 ≤ Λ+

13 = 10,
• Λ14 = Antigen diffusion constant of media 3 : Λ−

14 = 0.1 ≤ Λ14 ≤ Λ+

14 = 10,
• Λ15 = Antibody regulator constant of media 1: Λ−

15 = 0.1 ≤ Λ15 ≤ Λ+

15 = 10,
• Λ16 = Antibody regulator constant of media 2: Λ−

16 = 0.001 ≤ Λ16 ≤ Λ+

16 = 0.1,
• Λ17 = Antibody regulator constant of media 3 : Λ−

17 = 0.001 ≤ Λ17 ≤ Λ+

17 = 0.1,
• Λ18 = Antigen regulator constant of media 1: Λ−

18 = 0.1 ≤ Λ18 ≤ Λ+

18 = 10,
• Λ19 = Antigen regulator constant of media 2: Λ−

19 = 0.001 ≤ Λ19 ≤ Λ+

19 = 0.1,
• Λ20 = Antigen regulator constant of media 3 : Λ−

20 = 0.001 ≤ Λ20 ≤ Λ+

20 = 0.1,

ig. 11 and Fig. 12 illustrate the results for the cost function for the best performing gene (red) as a function of
uccessive generations, as well as the average performance cost function of the entire population of genes (designs,
n green), using design weights of w1 = 1 and w2 = 0.1. We allowed the genetic-based machine-learning algorithm
o readapt every 10 generations, leading to the (slightly) nonmonotone reduction of the cost function. Often, this
ction is more efficient than allowing the algorithm not to readapt, since it probes around the current optimum for
etter local alternatives. Table 1 shows the final design parameters. The entire 200 generation simulation, with 24
enes per evaluation (4800 total vaccine designs) took a few minutes on a laptop, making it ideal as a design tool.
e note that, for a given set of parameters, a complete simulation takes a fraction of a second, thus thousands of

arameter sets can be evaluated in an hour, without even exploiting the inherent parallelism of the genetic-based
achine-learning algorithm. The algorithm produces a massive reduction of error from Π ≈ 50 to Π ≈ 0.4-a

actor of 125.
Remark-Design of a booster: For diseases that are constantly evolving, such as the current strains of COVID19,

he utility of the presented method becomes even clearer, since one can start the process from the current vaccine
esign to develop a modified booster.

. Discussion and summary

In summary, the purpose of this work was to present a flexible computational modeling framework that
esearchers in the field can easily implement and subsequently use as an efficient tool to study the immune-response
o a vaccine injection. The framework is flexible enough to allow researchers to input virtually any type vaccine
nd immune-system interaction. However, in the present formulation, notably absent are the effects of deformation
nd stress in the system. At a minimum, this would require a third field equation governing the balance of linear
omentum, ∇x · σ + f = ρv̇, where σ is the Cauchy stress, f are the body forces, ρ is the density and v is the

elocity, in addition to constitutive laws for soft tissue (see the extensive works of Fung [38–40] Holzapfel [41,42]
r Humphrey [43,44]). At finite deformations, the previous conservation laws can be generated in the following
anner:

d
dt

∫
ω

c dω =
d
dt

∫
ωo

cJ dωo =

∫
ωo

(
dc
dt

J + c
d J
dt

) dωo =

∫
ωo

(
dc
dt

J + cJ∇x · v) dωo

=

∫
ω

(
∂c
∂t

+ v · ∇x c + c∇x · v) dω =

∫
ω

(
∂c
∂t

+ ∇x · (cv)) dω (8.1)

hus
∂c

+ ∇x · (cv) = ∇ ·DDD · ∇c + r (s) − τ (c). (8.2)

∂t
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and
∂s
∂t

+ ∇x · (sv) = ∇ ·KKK · ∇s + p(c) − γ (s). (8.3)

