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Abstract
Material modeling using modern numerical methods accelerates the design process and reduces the costs of developing new
products. However, for multiscale modeling of heterogeneous materials, the well-established homogenization techniques
remain computationally expensive for high accuracy levels. In this contribution, a machine learning approach, convolutional
neural networks (CNNs), is proposed as a computationally efficient solution method that is capable of providing a high level
of accuracy. In this work, the data-set used for the training process, as well as the numerical tests, consists of artificial/real
microstructural images (“input”). Whereas, the output is the homogenized stress of a given representative volume element
RVE . Themodel performance is demonstrated bymeans of examples and comparedwith traditional homogenizationmethods.
As the examples illustrate, high accuracy in predicting the homogenized stresses, along with a significant reduction in the
computation time, were achieved using the developed CNN model.

Keywords Deep learning · Convolutional neural networks · Computational micro-to-macro approach · Heterogeneous
materials

1 Introduction

Engineering design is an optimization process in which
engineers identify and solve problems. The key elements
of product design are functionality, cost, form, material
properties, and behavior. In this context, heterogeneousmate-
rials that consist of different constituents such as polymer
matrix composites, metallic-materials, wood, concrete, and
ceramic composites, play a major role in the optimization
process. Such advanced materials have been in use for a
few decades in the automotive, aerospace industry, and con-
structions due to their superior properties, compared to their
homogeneous counterparts. As the macroscopic properties
of such heterogeneous materials are greatly influenced by
their micro-constituents properties, the understanding of the
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microstructure of such materials is an essential task to fully
utilize their potential in the design process. In this regard, the
direct use of the classical multiscale techniques for solving
such problems is unfeasible due to the huge computational
costs. Thus, a need for a computationally less expensive
approach exists. One of the current possibilities introduced in
literature is the employment of data-driven models to reduce
the computation costs [1–5]. Machine learning, deep learn-
ing, or neural networks are examples of such data-driven
models that help to reduce the model complexity and may
surpass conventional constitutive modeling, see [6–26] and
the citations therein.

The objective of this work is to introduce a computation-
ally efficient and accurate solution to speed up multiscale
modeling processes. The ability of the Convolutional Neu-
ral Networks (CNN) to capture the macroscopic constitutive
properties from images of the microstructure will be uti-
lized to predict the homogenized elastic stress. In comparison
with published works [27–30], we highlight the remarkable
efficiency of the proposed CNN model by employing differ-
ent microstructures with various phases and comparing the
results with the classical homogenization approaches. Fur-
thermore, a key point is the illustration of advanced transfer
learning of the CNN model to new realistic microstructures.
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These detailed investigations have not been considered so
far.

From the modeling point of view, the multiscale approach
can be classified in two distinct classes denoted as concurrent
and hierarchical multiscale techniques. These are defined by
differentiationof themacro characteristic length scaleLmacro

with its micro domain counterpart Lmicro. The concurrent
multiscale method implies Lmicro ≡ Lmacro, as classified in
[33, 35–38]. Whereas in the hierarchical multiscale method,
the average size of the heterogeneous microdomain is much
smaller than its macro specimen size, i.e. Lmicro � Lmacro,
see [36, 39, 40]. This is often denoted as scale separation
law, see computational homogenization approaches based
on the Hill-Mandel principle; outlined for instance in [39,
41] among others. The aim of all those mentioned multiscale
simulation techniques is the reduction of uncertainties and
empirical assumptions while simultaneously increasing the
accuracy of the solution. For a better understanding of scale
bridging, we consider a real concrete specimenwith different
microstructures, illustrated in Fig. 1. On the micro-scale, the
representative volume elementsRVEs consist of aggregates,
pores and a cement matrix. At the macro-scale, construction
applications in building and energy technologies are of inter-
est, including the microscopic material behavior needed to
develop the required system-output.

For determining the effective properties of heterogeneous
materials at themicro-scale, there existmany approaches. For
periodic composites with linear constitutive behavior, those

properties can be analyzed by solving a sufficient number
of unit cell problems along with the corresponding bound-
ary conditions. Furthermore, the asymptotic homogenization
approach can be considered in this category related to scale
separation, as well documented in [42, 43]. In the case of
irregular microstructures, the required effective properties
cannot be computed exactly. In the literature, the available
methods in this category are limited to the computation of
upper and lower bounds for the effective stiffness, as out-
lined in [44, 45]. This was further extended in the work
of [46, 47] by considering variational principles, leading to
better estimates. [48] developed a self-consistent method by
embedding a single inclusion into an infinite domain of the
initially unknown effective matrix material. Another impor-
tant scheme is the well-known two-scale computational
homogenization (FE2) which determines the effective prop-
erties by two nested BVPs (boundary-value-problems) along
with the corresponding scale transition law, see for instance
[49–61] In this case, the material behavior at the microscopic
level is analyzed by employing the representative volume
element concept, whereas a homogenization technique is
considered to compute the macroscopic response. We refer
to [62–64] for fundamental homogenization principles of
local mechanical responses. The above-introduced analyti-
cal and physically motivated mathematical models lead to
pronounced computational costs. To accelerate micro-macro
simulations of materials with complex micro-structures, the

