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Abstract

In many industrialized regions of the world, large-scale photovoltaic systems now contribute a significant part to the energy
portfolio during daylight operation. However, as energy demands peak shortly before sunset and persist for several hours
afterwards, the integration of solar-thermal systems is extremely advantageous as a green “bridge” energy source. Accordingly,
this work develops a digital-twin model to track and optimize the flow of incoming solar power through a complex solar-
thermal storage system, consisting of a large array of adaptable mirrors, an optical-receiver and a power distribution system for
customers to extract energy. Specifically, the solar power flow is rapidly computed with a reduced order model of Maxwell’s
equations, based on a high-frequency decomposition of the irradiance into multiple rays that experience mirror reflections,
losses and ultimately receiver absorption and customer delivery. The method allows for rapid testing (in microseconds) of the
performance of large numbers of mirror-receiver layout configurations in design space, over extremely long time periods, such
as weeks, months and years, using a genetic-based machine-learning digital-twin framework, which integrates submodels for:

e optics and tracking of the Fresnel multi-mirror system,
e thermal absorption of the optical energy by the receiver and
e optimal operating temperatures balancing radiative losses with heat storage.

The overall machine-learning digital-twin optimizes the configuration layout to balance meeting customer demands and
operational efficiency. Numerical examples are provided to illustrate the approach. Finally, a deep-learning algorithm is
developed and applied to the create an Artificial Neural-Net representation, which allows for even further simulation speedup.
© 2023 Published by Elsevier B.V.
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1. Introduction

In many industrialized regions of the world, large-scale photovoltaic systems now contribute a significant part to
the energy portfolio during daylight operation. However, as energy demands peak shortly before sunset and persist
for several hours afterwards, the integration of solar-thermal systems (using Concentrated Solar Power (CSP) for
energy storage) is extremely advantageous as a green “bridge” energy source. Solar-thermal systems often employ
(1) molten salt storage and (2) a steam turbine and generator for electricity. The central tower approach (Fig. 1) is
considered the most efficient type of configuration (as opposed to arrays of local concentrators).
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Fig. 1. Left, overall solar-thermal system and right, a snapshot of an upcoming simulation comprised of (a) the movement of a source (sun),
(b) a configuration of adaptive mirrors, (c) a solar collector with a turbine and generator and (d) customers connected by a transmission
line.

The present work develops a digital-twin model to track and optimize the flow of incoming solar power through
a complex solar-thermal storage system, consisting of a large array of adaptable mirrors, an optical-receiver and a
power distribution system for customers to extract energy. Specifically, the solar power flow is rapidly computed
with a reduced order model of Maxwell’s equations, based on a high-frequency decomposition of the irradiance into
multiple rays that experience mirror reflections, losses and ultimately receiver absorption and customer delivery.
The method allows for rapid testing (in microseconds) of the performance of large numbers of mirror-receiver
layout configurations in design space, over extremely long time periods, such as weeks, months and years, using a
genetic-based machine-learning digital-twin framework, which integrates submodels for:

e optics and tracking of the Fresnel multi-mirror system,
e thermal absorption of the optical energy by the receiver and
e optimal operating temperatures balancing radiative losses with heat storage.

The overall machine-learning digital-twin optimizes the configuration layout to balance meeting customer demands
and operational efficiency. Numerical examples are provided to illustrate the approach. Finally, a deep-learning
algorithm is developed and applied to the create an Artificial Neural-Net representation, which allows for even
further simulation speedup. This system modeling falls into the category of a Green Energy Management System
(EMS) planner. EMS refer to frameworks that control the energy generation, transmission and storage for
multiple devices which are coupled. These can range from systems for nationwide grids, utility-scale systems,
microgrids, data-centers and electric vehicles (Fig. 1) and can consist of renewable energy sources, fossil-fuel energy,
transmission lines, batteries, generators, ultracapacitors and transformers. The goals of such systems are typically to
balance the load, guarantee the power supply for each device, maximize overall efficiency and to minimize overall
losses. In Zohdi [1], a detailed “macroscale” analysis of EMS and optimization was undertaken, which balanced
storage, transmission and consumption of multiple interconnected units, using machine-learning paradigms. One
motivation for the development of next generation Green Energy Management Systems is the exponential increase in
data-centers, which we define as locations dedicated to housing computer systems comprised of data handling units,
telecommunications, high-performance computing devices and associated equipment. Between 2010 and 2018, the
global quantity of data traversing the internet increased more than ten-fold, while global data-center storage capacity
increased by a factor of twenty-five in that same period (Masanet et al. [2]). While the analysis of the energy trends
are hotly debated, one point of agreement is that energy demands are consistently increasing, year after year, in part
because of the huge increase in internet traffic and staggering increase data-centers. The reader is referred to [3—26]
for a wide swath of the literature on this topic. All data indicate that the costs of such systems is huge and growing
rapidly. The basic trends on energy consumption by data-centers can be found in the extensive report of Shehabi
et al. [27].
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Remark 1. In order to grasp the immensity of available solar power, consider a rough estimate assuming: (a) the
Earth’s radius: R ~ 6,400,000 m, (b) the Earth’s surface area: A =~ 4 R?, (c) the peak solar power per unit area:
p ~ 1300 Watts/m?, (d) the assumption that roughly 1/2 of the Earth is illuminated at any given time and (e) the
overall surface achieves 1/2 peak illumination (on average) yields an estimate of P = % ~ 167,358 terawatts. The
actual number is approximately 173,000 terawatts (NREL [28]), which is approximately 10,000 times the worldwide
power usage in 2019-2020.