Clearly, specific material data is needed for tissue. In this regard, we again refer the reader to Murray [2] for an
extensive review, with early experimental studies dating back at least to Lindquist [3] Van den Brenk [4], Crosson
et al. [5], Zieske et al. [6], Franz et al. [7] and Sherratt and Murray [8]. Generally, because the distribution of water,
biological fluids and chemical species within such tissue are dependent on the deformation of the solid, coupled
multifield computations are necessary to realistically simulate such systems. For example, in many models of muscle
tissue, it is usually assumed that the response depends on the concentration of a mobile chemical species present, for
example, intracellular calcium Ca2+, and U is the stretch along the muscle fiber, relative to a reference sarcomere
length. A basic form suggested is σ = σ (Ca2+,U ), where σ is the total Cauchy stress (active and passive), which
combines the mechanical (passive) contribution and the actively generated muscle tension. We refer the reader to
Rachev and Hayashi [45], Humphrey [43,44], Klepach et al. [46] and Ambrosi et al. [47] for reviews. Incorporation
of such effects is under investigation by the author.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work has been partially supported by the UC Berkeley College of Engineering, USA and the USDA AI
Institute for Next Generation Food Systems (AIFS), USDA award number 2020-67021-32855.

References
[1] Wikipedia-Vaccines: https://en.wikipedia.org/wiki/Vaccine.
[2] J.D. Murray, Mathematical Biology, third ed., Springer Verlag, 2004.
[3] G. Lindquist, The healing of skin defects: an experimental study of the white rat, Acta Chirurgica Scandinnavica 94 (Supplement 107)

(1946) 1–163.
[4] H.A.S. Van den Brenk, Studies in restorative growth processes in mammalian wound healing, Br. J. Surg. 43 (1956) 525–550.
[5] C.E. Crosson, S.D. Klyce, R.W. Beuerman, Epithelial wound closure in rabbit cornea wounds invest, Ophthalmol Vis. Sci. 27 (1986)

464–473.
[6] J.D. Zieske, S.C. Higashij, S.J. Spurmic, I.K. Gipson, Biosynthetic response of the rabbit cornea to a keratectomy wound, Invest.

Ophthalmol. Vis. Sci. 28 (1987) 1668–1677.
[7] J.M. Franz, B.M. Dupuy, H.E. Kaufman, R.W. Beuerman, The effects of collagen shields on epithelial wound healing in rabbits, Am.

J. Ophthalmol. 108 (1989) 524–528.
[8] J.A. Sherratt, J.D. Murray, Models of epiderma wound healing, Proc. R. Soc. Lond. B 241 (1990) 29–36.
[9] T.I. Zohdi, An adaptive-recursive staggering strategy for simulating multifield coupled processes in microheterogeneous solids, Internat.

J. Numer. Methods Engrg. 53 (2002) 1511–1532.
[10] T.I. Zohdi, Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids, Comput. Methods

Appl. Mech. Eng. 193 (6/8) (2004) 679–699.
[11] T.I. Zohdi, Computation of strongly coupled multifield interaction in particle-fluid systems, Comput. Methods Appl. Mech. Eng. 196

(2007) 3927–3950.
[12] T.I. Zohdi, Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive FDTD, Comput.

Methods Appl. Mech. Eng. 199 (2010) 79–101.
[13] J.D. Foley, A. van Dam, J.F. Hughes, S.K. Feiner, Spatial-partitioning representations; surface detail, in: Computer Graphics: Principles

and Practice, in: The Systems Programming Series, Addison-Wesley, 1990.
[14] S. Chmielewski, P. Tompalski, Estimating outdoor advertising media visibility with voxel-based approach, Appl. Geogr. 87 (2017)

1–13, http://dx.doi.org/10.1016/j.apgeog.2017.07.007.
[15] R. Novelline, Squire’s Fundamentals of Radiology, fifth ed., Harvard University Press, ISBN: 0-674-83339-2, 1997.
[16] T.I. Zohdi, Embedded electromagnetically sensitive particle motion in functionalized fluids, Comput. Part. Mech. 1 (2014) 27–45.
[17] O.C. Zienkiewicz, Coupled problems & their numerical solution, in: R.W. Lewis, P. Bettes, E. Hinton (Eds.), Numerical Methods in
Coupled Systems, Wiley, Chichester, 1984, pp. 35–58.