Fig. 1 Concrete real specimen with different microstructures (CT-images source: www.baustoff.uni-hannover.de related to [31–34])
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search for advanced technologies that reduce expensive sim-
ulation time is critical.
In the present contribution, the focus will be put on the
computational micro-to-macro approach of heterogeneous
materials where the characteristic length of the microscale
is much smaller than its macro counterpart [65–74]. In this
contribution, a time-efficient and robust convolutional neural
network (CNN) model will be utilized. A composite with 3
different phases is considered within this work (e.g. a hybrid
composite laminates consisting of shape memory alloy and
glass fiber as reinforced phases and epoxy resin as the host
material of the composite; or concrete microstructure con-
sisting of aggregates, voids and cement-paste matrix). The
training data is generated by applying standard finite element
simulations (FEM) on a cubical sample of a microstructure
with different numbers of inclusions/phases. Such geomet-
rical heterogeneities are obtained through random spatial
distributions and arbitrary sizes of inclusions/phases, lead-
ing to random volume fractions in each microstructure. The
network is then trained using the microstructures as an input
and the homogenized stresses as labels. As an advantage,
the proposed method has the potential for providing accurate
and feasible approximations for various engineering applica-
tions. To this end, promising results that approach the exact
solution are achieved.

The paper is organized as follows: In Sect. 2 a brief
overview of the micro-to-macro transition concept is intro-
duced. Next, the theory of the convolutional neural networks
(CNNs) is presented in detail in Sect. 3. The CNN model
is then employed to predict the homogenized macroscopic
stress of a microstructure representing a heterogeneous com-
posite in Sect. 4. The model capability is illustrated through
various representative examples in Sect. 5 and compared
with the traditional multiscale methods. The trained network
is then applied to learn the constitutive behavior of elastic
materials within the finite element application. Thereafter,
the trained model is used to predict the macroscopic stress
and through transfer learning, it is applied to a new structure.
Section 6 presents a summary and outlook for extensions of
this work.

2 Micro-to-macro transition concept

The aim of this section is to give an overview of the multi-
scale mechanics of materials. A material point x̄ within the
solid B̄ at the macro level is considered. In addition to kine-
matics and balance relations, given by continuummechanics,
the constitutive behavior is needed to solve a boundary value
problem in B̄. In cases when the material body consists of
a heterogeneous microstructure that determines its behavior,
a constitutive assumption posed a priori can only provide a
coarse estimate of the effective constitutive behavior. The

homogenization approach relies on the assumption that the
two considered scales are well separated, i.e. a typical size
on the macroscale is much larger than a typical size of the
underlying microstructure, lmacro � lmicro as depicted in
Fig. 2. At themicroscale, the so-called representative volume
element RVE models the microstructure that corresponds
to the macroscopic material point. Under boundary con-
ditions which are determined by the macroscopic state of
deformation, a boundary-value-problem is defined on this
representative volume element. At this level, both the govern-
ing balance relations and the constitutive behavior are known.
The goal is to return this constitutive information from a
finer scale to the macro level. TheRVE acts as a statistically
representative portion of the heterogeneous microstructure
(grains separated by grain boundary, voids, inclusion, crack,
and other similar defects), see [64]. Its size must be cho-
sen such that it is large enough to be representative or rather
such that it sufficiently accounts for the character and dis-
tribution of heterogeneities. Nevertheless, it should be much
smaller than the specimen considered at the macro level to
ensure a scale separation on the one hand, and to achieve
an increased efficiency on the other hand. If the material or
geometric properties of the underlying microstructures vary
spatially within a macro specimen, as e.g. in functionally
graded materials, the representative volume element can be
chosen differently in different macro regions if only a local
periodicity is required.

2.1 Macroscopic boundary value problem

Let B̄ ⊂ Rδ denote a macroscopic body with dimension
δ ∈ [2, 3], as sketched in Fig. 2. We study the mechanical
deformation of the body under quasi-static loading in the
time interval T̄ ⊂ R+. In what follows, ∇̄(·) := ∂x̄(·) and˙(·) := ∂t (·) denote the gradient and time derivative of the
macroscopic field (·), respectively. The primary variable field
is the displacement field ū of the material point x̄ ∈ B̄ at time
t̄ ∈ T̄

ū :
{
B̄ × T̄ → Rδ

(x̄, t̄) 	→ ū(x̄, t̄)
(1)

The kinematic relation arising from the considered frame-
work is the linear strain tensor ε̄ := ∇̄s ū = 1

2 (∇̄ ū + ∇̄T ū).
The strains are assumed to be small, i.e. |∇̄ ū| < ε̄ is bounded
by a small number ε̄.