Remark 2. In Zohdi [29], an in-depth “microscale” analysis was conducted to optimize a data-center’s power
management by controlling both the ventilation and base foundation cooling of the data processors in the system.
That framework ascertained optimal cooling strategies to deliver a target system temperature using a minimum
amount of energy. A thermo-fluid model, based on the Navier—Stokes equations and the first law of thermodynamics,
for the data-center was constructed and a rapid, voxel-based, iterative solution method was developed and combined
with a genetic-based machine-learning algorithm to develop a digital-twin of the system that could run in real-time
or faster than the actual physical system, making it suitable as either a design tool or an adaptive controller. In
the present analysis, we develop a macroscale solar-thermal system for efficient green energy delivery for such
subsystems, among others.

2. Model problem: a coupled multi-device system

There are four main components in the system to be modeled:

e the configuration of mirrors, which focus solar power onto the storage system (receiver),

e the solar thermal storage (receiver) system, which delivers energy to customers (power consuming devices),
e the transmission network, which incurs electromechanical losses, as well as joule-heating losses and

e the customers, which can consume and possibly generate energy.

Algorithmically, the overall system operates in the following manner:

1. Optical energy that flows from the sun to the tracking mirrors,
2. Mirrors are controlled to orient themselves to reflect light towards the optical receiver (there are reflective
losses and tracking motor losses),
. The optical receiver system absorbs energy and stores it (there are thermal radiation losses),
4. A turbine-generator system produces electricity for customers on demand (incurring thermo-mechanical and
transmission losses) and
5. Customers induce a load onto the system that contribute to overall system losses.

W

3. Digital-twin structure and reduced-order model for optical energy flow

3.1. Assumptions for reduced-order model

The interest here is on the reflection of rays towards a target receiver. We make the following observations
(following Zohdi [30-36]):

e It is assumed that the features of the surfaces that receive optical power are at least an order of magnitude larger
than the wavelength of the incident radiation (essentially specular (non-diffusive) optical surfaces), therefore
“geometrical” ray-tracing theory is applicable, and is well-suited for the systems of interest. It is important
to emphasize the regimes of validity of such a model are cases where the surface features are larger than the
optical wavelengths. For example, if we were to use rays (1078 m < A < 4 x 1077 m), the features in this
analysis would be assumed to possess scales larger than approximately 4 x 10~ m. For systems containing
features smaller than this, one can simply use the model as a qualitative guide.

e Ray-tracing is a method that is employed to produce rapid approximate solutions to wave-equations for
high-frequency/small-wavelength applications where the primary interest is in the overall propagation of
power.!

1 Resolving diffraction (which ray theory is incapable of describing) is unimportant for the applications of interest.

3



T.1. Zohdi Computer Methods in Applied Mechanics and Engineering 412 (2023) 115991

e Ray-tracing methods proceed by initially representing wave fronts by an array of discrete rays. Thereafter,
the problem becomes one of a primarily geometric character, where one tracks the changing trajectories
and magnitudes of individual rays which are dictated by the reflectivity and the Fresnel conditions (if a ray
encounters a material interface).

e Ray-tracing methods are well-suited for computation of scattering in complex systems that are difficult to
mesh/discretize, relative to procedures such as the Finite Difference Time Domain Method or the Finite
Element Method.

e Other high frequency irradiation regimes can also be considered in the same manner, such as UV, X-rays
and gamma rays, provided that the scattering target has the appropriate (larger) length-scale. Even in the case
where this clear separation of length scales is not present, this model still provides valuable information on
the propagation of the beam and the reflected response of the dispersed system.

Note the connection of the concept of a ray:

e We define / as the power per unit area, and we obtain the power by multiplying the irradiance by the area of
the mirror 7 A™.

e The power for each ray is then collected at the optical receiver, after being reflected.

e Fresnel reflection relations can then be used to compute changes in the magnitude of the reflected rays (and
the amount absorbed), with directional changes given by the laws of reflection.

Essentially, rays are a mathematical construction/discretization of a pulse/beam. We refer the reader to Gross [37],
Zohdi [30-36] for details. From this point forth, we assume that the ambient medium behaves as a vacuum.
Accordingly, there are no appreciable energetic losses as the rays move through the atmosphere.

3.2. Reflection and absorption of rays

Following a framework found in Zohdi [30-36], we consider a ray of light incident upon a material interface,
which produces a reflected ray and a transmitted/absorbed (refracted) ray (Fig. 2), the amount of incident

electromagnetic (optical) power (I;) that is reflected (Z,) is given by the total reflectance ZR oo %, where 0 <7IR < 1.

3.3. Electromagnetic wave propagation and rays

The propagation of electromagnetic waves in free space can be described by a simplified form of Maxwell’s
equations (see Jackson [38], Zohdi [33])
oH IE
VXE=—u,5, and VxH=¢%, (3.1

where V-H =0, V-E =0, E is the electric field, H is the magnetic field, ¢, is the free space permittivity and w,
is the free space permeability. Using standard vector identities, one can show that

a2 2

V x (VX E) = .6, 5%, and  V x (V x H) = —p,6, 58, (3.2)
and that

2 1 OE 2 — LOH

VE =557, and  V°H =557, (3.3)
where the speed of electromagnetic waves is ¢ = JEIT All electromagnetic radiation travels, in a vacuum, at the
speed ¢ & 2.99792458 x 10% £ 1.1 m/s. In any another medium, for electromagnetic waves, the propagation speed
isv= \/%TA’ where € and p are the electric permittivity and magnetic permeability of that medium, respectively.