21

https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
https://en.wikipedia.org/wiki/Vaccine
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb2
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb3
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb3
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb3
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb4
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb5
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb5
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb5
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb6
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb6
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb6
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb7
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb7
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb7
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb8
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb9
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb9
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb9
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb10
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb10
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb10
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb11
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb11
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb11
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb12
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb12
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb12
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb13
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb13
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb13
http://dx.doi.org/10.1016/j.apgeog.2017.07.007
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb15
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb16
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb17
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb17
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb17


T.I. Zohdi Computer Methods in Applied Mechanics and Engineering 401 (2022) 115315
[18] O.C. Zienkiewicz, D.K. Paul, A.H.C. Chan, Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems,
Internat. J. Numer. Methods Engrg. 26 (1988) 1039–1055.

[19] R.W. Lewis, B.A. Schrefler, L. Simoni, Coupling versus uncoupling in soil consolidation, Int. J. Num. Anal. Metho. Geomech. 15
(1992) 533–548.

[20] R.W. Lewis, B.A. Schrefler, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media,
second ed., Wiley press, 1998.

[21] B.A. Schrefler, A partitioned solution procedure for geothermal reservoir analysis, Comm. Appl. Num. Meth. 1 (1985) 53–56.
[22] E. Turska, B.A. Schrefler, On consistency stability and convergence of staggered solution procedures, Rend. Mat. Acc. Lincei, Rome

5 (9) (1994) 265–271.
[23] M. Bianco, G. Bilardi, F. Pesavento, G. Pucci, B.A. Schrefler, A frontal solver tuned for fully coupled non-linear

hygro-thermo-mechanical problems, Internat. J. Numer. Methods Engrg. 57 (2003) 1801–1818.
[24] X. Wang, B.A. Schrefler, A multifrontal parallel algorithm for coupled thermo-hydro-mechanical analysis of deforming porous media,

Internat. J. Numer. Methods Engrg. 43 (1998) 1069–1083.
[25] T.I. Zohdi, A finite element primer for beginners, in: The Basics, Springer International Publishing, 2018.
[26] T.I. Zohdi, The game of drones: rapid agent-based machine-learning models for multi-UAV path planning, Comput. Mech. (2019)

http://dx.doi.org/10.1007/s00466-019-01761-9.
[27] T.I. Zohdi, Machine-learning framework for rapid adaptive digital-twin based fire-propagation simulation in complex environments,

Comput. Methods Appl. Mech. Eng. (2020) http://dx.doi.org/10.1016/j.cma.2020.112907.
[28] T.I. Zohdi, A digital twin framework for machine learning optimization of aerial fire fighting and pilot safety, Comput. Methods Appl.

Mech. Eng. 373 (2021) 113446.
[29] T.I. Zohdi, A digital-twin and machine-learning framework for ventilation system optimization for capturing infectious disease respiratory

emissions, Arch. Comput. Methods Eng. 28 (2021) 4317–4329.
[30] T.I. Zohdi, A digital-twin and machine-learning framework for the design of multiobjective agrophotovoltaic solar farms, Comput.

Mech. 68 (2021) 357–370.
[31] T.I. Zohdi, A digital-twin and machine-learning framework for precise heat and energy management of data-centers, Comput. Mech.