In what follows we assume the existence of a macro-
scopic potential density functional �̄, which is obtained by
a variational principle of homogenization for the underly-
ing microstructure. With this assumption, we can formulate
a variational structure resulting with the minimization prob-
lem for the determination of macroscopic primary variable
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Fig. 2 Computational
micro-to-macro transition
approach of heterogeneous
materials

{ū} = Arg
{
inf
ū

�̄(ū)
}

, (2)

where �̄ is defined as

�̄(ū) =
∫
B̄

�̄(ε̄) dV − P̄ext (ū) , (3)

hereby, the potential energy �̄ is fully determined at the
microscopicRVE by a variational formulation principle and
the mechanical loading contribution

P̄ext (ū) =
∫
B̄

γ̄ · ū dV +
∫

∂B̄ t̄

t̄N · ū d A . (4)

The given macroscopic body force per unit volume is intro-
duced as γ̄ , whereas the tractions on the Neumann boundary
∂B̄ t̄ are depicted as t̄N . Furthermore, consider a decomposi-
tion of the surface ∂B̄ = ∂B̄ū ∪ ∂B̄ t̄ into a part ∂B̄ū where
the displacements are prescribed and a part ∂B̄ t̄ with given
tractions, along with ∂B̄ū ∩ ∂B̄ t̄ = ∅.

The necessary condition of (2) results in the equilib-
rium equations describing the macroscopic problem for the
quasi-static case under consideration. The Euler–Lagrange
equation is the balance of linear momentum

div[σ̄ ] + γ̄ = 0 in B̄ , (5)

along with the Neumann-type boundary conditions σ̄ · n̄ =
t̄N on ∂B̄ t̄ . The macroscopic stresses σ̄ are

σ̄ = ∂ε̄�̄(ε̄) , (6)

governed by the macroscopic potential energy function �̄

obtained by the homogenization of the microstructure.

2.2 Microscopic boundary value problem

Let B ⊂ Rδ denote a periodic microstructure (RVE) as
depicted in Fig. 2. In what follows, ∇(·) := ∂x(·) and

˙(·) := ∂t (·) denote the gradient and the time derivative of
the microscopic field (·), respectively. The primary variable
field is the displacement field u of the material point x ∈ B
at time t ∈ T

u :
{
B × T → Rδ

(x, t) 	→ u(x, t)
(7)

The microscopic linear strain tensor ε is the symmetric part
of the displacement gradient ε := ∇su = 1

2 (∇u+∇T u). We
now postulate a variational principle of homogenization that
determines the macroscopic potential energy �̄ introduced
above, as follows

�̄(ε̄) = inf
u

1

|B|
∫
B

�(ε) dV . (8)

This definition is conceptually in line with the formulations
outlined in [52]. At the micro-level, we identify the stresses
as

σ (ε) := ∂ε�(ε) , (9)

governed by the constitutive functions�.With this definition
at hand, the variation of the principle (8) gives the condition

1

|B|
∫
B

( − div[∂ε�]) · δu̇ dV

+ 1

|B|
∫

∂B
(
∂ε� · n) · δu̇ d A = 0 . (10)

Hence, the Euler–Lagrange equation for the variational
principle (8) is

div[σ ] = 0 in B (11)

on the microstructure B.
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2.3 Homogenization quantities and
macro-homogeneity conditions

The microscopic boundary-value-problem is linked to the
macroscopic frameworkbya scale bridging approach account-
ing for homogenized quantities defined on the bound-
ary/volume of the representative volume element. The
macroscopic strain ε̄ and microscopic strain ε along with
their associated work-conjugate stress measures σ̄ and σ are
defined as

ε̄ := 1

|B|
∫

∂B
sym(u ⊗ n) d A = 1

|B|
∫
B

ε dV and

σ̄ := 1

|B|
∫

∂B
sym(tN ⊗ x) d A = 1

|B|
∫
B

σ dV , (12)

where |B| is the volume of the micro-structure B.
In order to derive appropriate boundary conditions for the
RVE , we consider a Hill-Mandel macro-homogeneity con-
dition proposed by [62] stating the equivalence of the
macroscopic stress power with the volume average of its
microscopic counterpart

σ̄ : ˙̄ε = 1

|B|
∫
B

σ : ε̇ dV = 1

|B|
∫

∂B
tN · u̇ d A . (13)

To solve the microscopic boundary-value-problem we need
to set up appropriate boundary conditions for the RVE . For
the micro-elastic model under consideration we focus on
three types of boundary constraints:

(i) Dirichlet-type boundary conditions: linear displacement
constraint on the boundary ∂B. In the first approach, a
homogeneous strain is imposed in the full microstruc-
ture, i.e. ε = ε̄ in B. Hence, the microscopic strain is
identical to the macro-strain at any point x ∈ B of the
microstructure. This is called Voigt–Taylor assumption
referring to [44] and yields an upper bound of the stiff-
ness of the RVE .