2 The free space electric permittivity is €, = ﬁ = 8.8542 x 107'2CN"!m~! and the free space magnetic permeability is

to =41 x 1077 WbA™!m~! = 1.2566 x 107° WbA~'m~!.
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3.4. Plane harmonic wave fronts

Now consider the special case of plane harmonic waves, for example of the form
E =E,cos(k -x — wt) and H =H,cosk -x — wt), (3.4

where x is an initial position vector to the wave front, where k is the direction of propagation. We refer to the phase
as¢p=k-x—owt,and w = 27” as the angular frequency, where t is the period. For plane waves, the wave front
is a plane on which ¢ is constant, which is orthogonal to the direction of propagation, characterized by k. In the

case of harmonic waves, we have
k x E = u,0H and k x H= —¢,wE, 3.5)

and k-E = 0 and k- H = 0. The three vectors, k, E and H constitute a mutually orthogonal triad.> The direction of
wave propagation is given by % Electromagnetic waves traveling through space carry electromagnetic power
which flows in the direction of wave propagation. The power per unit area flowing perpendicularly into a surface
in free space is given by the Poynting vector S = E x H.

3.5. Natural (random) electromagnetic power propagation

Since at high-frequencies E, H and S oscillate rapidly, it is impractical to measure instantaneous values of S
directly. Consider the harmonic representations in Eq. (3.4) which leads to S = E, x H,cos*(k - x — wt), and
consequently the average value over a longer time interval (7) than the time scale of rapid random oscillation,

(S)7 = E, x H,(cos*(k - x — o)) = 1E, x H,, (3.6)

leading to the definition of the irradiance

def €
I'=(ISI)7 = 311E, x H,ll = 5 ||, |17 (3.7

Thus, the power flow is proportional to the square of the amplitude of the electric field.
3.6. Reflection and absorption of power-Fresnel relations

We consider a plane harmonic wave incident upon a plane boundary separating two different materials,
specifically vacuum and surface, which produces a reflected wave and an absorbed (refracted) wave (Fig. 2). Two
cases for the electric field vector are considered:

e (1) electric field vectors that are parallel (]|) to the plane of incidence and
e (2) electric field vectors that are perpendicular (L) to the plane of incidence.

In either case, the tangential components of the electric and magnetic fields are required to be continuous across
the interface. Consider case (1). We have the following general vectorial representations

EH = EHCOS(k -X —wt) ey and HH = HHCOS(k -X —wt) ey, (3.9)

where e; and e, are orthogonal to the propagation direction k. By employing the law of refraction (n;sin6;, =
ngsinb,) we obtain the following conditions relating the incident, reflected and absorbed components of the electric
field quantities

EHiCOSQi — EHrCOSQr = E”aCOSQa and HL,‘ + HL,- = HLa- (39)
Since, for plane harmonic waves, the magnetic and electric field amplitudes are related by H = %, we have
Mi Vi Hi n def 7
Eji+Ey=——Ej, = ——Ejs = ~Eja, (3.10)
Ha Va Ha Nj 2

3 By combining the relations in Eq. (3.5) one obtains k| = %
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def . def
where i = = ’;“ L= ”“ and where v;, v, and v, are the values of the velocity in the incident, reflected and absorbed
By again employlng the law of refraction, we obtain the Fresnel reflection and transmission/absorption

directions.*
coefficients, generalized for the case of unequal magnetic permeabilities
i
_Ey ﬁcos&fcosGa _ Eja 20050:
= Eli T Lcost;+coso, and a) = Ei T coso, ﬁl 9, " (3.11)
7 6050 N cos a+ﬁcosl
Following the same procedure for case (2), where the components of E are perpendicular to the plane of incidence
we have
cOSQi—icosﬁa E 2c0s0;
ri=fe = L T and g =Fle = 200 3.12)
Li cost;+ % cosbq Li cost;+ % cosOq
Our primary interest is in the reflections. We define the reflectances as
def def
Ry=ri and IR, =ri. (3.13)
Particularly convenient forms for the reflections are
72 1 1
B2 cost; —(2—sin26;)2 cost;— L (2 —sin20;)2
rp=-=% T and r, = £ T (3.14)
%0059i+(ﬁzfsin20,-)2 cos9;+%(ﬁzfsin29i)2
Thus, the total power reflected can be characterized by
2
def Er + E r I r + IJ_r
RE(Z2) = —r = : (3.15)
Ei Ei Ii

If the resultant plane of oscillation of the (polarized) wave makes an angle of y; with the plane of incidence, then
(3.16)

EHi = EiCOS]/i and Eli = Eisinyi,

4 Throughout the analysis we assume that 7 > 1
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and it follows from the previous definition of / that
I”l' = I,'COSZ)/L' and ILi = Iisin2y,-. (317)

Substituting these expressions back into the equations for the reflectances yields

I I
IR = %coszy,- + %sinzy,- = ZRHcoszyi +Rlsin2yi. (3.18)
i i
For natural or unpolarized electromagnetic radiation, the angle y; varies rapidly in a random manner, as does the
field amplitude. Thus, since

{cos’vi)T =5 and  (sin’yi(O)T = 3, (3.19)
and therefore for natural electromagnetic radiation

Illi = 17' and IJ_,‘ = 171 (320)
and therefore

2\2 2 \2 ,
2 lIr _ Ar 2 __ r — r

i= (i) =% we () -4 (321)

Thus, the total reflectance becomes
1 1, )
R = E(ZR” +IR.) = S i), (3.22)

where 0 < 7R < 1. For the cases where sinf, = ”29" > 1, one may rewrite reflection relations as

"2 1 1
*e-cosb; —j(sin26;—i%)2 cosGif%j(sinz(?ifﬁz)Z
ry = L and rp = L s (323)

72 N . 1
%cosai-‘rj(sinQOi —h2)2 cos6; +%](sm20,~ —h2)2

where, j = +/—1, and in this complex case’

RH déf er” = 1, and RJ_ défrJ_fJ_ = 1, (324)

where 7 and 7, are complex conjugates. Thus, for angles above the critical angle 67, all of the power is reflected.
Notice that as 7 — 1 we have complete absorption, while as 7 — oo we have complete reflection. The amount of
absorbed irradiance by the surface is I, = (1 — IR)I;.