69 (2022) 1501–1516.
[32] J.H. Holland, Adaptation in Natural & Artificial Systems, Ann Arbor, Mich. University of Michigan Press., 1975.
[33] J.H. Holland, J.H. Miller, Artificial adaptive agents in economic theory (PDF), Amer. Econ. Rev. 81 (2) (1991) 365–371, Archived

from the original (PDF) on October 27, 2005.
[34] D.E. Goldberg, Genetic algorithms in search, in: Optimization & Machine Learning, Addison-Wesley, 1989.
[35] L. Davis, Handbook of Genetic Algorithms, Thompson Computer Press, 1991.
[36] C. Onwubiko, Introduction to Engineering Design Optimization, Prentice Hall, 2000.
[37] D.E. Goldberg, K. Deb, Special issue on genetic algorithms, Comput. Methods Appl. Mech. Eng. 186 (2–4) (2000) 121–124.
[38] Y.C. Fung, Elasticity of soft tissues in simple elongation, Am. J. Physiol. 28 (1967) 1532–1544.
[39] Y.C. Fung, Biorheology of soft tissues, Biorheology 10 (1973) 139–155.
[40] Y.C. Fung, On the foundations of biomechanics, ASME J. Appl. Mech. 50 (1983) 1003–1009.
[41] G.A. Holzapfel, Biomechanics of soft tissue, in: J. Lemaitre (Ed.), The Handbook of Materials Behavior Models. Volume III,

Multiphysics Behaviors, Chapter 10, Composite Media, Biomaterials, Academic Press, Boston, 2001, pp. 1049–1063.
[42] G.A. Holzapfel, R.W. Ogden, Biomechanical modeling at the molecular, in: Cellular and Tissue Levels, Springer-Verlag, 2009.
[43] J.D. Humphrey, Cardiovascular solid mechanics, in: Cells, Tissues, and Organs, Springer-Verlag, New York, 2002.
[44] J.D. Humphrey, Continuum biomechanics of soft biological tissues, Proc. R. Soc. 459 (2003) 3–46.
[45] A. Rachev, K. Hayashi, Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in

arteries, Ann. Biomed. Engng. 27 (1999) 459–468.
[46] D. Klepach, L.C. Lee, J. Wenk, M. Ratcliffe, T.I. Zohdi, J. Navia, G. Kassab, E. Kuhl, J.M. Guccione, Growth and remodeling of the

left ventricle: a case study of myocardial infarction and surgical ventricular restoration, Mech. Res. Commun. 42 (2012) 134–141.
[47] D. Ambrosi, G.A. Ateshian, E.M. Arruda, S.C. Cowin, J. Dumais, A. Goriely, G.A. Holzapfel, J.D. Humphrey, R. Kemkemer, E.

Kuhl, Olberding. J.E., L.A. Taber, K. Garikipati, Perspectives on biological growth and remodeling, J. Mech. Phys. Solids 59 (2011)
863–883.
22

http://refhub.elsevier.com/S0045-7825(22)00416-9/sb18
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb18
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb18
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb19
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb19
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb19
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb20
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb20
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb20
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb21
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb22
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb22
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb22
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb23
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb23
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb23
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb24
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb24
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb24
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb25
http://dx.doi.org/10.1007/s00466-019-01761-9
http://dx.doi.org/10.1016/j.cma.2020.112907
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb28
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb28
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb28
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb29
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb29
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb29
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb30
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb30
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb30
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb31
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb31
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb31
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb32
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb33
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb33
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb33
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb34
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb35
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb36
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb37
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb38
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb39
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb40
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb41
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb41
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb41
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb42
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb43
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb44
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb45
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb45
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb45
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb46
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb46
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb46
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb47
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb47
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb47
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb47
http://refhub.elsevier.com/S0045-7825(22)00416-9/sb47

	Machine-learning and digital-twins for rapid evaluation and design of injected vaccine immune-system responses
	Introduction
	Brief history
	Types of vaccines
	Vaccine efficacy
	Objectives of this work

	A flexible immune-response digital-twin
	Rapid voxel based computation
	Numerical simulation of the coupled system
	Discretization of the c- and s-fields
	Temporal approximation
	Spatial discretization of the fields

	Iterative (implicit) solution method

	Operation counts in a voxel-based method
	Numerical examples
	Genomic machine-learning framework
	System parameter search/machine-learning algorithm
	Algorithmic specifics
	Algorithmic settings
	Parameter search ranges and results

	Discussion and summary
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