(ii) Neumann-type boundary conditions: constant stress on
the boundary ∂B, zero micro-tractions. The so-called
Reuss–Sachs bound, [45], gives a lower boundof the stiff-
ness of the microstructure. Here, a homogeneous stress
is applied in the full domain B in the form σ = σ̄ .

(iii) Periodic boundary conditions: periodicity of all pri-
mary fields on opposite surfaces ∂B+ and ∂B− of the
microstructure.

The upper Voigt–Taylor and lower Reuss–Sachs bounds
are onlymentioned for completeness and do not play a crucial
role in the subsequent treatment of the boundary conditions.
The periodic constraints (i i i) are only applicable for per-
fectly periodic microstructures, but for many cases it turns

out that they provide better results than either the Dirichlet-
type constraints (i) or the Neumann-type conditions (i i).
Here, we refer to the work of [74] and the references cited
therein.

For the periodic boundary conditions plotted in Fig. 3,
the surface of the RVE decomposes into two parts ∂B =
∂B+ ∪ ∂B− with normals n+ and n− = −n+ at associated
points x+ ∈ ∂B+ and x− ∈ ∂B−. The deformation will
be extended by a fine scale fluctuation field marked in what
follows with a tilde (·̃)

u = ε̄ · x + ũ , (14)

around the macro-modes. As an additional constraint for the
fluctuation fields, the Hill condition reads

1

|B|
∫

∂B
tN · ˙̃u d A = 0 . (15)

This constraint can be satisfied for periodic fluctuations and
anti-periodic tractions at the boundary ∂B resulting in

ũ+ = ũ− and t+N = −t−N on ∂B , (16)

at associated points x+ ∈ ∂B+ and x− ∈ ∂B−. Such
boundary conditions are the most reasonable choice for
the homogenization analysis under consideration, even for
microstructures which are non-periodic.

As a summary of the computational framework:

1. Evaluate the macroscopic deformation at each material
point.

2. The necessary boundary conditions are applied at the
microscopic RVE .

3. The microscopic boundary value problem is computed
under the macroscopic loading.

4. The volumetric averaged microscopic quantities are
transferred to the dedicated material macroscopic points.

5. The macroscopic boundary value problem is solved.

For further details on computational homogenizationmethod
for different engineering applications, the interested reader
is referred to the references in the introduction part of this
work.

3 Theory of convolutional neural network
(CNN)

To overcome the issue of large computational costs to solve
the multiscale problem on the micro-to-macro level, summa-
rized in Sect. 2, an approach to replace the calculation with a
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Fig. 3 Periodic microstructure,
where the surface of the RVE in
a decomposes into two parts
∂B = ∂B+ ∪ ∂B− with normals
n+ and n− = −n+ at associated
points x+ ∈ ∂B+ and
x− ∈ ∂B−. b Periodic boundary
conditions for the displacement

machine learning model is introduced. Applying deep learn-
ing (DL) is an empirical, highly iterative process that requires
training several models in order to reach satisfactory results.
During this process, a combination of different parameters
and hyper-parameters is tested.

The purpose of this section is to give a brief insight
into the structure and operation of the Convolutional Neu-
ral Networks (CNN), without going into specific variants
and manifestations of this technique. CNN is a kind of Arti-
ficial Neural Network and is associated with deep learning
techniques. More specific, the CNN model is a specialized
Feed Forward Neural Network (FFNN) that excels at work-
ing with data that have a grid like structure, such as images
or time-series data. CNN has success at computer vision
applications, such as image classification, object detection,
text detection and recognition, see [75]. The weight-sharing
techniques achieved by convolutional and pooling layers are
the main differentiator between CNN and FFNN. Those two
essential operations, alongwith other deep learning functions
will be explained next.

3.1 The convolution operation

The convolution operation could be defined as a linear multi-
plication between an input and a set of weights. In this work,
the input is a gray-scale image and the set of weights is a
matrix, known as a filter or kernel. Multiplying the filter
with the input image at different points allows it to capture
the same feature regardless of its location in the image. The
output of the convolutional operation is usually referred to as
a feature map. For an image the feature value at a position
(i, j) in a feature map is given by the equation

zi, j =
∑

m

∑
n

I i+m, j+n km,n , (17)

where I is the image, and k is the applied filter with
m, n dimensions. This convolution operation is visualized
in Fig. 4. Nonlinearity is introduced to each feature value in
the feature map element-wise by the activation function

Fig. 4 An example of a convolution operation

ai, j = f (zi, j ) , (18)