3.7. Reflectivity

To observe the dependency of ZR on 7 and 6; we can explicitly write

a2 oo 1\ 2 CINP A
1 700s9,-—(n —sin“6;)2 cos9,-—ﬁ(n —sin“6;)2
R=1((% () ) (3.25)
n

1 1
" cost; +(n2—sin26;)2 cosO;+ i (72 —sin26;)2

We observe:

e As n — 00, IR — 1, no matter what the angle of incidence’s value. We note that as # — 1, provided that
a=1,IR — 0, i.e. all incident power is absorbed (it is transparent).

e With increasing 7, the angle for minimum reflectance grows larger. As mentioned previously, for the remainder
of the work, we shall take &t = 1 (1, = u; = ug), thus

o ng €alda ) )
n=—= [— = € lg = (n) €N = €, = (n)7e;. (3.26)
n; €ildLi
5 The limiting case % =1, is the critical angle (6]") case.
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e The previous assumption yields
1\ 2 1\ 2
IR = ;_, _ % ((ﬁzcnx@-—(ﬁz—sinzéi)?> + <cos9,-—(ﬁ2—xin20,-)?> ) ) (3.27)
! A2cos6; +(A2—sin26;)2 cosO; +(h2—sin26;)2
Remark 3. Recall that [ is the power per unit area, and that we obtain the power associated with an entire
pulse/beam by multiplying the irradiance by the area of the mirror, /A”. The reflection relation, Eq. (3.25), can
then be used to compute changes in the magnitude of the reflected rays (and the amount absorbed), with directional

changes given by the laws of reflection. We refer the reader to Gross [37] and Zohdi [30-36] for details. We have
the following additional observations:

e The angle between the point of contact of a ray (Fig. 2) and the outward normal to the surface at that point
is the angle of incidence, 6;. The classical reflection law states that the angle at which a ray is reflected is the
same as the angle of incidence and that the incoming (incident, 6;) and outgoing (reflected, 6,) ray lays in the
same plane, and 6; = 6,.

e The classical refraction law states that, if the ray passes from one medium into a second one (with a different
index of refraction) and, if the index of refraction of the second medium is less than that of the first, the
angle the ray makes with the normal to the interface is always less than the angle of incidence, where
A def y; €alla sinb;

n=-=L= = 6, being the angle of the absorbed ray (Fig. 2).

Va € i sinbq’

4. Thermal storage and transmission

4.1. Model for the optical receiver

Consider the following power equation for the receiver

N, C
dT, “ def
M,C, dtf =Y R SA"" — 6,0, (T — THA, = Y Fips . = Ly(1), (4.1)
X | —
i=1 _ radiated power =1

stored power
absorbed power

where 7, is the temperature of the storage system, 7, is the temperature of the surrounding environment, M,C,
is the (lumped) effective “thermal mass” of the system, ZR; is the effective reflectivity of mirror i, I; = S is the
radiant energy from the Sun, A, is the system surface area, €, is the radiative emissivity, g is the Stefan-Boltzmann
constant and F;“, is the transmitted power from the receiver base to the turbine-generator-customer system. This
stored power is ready to be accessed by the turbine-generator-customer subsystem.

4.2. Model for the devices (“customers”) in the system

For each device in the system, ¢ = 1,2,..., N. (Fig. 1), consider a control volume tracking its energy state.
Each device’s energy state (Joules) at time ¢, is denoted D (¢) and equal to the device state.

e The transmission of energy is governed by the demand of each customer, for example D}(¢), subject to the
following equation and conditions:

dD ¢
= L)+ L E L), 4.2)

where one can assign D.(t) = m.C.T.(t), although this is not absolutely necessary.
e TRANSFER: If D.(t) < D}(t), then Fypee > 0, where we wish to induce
D.(t + At) = DX(t + At) = Do(t) + L () At + FY . At, (4.3)

rb—tgc

where L. is the load (losses) carried by device, where the following must be delivered, compensated

transmission:
D*(t + At) — D (1)
Fr%?il—)fgc = Frtl};gltgca”'afg =— - - ‘CL'(I)? 4.4)

At
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where a,_,. = e *Uz—cbe ™ digch—c where k is the power loss per unit length, d;,_,, is the distance between
tg and cb, d,—.. is the distance between cb and ¢ and 0 < «;, < 1 is the efficiency of the turbine-generator
system. Thus, the actual amount transmitted must be

del

Fr”f—’f — rboige ) 4.5)
P g
e NO TRANSEFER: If D.(t) > D}(t), then F/¢" = 0.
e The loss between them is
‘Crb—)fgt' = Frtl';gl?gc - F;g)ei)tgc = F:gzl;gc(l - arb—n‘afg)' (4.6)
4.3. The system states
For each customer device:
D.(t + At) = D (t) + AtL.(t) = D:(t + Ar) 4.7
and for the receiver
T.(t + Ay = T, (1) + Al L,(1) 4.8)
r — 1y M,C, r ) .

where the received energy is E, = M, C,T,.