Note that, the activation functions, also known as trans-
fer functions, have a big impact on the performance of
deep learning models. They introduce nonlinearity to com-
putations done in the neuron and determine whether or
not to activate it. Hereby, we employed two different non-
linear activation functions, namely the Rectified linear unit
(ReLU) [76] and Swish function [77].As they both produced
similar results we selected ReLU in this contribution. ReLU
is considered to be the default activation function in modern
neural networks architecture, usually used in the hidden lay-
ers with another activation function at the output layer. As
it represents an almost linear function, it is computationally
efficient while allowing for backpropagation. ReLU can be
represented mathematically as

f (z) = max(0, z) =
{

z z ≥ 0

0 z < 0 .
(19)
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Fig. 5 Example of Average Pooling operation

Fig. 6 Example of Max Pooling operation

3.2 Pooling layers

Another main component of convolutional neural net-
works is pooling layers, usually placed between two con-
volutional layers. They reduce the dimensions of the feature
map resulting from the convolution operation, thus reducing
the learning parameters as well as the computational cost and
speeding up the training process. The pooling layer does not
have learning parameters, but the size of the pooling win-
dow and the type of the pooling function performed on the
pixels in this window are hyper-parameters that need to be
tuned during the training process. There are many kinds of
pooling operations used in CNN models, max pooling and
average pooling being the most commonly used ones. In an
average pooling operation, the average value of the pixels in
the pooling window is calculated as sketched in Fig. 5, while
in the max pooling operation, the highest pixel value in the
pooling window is considered, as shown in Fig. 6.

3.3 Loss function

The optimum parameters for the CNN model are found by
optimization of an objective function. The loss function is
a term referring to the objective function which is the case
for an optimization process using minimization. A loss func-
tion measures the error between the model prediction and
the ground truth. Thus, it indicates how well the model is
performing and should be able to represent this error. That’s
why different predicting problems require different types of
loss functions. For example, in the case of binary classifica-
tion, binary cross-entropy is a suitable choice. In the case of
regression prediction problems, an appropriate loss function

could be square error loss or absolute error loss. The loss
function is known as the cost function when applied to the
whole data set. In this contribution, we use the mean squared
error loss (MSE). It is the sumof squared differences between
predicted and ground truth values, which are expressed by
the equation

M SE = 1

N

N∑
i=1

(yi − ŷi )
2 , (20)

where N is the number of training examples, yi is the ground
truth, and ŷi are the predicted values.
A back-propagation and optimization algorithm are consid-
ered in this work. Here, gradient descent is one of the most
commonly used optimization algorithms in neural networks
that minimize a loss function. Furthermore, the adaptive
momentum estimation (Adam) has shown successful results
while dealing with learning rate problems occurring with the
adaptive gradient algorithm (Adagrad).

4 CNN aidedmultiscale mechanics of
materials

In this section, a convolutional neural network model is
used to predict the homogenized macroscopic stress σ̄ of a
microstructure,which represents a heterogeneous composite,
consisting of three-phases, under a predefined macroscopic
strain ε̄. The proposed model falls under the supervised-
learning category, i.e. the data used for the training and
testing processes are labeled. The data generation process,
the design of the CNN model architecture, and the results
will be discussed in the following subsections.

4.1 Dataset generation

The macroscopic performance of materials often relies on
their microscopic structures, which can not be seen by the
naked eye. In recent years, actual complex microstructures
can be captured with high resolution using modern non-
destructive imaging techniques such as a micro-computed
tomography scanμ-CT or scanning electron microscopes. In
this work, the microstructures are synthetically generated. A
reinforced composite that consists of three differentmaterials
is considered (e.g. a hybrid composite laminates consisting of
shapememory alloy and glass fibers as reinforced phases and
epoxy resin as host material of the composite; or a concrete
microstructure consisting of aggregates, voids and cement-
paste matrix), see [34, 78, 79]. The workflow of generating
the dataset is depicted in Fig. 7.

The generated dataset consists of 10800 square-shaped
RVEs with a side length of 1 mm. It is divided into 11
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Fig. 7 The work-flow for
data-generation process

groups of 900 RVEs depending on various volume frac-
tions and inclusions. EachRVE contains a different number
of inclusions with circular and ellipsoidal shapes that are
randomly distributed: The circles vary in radius between
0.10–0.15 mm, whereas the ellipsoids have a small radius
of 0.008 mm and a maximum radius of 0.08 mm; resulting
in different volume fractions ranging from a minimum of
10% to a maximum of 35%.

4.2 Images of themicrostructure

These RVEs are randomly generated using various center-
coordinates (x ,y) and radius (r ) of the circles and ellipsoids
that represent the inclusions in a certain predefined bound,
which represents the edges of the RVE . The resulting geo-
metrical information is then used to produce gray-scale
images, where the inclusions are assigned a pixel value of
128 for ellipsoids and 255 for the circular inclusions, and the
matrix is assigned a pixel value of 0. The dimensions of the
images are (256, 256, 1), where the first two numbers rep-
resent height and width and the last number represents the
color channels. These gray-scale images are the input data
of the CNN model. Figure 8 depicts representative volume
elements (RVE) of the microstructure with various volume
fraction distributions. To demonstrate the efficiency of the
proposed CNN model, we transfer the learning model to a
newRVE structure and compare the results and computation
costs with learning from scratch. For that reason, we started
with simple two-phases microstructure as plotted in Fig. 9,
then we test a complex structure at the end of this work.
For the construction of those artificial microstructures, we
refer to our work [34] related to the random allocation of the
heterogeneities.

Table 1 Material proprieties of RVE constituents

Materials Young’s modulus (GPa) Poisson’s ratio

Matrix 3 0.38

Phase I (Ellipsoid) 70 0.20

Phase II (Circles) 50 0.35

4.3 Calculation of macroscopic stresses

Acquiring the labels for each one of the generatedRVE is the
second step of generating the dataset, on which the proposed
CNN model will be trained and tested. These labels are the
components of the macroscopic stress σ̄

σ̄ = ŷ = [
σ̄11 σ̄22 σ̄12

]T
. (21)

The computationalmultiscale framework is applied using the
standard finite element method (FEM) as outlined in [80]. In
this contribution, the generation of the idealized microstruc-
tures was done in Matlab and Gmsh, see [34]. Then the
meshed microstructure was exported to Abaqus for solving
the boundary value problem of the microstructure. The com-
putations are carried out under the plane strain assumption
while imposing periodic deformation and antiperiodic trac-
tion, whichwas introduced in Sect. 2. The composite consists
of isotropic linear elastic constituents with properties shown
in Table 1.

The micro-to-macro approach is based on a deformation-
driven microstructure with a constant macroscopic strain.
The dataset is then divided into three subsets training, valida-
tion, and testset 8640:1080:1080. Themodel uses the training
set to learn the parameters (weights, biases). The validation
set is used to fine-tune the model’s hyper-parameters (learn-
ing rate, number of hidden layers,...) and as an indicator of
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Fig. 8 Data set generation: Images of the idealized microstructure

Fig. 9 Data set generation: transfer learning

over-fitting. Finally, the test set gives an unbiased estimation
of how well the model generalizes on cases that it has not
encountered before. Normalizing the input features and the
output of neural networks is usually done to stabilize and
speed up the training process. One of the common ways is to
rescale the data to be in a range between [0, 1]. In the case of
the presented dataset, the input data are already normalized
in the range [0, 1], the output data has noticeable differences
in values between the first two components, which repre-
sent the normal stresses, and the third one representing the
shear stress, so they need to be scaled separately through the
following equation

ȳ = y − min(y)

max(y) − min(y)
, (22)

with the normalized ȳ components of y.
Neural networks are known for their strong ability tomem-

orize the training data examples, which leads to over-fitting,
especially in the cases of small datasets. To overcome this
problem, several regularization techniques are applied, such
as (L2 regularization, dropout layers, and early stopping). L2

regularization, also known as weight decay regularization,
imposes a squared L2 norm on the weights. The regularized
cost function in this case is
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M SE = 1

N

N∑
i=1

(
yi − ŷi

)2 + λ

N∑
i=1

w2
i , (23)

where λ is a regularization parameter. Early stopping is
another regularization technique, which works by stopping
the training process after a predefined number of epochs
(once the error of the validation set starts to increase, as it
is a sign of over-fitting). Then, the parameters of the model
with the best performance on the validation set are restored.
Dropout regularization works by randomly deactivating a
certain number of the nodes in the fully connected layers
at each iteration during the training process.

4.4 CNN-model architecture

ApplyingDeep learning is a highly iterative process, inwhich
the first step is to define an idea for solving the task at hand
(such as deciding the model type and structure). The second
step is to implement this idea and the last step is to experiment
and see if the results are satisfactory. If this is not the case one
has to iterate until reaching the desired results. Although hav-
ing good domain knowledge helps to go through this cycle
efficiently, it is very unlikely to get the right parameters with-
out iterations.

Transfer learning, where a model that works well on the
same task already exists, is used directly or retrained to tune
the hyper-parameters. This is one method to speed up the
model design process and will be investigated in this work.
Another method is to borrow ideas from models that proved
to be successful in similar tasks. The proposed model archi-
tecture is implemented using Keras 2.7 and Python 3.7.12.
The training processwas done usingGoogle virtualmachines
through Google-COLAB, the machine was equipped with a
NVIDIA Tesla P100-PCIE-GBU with 16 GB memory.