5. Operating temperature optimality

The optimal operating temperature for the thermal storage facility must balance increasing the temperature (and
thus thermal storage) with radiative losses to the surroundings. The optimal temperature can be ascertained by
optimizing the overall operating efficiency, n°v¢"¢!! = nsPyc@not computed by comparing the incident optical power
(P") and the amount that is lost (P*5"):

Pinc _ Plost

o= (5.1)

where P"¢ = IRy’ SN,, A,,, where, for this calculation we assume the best possible mirror reflectivity, IR = 1,
0 < p"ve" < 1 is the efficiency of conversion incident energy at the receiver, S is the solar power per unit area,
N,, is the number of mirrors and A,, is the area of a mirror, P'**' = A,¢,B(T* — T*), where A, is the surface area
of the receiver relative to the theoretical limit of efficiency is the classical Carnot efficiency

I/ cold
Trmt _ Tco _ Tr _ Te

carnot __
n - Trhm - T, (5.2)
Thus,
Pinc _ Plo.vt T. —T
overall __ _csp. carnot __ r r r e
porerell = per et = < Pl > ( T ) : (5.3)

Inserting the expressions yields:

Arer T4 _ T4 + (1 — conver SNmAm Tr - T
noverall =[1= ’8 ( r ¢ ) ( " ) ¢ . (54)
SNITI Am TE
Assuming n°"v*" #£ F(T,), and taking a derivative
annverall 3 Te ] 4 A Te
— =0=—-4KT’ |1 — — comer — k(T = T,")) =, 55
3T, 1 T; T + (n (T =T)) T2 (5.5)
where k| = Sf}\,’;’/fn . This leads to a 5th order polynomial which can be solved easily with Newton’s method.

9
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6. Power flow-storage-distribution tracking algorithm

Starting at = 0 and ending at = ¢/, algorithmically, the overall system operates in the following manner:

1.

Optical energy flows from the sun to the mirrors,

2. Mirrors orient themselves to reflect light towards the thermal storage system (there are reflective losses and

3.
4.

5.

tracking motor losses),

The optical receiver (thermal storage system) absorbs energy and stores it (thermal radiation losses),

A turbine-generator system produces electricity for customers on demand (producing thermo-mechanical
losses and transmission losses,

Customers induce individual loads on the system that lead to losses.

7. Machine-learning optimization and automatic design

A

design vector of the form Al def (A, Aé, ...,A’)V} ={solar farm size, solar farm shape, received height,

thermal storage fluid properties, mirror sizes, mirror numbers, customer access periods} and cost-error function of
the following form

II(A) = W, x (customer demand shortfall) + Wy x (customer storage excess)
+ W3 x (receiver storage shortfall) + Wy X (receiver storage excess)
4+ Ws x (tracking motor energy), (7.1)
def

where we consider a design vector A= {AF Ag, Ag, o A?v}, which represents the positions of the devices and
where the cost is the power integrated over the course of time. Specifically:

Customer demand shortfall: If D;(t) < D}(t) then (D; = m;C;T;, D} = m;C;T}),
IV + Ar) = IV@) + | Di(1) — D) and L2t + Ar) = ITP(1), (7.2)

where 110 = YN 11" and 1M = YN 11,
Customer storage excess: If D;(¢) > D} (t) then

IV + Ar) = I0@) and TP + Ar) = P (0) + | Di(t) — DE@)II, (7.3)

where 110 = YN 11" and 1M = YN 11,
Receiver storage shortfall: If E.(t) < E*(¢) then (E, = M,C,T,, E} = M,C,.T}),

I + Aty = TP(t) + || E.(t) — EX(®)|| and TT(t + At) = T9(@). (7.4)

Receiver storage excess: If E,(t) > E(t) then

9 + Aty = TO@) and TP + Ar) = @) + | E,(t) — EX@)|. (7.5)

Tracking motors total energy (Fig. 2):
We compute the change in angle for each mirror panel, via an inner-product of the unit normals (m =
1,2,..., N,from time ¢ to ¢t + Ar),

Rt 4+ A1) - 1y, (1) = cos(AB(1)) = AO = cos™ (n,(t + At) - ny (1)) (7.6)
and compute the power needed
AEy(1) = a || A6(0) |1, (7.7)

where a,, is the torque multiplier o, = A,, x 10° where A,, is the surface area of the panel, ¢/ is the
compensation for the losses for the power that needs to me supplied to the motor, where / is a loss coefficient
and d,, is the distance of mirror m from the power supply (the generator). The motor torque is then computed
for each mirror:

IOt + Ar) = IO(t) + AE,, (7.8)
where I1® = "V 11
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VARIOUS CONFIGURATIONS
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Fig. 3. Possible mirror-domain layouts generated from a generalized 2D-ellipsoidal equation (Eq. (7.10)).

All of these components are then summed up until time=t = ¢/, which is the final time, and normalized
13
tote o fy — K)ef
m" ¢ =t')= " ,;_1 1@, (7.9)

where Ny is the number of days and where II* = E} Ny, is an energy-based normalizer.
Note: One could also compute the capital costs by summing cost per mirror, receiver costs, etc, into the cost
function, with the appropriate normalization.

7.1. Distribution of mirrors

For the mirror layout, we consider a topology described by the normalized equation for a surface, F(x;, x3) = 1
(Fig. 3). Specifically, a generalized 2D-ellipsoidal equation (Eq. (7.10)) is used where, for exponent values of
(p1, p2) equal to two, (2, 2), we generate a familiar 2D-ellipsoidal surface, for values less than one we generate
involute (nonconvex shapes and corresponding surfaces), and for exponent values of (py, p») greater than two, we
generate a rectangular-like shapes (Fig. 3). To generate a panel, a generalized 2D-ellipsoidal equation is used

— X20

R
R, Ry
where (x1,, X2,) are the coordinates of the panel center and (R;, R;) are the generalized radii and (p;, py) are
exponents of the generalized 2D-ellipsoid, which ultimately will be design variables in the machine-learning
Algorithm discussed later. In order to avoid clustering of the devices, we enforce a spacing penalty for a
configuration consisting of a proximity penalization function summing all individual pairwise device separation
distances

¢ & \/Zijilszzld)fj(”ri —rjll —d*)?
B Nd*

where r; is the position vector of device i, r; is the position vector of device j, d* is a critical separation distance
and where:

Flx, x) = || 2 17 =1 (7.10)

) (7.11)

o If |r; —rj|| <d* then ¢; = 1,
o If ||lr; —rj|l > d* then ¢;; = 0.
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This ensures a uniform distribution of mirrors. An example of a distribution of mirrors in a {p;, p»} = {0.75,0.75}
domain is shown in Fig. 4. The rapid rate at which these simulations can be completed allows the exploration of
inverse problems seeking to determine what parameter combinations can deliver a desired result (Fig. 5). In order
to cast the objective mathematically, we set the problem up as a machine-learning algorithm (MLA), specifically a
genetic algorithm (GA) variant, which is well-suited for nonconvex optimization. Following Zohdi [1,29,39-44],
we formulate the objective as a cost function minimization problem that seeks system parameters that match a
desired response, in this case a minimum of I7(Ay, ... Ay). We systematically minimize I7, by varying the design
parameters: A’ &ef {A], A, A], ..., A} }. The system parameter search is conducted within the constrained ranges
of A(l_) <A < A(1+), /1(2_) <A < /1(2+), A(3_) < /A3 < A(3+), etc. These upper and lower limits are dictated by what
is physically feasible.

7.2. Machine-learning algorithm (MLA)

Cost functions such as I are nonconvex in design parameter space and often nonsmooth. Their minimization is
usually difficult with direct application of gradient-based methods. This motivates nonderivative search methods, for
example those found in machine-learning algorithms (MLAs). One of the most basic subsets of MLAs are so-called
Genetic Algorithms (GAs). For a review of GAs, see the pioneering work of John Holland ([45], [46]), as well as
Goldberg [47], Davis [48], Onwubiko [49] and Goldberg and Deb [50]. A description of the algorithm will be
described next, following Zohdi [1,29,39—44].

7.3. Algorithmic structure

The MLA/GA approach is extremely well-suited for nonconvex, nonsmooth, multicomponent, multistage systems
and, broadly speaking, involves the following essential concepts (Fig. 5):

. POPULATION GENERATION: Generate a parameter population of genetic strings: A’

. PERFORMANCE EVALUATION: Compute performance of each genetic string: IT(A")

. RANK STRINGS: Rank them A’, i =1, ..., S from best to worst

. MATING PROCESS: Mate pairs/produce offspring

. GENE ELIMINATION: Eliminate poorly performing genetic strings

. POPULATION REGENERATION: Repeat process with updated gene pool and new random genetic strings

. SOLUTION POST-PROCESSING: Employ gradient-based methods afterwards in local “valleys”-if smooth
enough

~N NN R WND =

7.4. Specifics

Following Zohdi [1,29,39-44]. the algorithm is as follows:

e STEP 1: Randomly generate a population of S starting genetic strings, A'(i = 1,2,3, ..., ) :

Al

e
AEL A (7.12)

Ay
e STEP 2: Compute fitness of each. string I1(A"), (i=1, ..., S)
e STEP 3: Rank genetic strings: A’, (i=1, ..., S) from best to worst

12
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Fig. 4. The overall system for one day. A 365 day simulation (365 day cycles) takes on the order of 0.25 s. From left to right and top to
bottom: Frame 1 (top left): A schematic of a “day”. Frame 2 (top right): An example of a simulation configuration. Frame 3 (middle left):
The start of the day at “dawn”, with light vectors. Frame 4 (middle right): Mid-day with light vectors. Frame 5 (bottom left): A zoom on
the start of the day at “dawn”. Frame 6 (bottom right): A zoom on the mid-day.
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Fig. 5. The basic action of a machine-learning/genetic algorithm (Zohdi [1,29,39-44]) inducing multidirectional search.

e STEP 4: Mate nearest pairs and produce two offspring, (i=1, ..., S):

$1 4 (1 —onAy!
e _ | e (1= g) 45"
MEBoA +A—B)o AT L g3al 41 (1—g¢y)ALt! (7.13)
¢n Al (1 — pm)AY!
and
Vi 4] A=y
o | (1 =y A5"!
AMHZE ToAd +A- P A= ysal + 1 (1 —ypal! (7.14)
wn Al (1 =y Ay

where for this operation, the ¢; and v; are random numbers, such that 0 < ¢; < 1,0 < ¢; < 1,
(j =1,2, ..., N) which are different for each component of each genetic string

e STEP 5: Eliminate the bottom M strings and keep top K parents and their K offspring (K offspring+K
parents+M=S)

e STEP 6: Repeat STEPS 1-5 with top gene pool (K offspring and K parents), plus M new, randomly
generated, strings

e REFOCUS OPTION: One can refocus search around best performing parameter set every few generations,
thus concentrating the computation effort around the most promising (optimal) areas of design space.