Usually, CNNmodels are applied in fields like image clas-
sification or object detection, but in this application, it is
used for a regression task. That’s why the mean square error
(MSE) between the CNN predictions and the ground truth
(results from the finite element simulations) is chosen as a
cost function. CNNmodels consist of convolutional, pooling,
and fully connected layers. The choice of these layer’s param-
eters decides the capacity and the power of representation of
the model. To have a sufficient representation, different filter
sizes up to (5,5) are chosen through the convolutional lay-
ers for the evaluated model. Furthermore, a stride of 1 and
implicit zero padding (same padding) is applied to reduce
the effect of narrower output dimension resulting from the
convolution operation. As regularization techniques, L2 reg-
ularizationwith a factor of 0.01, and early stopwith 40 epochs
as a predefined number to stop the training if the validation
set error does not decrease, are considered. The activation
function used through all the layers is ReLU due to its com-

Table 2 MAPE and R2 values on the test dataset

Stress components σ̄11 σ̄22 σ̄12

MAPE 0.87% 0.87% 0.36%

R2 0.98 0.98 0.91

putational efficiency. The Adam optimizer with a learning
rate of 0.01 is chosen for training the model while applying
a learning rate decay factor of 0.1 if the validation error does
not decrease for 20 consecutive epochs.

As a starting point of this work, we employed already
existing CNNs with deeper network architectures [27–29]
furthermore, we utilize additional operations, including skip
connections in e.g. ResNet50, DenseNet, and MobileNetV2,
filter concatenation in InceptionV3, and other operations like
squeeze and excitation blocks in MobileNetV3 (consume
more time in contrast to AlexNet with only convolution and
pooling operations).

Deeper architectures were designed to handle complex
features in a dataset containing several hundred class labels.
However, in our study, the dataset contains fewer variations
in pixel intensities between samples and no color channels
were involved. Therefore a simpler architectural construction
for the material property prediction would be appropriate.
Hence, it is valuable to develop a model from scratch based
on the insights we gathered from initial experimentation,
which will certainly add concrete advantage in comparing
the performance of different models for the dataset and appli-
cation used in the study. The proposed model architecture is
sketched in Fig. 10.

Neural networks are regarded as black boxes, as it is hard
to understand the reasoning behind the specific decisions they
make and the values of the weights they choose. The filters
in the convolutional neural networks are weights that the net-
work learns. SinceCNNworkswith images thesefilters allow
for visualizing the feature maps, which could lead to a better
understanding of the features that themodel learns. Figure 11
shows the different feature maps through the model. It can be
seen that they represent most of the details of the microstruc-
ture, but as they go deeper, the learned features seem to be
more abstract and hard to be interpreted.

5 Results and discussion

5.1 Three-phases microstructure

The first model problem is concerned with predicting the
macroscopic stresses of the three-phases idealizedmicrostruc-
tures introduced in Fig. 8 with various volume fractions. The
details of the CNN-model alongwith the required data for the
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Fig. 10 CNN-model architecture for predicting homogenized stress

Table 3 Average CPU time needed for computing the homogenized
stress of RVEs containing different numbers of inclusions

Volume Fraction FEM-Model (s) CNN-Model (s)

12.6 82.0 0.07

20.7 98.0 0.07

25.4 152.0 0.07

31.8 200.0 0.07

FEM-model are described in Sect. 4. The CNN model will
be evaluated in an unbiased way using a test dataset con-
sisting of 1080RVEs, which was randomly picked from the
whole dataset. The model predictions are shown in Fig. 12 as
a scatter plot, where the red-line represents the actual values
obtained by finite element simulations (FEM-model). The
figure shows the ability of the model to successfully predict
the three components of the homogenized stresses.

The model performance is measured in a quantitative way
by themean absolute percentage error (MAPE) for each com-
ponent of the homogenized stresses. The MAPE is defined
as

M AP E = 1

n

n∑
j=1

∣∣∣∣ ŷ j − y j

y j

∣∣∣∣ , (24)

where ŷ j is the predicted value and y j is the actual value
obtained by FEM simulations. Another method to evaluate
the performance of the model is the R2-score, also known as
the coefficient of determination,which is a statisticalmeasure
that shows howwell the CNN-model approximates the actual
data. R2-score usually has a value in range between 0 and 1,
defined as

R2 = 1 −
∑n

j=1

(
y j − ŷ j

)2
∑n

j=1

(
y j − y j

)2 , (25)

in terms of the mean value y j , where the values closer to 1
represent a model with better performance. The MAPE and
R2-score values for each component of the homogenized
stresses are given in Table 2. The results of the proposed
CNN-model are very promising with accurate macroscopic
stress prediction, that have a good MAPE and coefficient of
determination close to 1.