Remark 4. If one selects the mating parameters ¢’'s and /s to be greater than one and/or less than zero, one
can induce “mutations”, i.e. characteristics that neither parent possesses. However, this is somewhat redundant with
introduction of new random members of the population in the current algorithm. If one does not retain the parents
in the algorithm above, it is possible that inferior performing offspring may replace superior parents. Thus, top
parents should be kept for the next generation. This guarantees a monotone reduction in the cost function, unless
one implements the refocussing option mentioned previously. Retained parents do not need to be reevaluated, making
the algorithm less computationally expensive, since these parameter sets do not have to be reevaluated in the next
generation’s calculations. In the absence of refocussing, numerous studies of the author (Zohdi [1,29,39—44]) have
shown that the advantages of parent retention outweighs inbreeding, for sufficiently large population sizes. Finally,
we observe that this algorithm is easy to parallelize.

14
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Remark 5. After application of such a global search algorithm, one can apply a gradient-based method around
the best performing parameter set, if the objective function is sufficiently smooth in that region of the parameter
space. In other words, if one has located a convex portion of the parameter space with a global genetic search, one
can employ gradient-based procedures locally to minimize the objective function further, since they are generally
much more efficient for convex optimization of smooth functions. An exhaustive review of these methods can be
found in the texts of Luenberger [51] and Gill, Murray and Wright [52]. However, refocussing usually makes this
extra step unnecessary, since the search eventually concentrates the computational effort locally around the best
parameter set beforehand.

7.5. Algorithmic settings

In this example, the following search parameter settings were used:

e Number of design variables: 10,

e Population size per generation: 24,

e Number of parents to keep in each generation: 6,

e Number of children created in each generation: 6,

e Number of completely new genes created in each generation: 12,

e Number of generations for re-adaptation around a new search interval: 10 and
e Number of generations: 150.

The simulation time was 365 days and with 1000 mirrors. The best gene was computed to be
AY = {A], A5, . Af) (7.15)
= {0.676, 5107.85, 5627.06, 2.14, 4.50, 130.40, 1.00, 29.52, 1027.99, 2101.29},

where

the customer “on” time: ‘= A;,

the x; radius of the mirror field: Rj= A,

the x, radius of the mirror field: R,= A3,

the x| radius exponent of the mirror field: p;= Ay,
the x; radius exponent of the mirror field: p,= s,
the receiver height: h= As,

the mirror size: L,,= A7,

the receiver size, L,= Ag,

the operating material density: p,= Ao,

the receiver heat capacity: C,= A,

with a cost function of IT(A*) = 0.089. Fig. 6 illustrates the results for the cost function for the best performing
gene (red) as a function of successive generations, as well as the average performance cost function of the entire
population of genes (green). We allowed the MLA/GA to readapt every 10 generations. Often, this action is
more efficient than allowing the algorithm not to readapt, since it probes around the current optimum for better
local alternatives. The total cost (population average) function was initially I77°'“ =~ 0.1529 and was reduced to
II'" 2 0.0890, a reduction of *320080 _, 4]79%. The entire 150 generation simulation, with 24 genes per
evaluation (3600 total designs) took a few minutes on a laptop, making it ideal as a design tool. We note that,
for a given set of parameters, a complete simulation takes a fraction of a second, thus hundreds of thousands of
parameter sets can be evaluated in an hour, without even exploiting the inherent parallelism of the MLA/GA. The
speed at which the overall process can be completed makes it a suitable digital-twin of the system that can run in
real-time or faster than the actual physical system, making it suitable as either a design tool or an adaptive controller.

7.6. Simulation acceleration-model reduction via Artificial Neural Nets

There are other machine-learning type paradigms that complement genetic-based approaches, such as Artificial
Neural Networks (ANN). ANN have received huge attention in the scientific community over the last decade and

15
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Fig. 6. Successive generations. This figure illustrates the results for the cost function for the best performing gene (red) as a function of
successive generations, as well as the average performance cost function of the entire population of genes (green). We allowed the MLA/GA
to readapt every 10 generations. Often, this action is more efficient than allowing the algorithm not to readapt, since it probes around the
current optimum for better local alternatives. The total cost function was initially IT°"* ~ 0.1529 and was reduced to IT'*" ~ 0.0890 a
reduction of % — 41.79%. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

are based on layered input—output type frameworks that are essentially adaptive nonlinear regressions of the form
O = B, w), where O is a desired output and B is the ANN comprised of (1) synapses, which multiply inputs
(I;,i=1,2,..., M) by weights (w;, i = 1,2,..., N) that represent the input relevance to the desired output, (2)
neurons, which aggregate outputs from all incoming synapses and apply activation functions to process the data
and (3) training, which calibrates the weights to match a desired overall output. This is discussed next and follows
a framework developed in Zohdi [53].

7.6.1. ANN framework

A primary issue with ANN is the calibration of the synapse weights. This calibration can be cast as a nonconvex
optimization problem, whereby the cost/error function represents the normed difference between observed data and
the output of the ANN for a selected set of weights. The objective is to select a set of weights which minimizes
the cost/error. The genetic-based machine-learning algorithm introduced earlier for the model problem optimization
are well-suited to calibrate an ANN, which we illustrate next.