One of the main aspects to consider implementing deep
learning in the mechanical field is the high computational
efficiency, thus the ability to speed up the design process.
Recent advancements in the computational power, specially
the GPU parallelization ability, allow shorter training times
for deep learning models. In this work, the training process
of the model took around 30.0 min for a total of 300 epochs.
Once the model is trained, the CNN-model advantages start
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Fig. 11 Visualisation of the input image (three-phases idealized microstructure) and the feature maps learned through the convolutional layers of
the CNN-model

to kick in. It can be seen in Table 3 that the computation
time of the standard finite element method increases with
the increase of the volume fraction of inclusions (increase
number of inclusions). This is due to the increasing number
of elements needed to accurately compute the homogenized
stresses. On the other hand, the increase in number of inclu-
sions or volume fraction does not affect the prediction time
of the CNN model, see Table 3. The CNN-model is 1171
times faster than the FEM-model in the case of a RVE with
12.6 volume fraction of inclusions, and up to 2857 times in
the case of computationally demanding RVEs with volume
fraction of 31.8. The computations shown in Table 3 were
executed on an Intel(R) Core(TM) i7-8750H CPU @ 2.2
GHZ and 16 GB of RAM.

5.2 Transfer learningmodel versus training from
scratchmodel

Finally, we demonstrate the capacity of the CNN-model fur-
ther by transferring the trained model of Sect. 5.1 to a new
geometry (data). The goal here is to predict the macroscopic
stresses using the best trained model and compare that with
a training from scratch model (same procedure as described
in the previous example). To this end, we used less num-
ber of data (new microstructures) as sketched in Fig. 9 and
only 100 epochs were considered in the learning process, to
demonstrate the CNN transfer-learning efficiency.

As a first comparison, we plot the macroscopic stresses
predictions of both models in Fig. 13 together with the actual
values obtained by FEM-model. Hereby, the transfer learn-
ing model shows a better performance close to the FEM
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Fig. 12 CNN-predictions (y-axis) versus ground-truth values (FEM x-axis) of the stress components: σ̄xx , σ̄yy , σ̄xy

Table 4 Performance comparison between transfer learning model and
training from scratch model: MAPE and R2 values on the test dataset

Training from scratch model σ̄11 σ̄22 σ̄12

MAPE 1.0% 0.9% 0.5%

R2 0.87 0.87 0.55

Transfer learning model σ̄11 σ̄22 σ̄12

MAPE 0.21% 0.22% 0.35%

R2 0.99 0.99 0.80

red-line compared with the training from scratch model. The
good prediction of the transfer learningmodel requiredmuch
less number of epochs (around 20 epochs) and smaller MSE
when comparedwith the training from scratchmodel as illus-
trated in Fig. 14. Thus, we were able to further accelerate
the micro-to-macro simulations of materials with complex
micro-structures using the transfer learning approach. Next,
we also compare themean absolute percentage error (MAPE)
and the R2-score for bothmodels in Table 4. As expected, the
transfer learning model illustrates a better MAPE and coef-
ficient of determination compared with the scratch training
model.

6 Conclusion

In this contribution, aConvolutionalNeuralNetworks (CNN)
modelwas developed to predict the homogenized stress in the
case of elastic small deformation for a synthetically gener-
ated microstructure representing a heterogeneous material.
The considered material was a composite with 3 differ-
ent phases (e.g. a hybrid composite laminate consisting of
shape memory alloy and glass fiber as reinforced phases
and epoxy resin as the host material of the composite;
or concrete microstructure consisting of aggregates, voids
and cement-paste matrix). The positions of inclusions and
their sizes varied randomly in each RVE of the generated
microstructure. The data set used for the training process
and the numerical tests consisted of images of the generated
microstructures, which were considered the CNN model’s
input, and the homogenized stresses resulting from apply-
ing finite element simulations were considered to be the
labels. The proposed CNN model was chosen after several
numerical tests performed on different model architectures,
these were inspired by the work in different papers taking
the CNN approach to solve computational mechanics tasks.
The architecture of the CNN model consists of five sets
of 2 convolutional layers followed by a max-pooling layer
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Fig. 13 Performance comparison between transfer learning model and training from scratch model: CNN-predictions versus ground-truth values
of the stress components

then a flatten layer and two fully connected layers, while
utilizing L2 and early stopping as regularization methods.
The obtained results when employing the CNN model and
its transfer learning show high accuracy in predicting the
homogenized stress and a significant decrease in computa-
tion time.

In this work, we focused our investigations on linear elas-
tic material response, however, the proposed CNN model
can efficiently be extended toward inelastic (time-dependent)
material response by coupling the CNN structure with
Recurrent Neural Networks (RNN) or adding the deformed
configurations as an input. These topics await investigation.
Furthermore, our model performance was evaluated using
numerical results. As a future step, real experimental data of
concrete microstructures (DFG Priority Program SPP 2020
Experimental-Virtual-Lab) will be employed as future train-
ing data in the CNN approach.

Fig. 14 Transfer learning losses (in blue) versus training from scratch
losses (in green). (Color figure online)
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