7.6.2. ANN construction
ANNs are based on layered input—output type frameworks that are essentially adaptive nonlinear regressions of
the form

O26(11’127"'1IM7w17w23""wN)7 (7.16)
where O is a desired output and B is the ANN comprised of:

e Synapses, which multiply inputs (I, I, ..., I)) by weights (w;, ws, ..., wy) that represent the input
relevance to the desired output,

e Neurons, which aggregate outputs from all incoming synapses and apply activation functions to process the
data and

e Training, which calibrates the weights to match a desired overall output.

16
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A(x) A(x) A(x)

LINEAR SIGMOID/LOGISTICAL DOUBLE-SIGMOID

Fig. 7. Top: An ANN comprised of (1) Five layers (one input layer and four hidden layers) (2) 70 activation neurons (10+12+ 14416+ 18)
and (3)10 x 12+ 12 x 14+ 14 x 16 4+ 16 x 18 4 18 = 818 weighted synapses. The color-coding represents the value of the synapse weights.
Bottom: Various neuron activation functions: (1) Linear (2) Sigmoid and (3) Double Sigmoid.

For example, Fig. 7 illustrates a detailed ANN comprised of (1) Five layers (one input layer and four hidden
layers) (2) 70 activation neurons (10+ 12+ 14+ 16+ 18) and (3) 10x 12+ 12x 144+ 14 x 16 +16 x 18418 = 818
weighted synapses. The primary issue with ANNs is the calibration or “training” of the synapse weights. The key
components of an ANN can be summarized as follows (which is centered around training):

e STEP 1: Guess a set of trial weights (trials, i = 1,2, ...), given by the vector w'=!, for the synapse weights
and insert into the ANN (detailed construction shown shortly)

Bd,w) =0, (7.17)

which produces an overall trial output (ith trial).
e STEP 2: Compute the error for the ith trial

gi déf ||Odesired _ Oi”, (718)

where O%sired jg the desired output, which could come from experimental/field data or results from a complex
computational model of a system, where a reduced complexity ANN may be useful to represent the system.

17
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e STEP 3: The minimization of the error by adjusting the weights, for the next trial (i + 1):
wtl =w + Aw' (7.19)

e STEP 4: Repeat Steps 1-3 (trials i = 1, 2, ...) until the best set of weights are found to minimize the error.

The determination of the synapse weights can be cast as a nonconvex optimization problem, whereby the
cost/error function represents the normed difference between observed data and the output of the ANN for a selected
set of weights. The specifics of ANN construction are as follows:

e Step 1: Assign initial starting “guessed” weights to the synapses; this is the number of unknowns to be
updated/optimized: w', for trials i = 1, 2, ...

e Step 2: Collect (sum) the input (fy, k = 1, ..., synapses, Fig. 7) from each synapse input to each neuron:

e Neuron 1: Jjw_, y, + Lwisy, + ... = Sy,, Neuron 2: 1w, y, + hws y, + ... = Sy,, €lc.

e Step 3: For each neuron, apply an activation function (Fig. 7) to process input: Neuron 1: Ay, (Sy,),Neuron
2: AN2(SN2), etc.

e Linear activation: A(x) = x which provides proportional feedback

e Sigmoid/logistical activation: A(x) = ﬁ, reinforces input for x — oo and deletes input for x — —oo

e Double-sigmoid activation: A(x) = % reinforces input for x — oo and negates input for x — —oo

e Step 4: The output function sums contributions from the last layer:

def

O w0 Ay, (Sn)) = O, (720

e Step 5: Compute the error £ = ||OPeired _ ||, in the appropriate problem specific norm, where (QP¢sired
is observed data to be matched.

e Step 6: Repeat Steps 1-5 with an updated (improved) set of weights until a cost function IT(A') Ll s
minimized by varying a weight vector wi & {wh, wh, ..., w',}. This is the key step, referred to as training or
calibration.

7.6.3. Calibration via genetic-based machine-learning
The objective now is to minimize the cost function

Oy, ..., wy) =& = [|OP*7 — O, (7.21)
. . podef ; L
by varying the weight vector w' = {w], wy, wh, ..., wy}, for repeated trials i = 1,2, .... In order to cast the
objective mathematically, we set the problem up as a genetic-based machine-learning algorithm.

7.6.4. Algorithmic structure

As introduced earlier in the work, genetic-based Machine Learning Algorithms are well-suited ANN calibration.
To be consistent with the genetic-algorithm terminology, we shall us the term “trial” interchangeably with
“generation” and follow the process:

1. POPULATION GENERATION: Generate a parameter population i = 1,2, ..., S of genetic strings, w'
2. PERFORMANCE EVALUATION: Compute performance of each genetic string: IT(w')
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. RANK STRINGS: Rank them w, i = 1,2, ..., S from best to worst

. MATING PROCESS: Mate pairs/produce offspring

. GENE ELIMINATION: Eliminate poorly performing genetic strings

. POPULATION REGENERATION: Repeat process with updated gene pool and new random genetic strings

. SOLUTION POST-PROCESSING: Employ gradient-based methods afterwards in local “valleys”-if smooth
enough.

~N N W

7.6.5. Example: genetic training of an ANN

As an example, we consider a model problem where synthetic data is developed by repeated simulation of
the MLA optimized digital twin introduced earlier. The objective being to reduce the system even further to an
input—output “App” that requires no simulations of differential equations afterwards. For example, a user would
input the number of days and the output would be the value of the cost function. This makes it ideal for handheld
computation in the field.

7.6.6. Generation of a synthetic data set, Neural Net configuration and cost function

As an example, we evaluated the system for j = 1,2...100 random A"/ (designs) in order to train the
Neural Net. Each “true” system response was labeled as I'(A*°/“""). These are “synthetic” data points. We used
an ANN (Fig. 7) comprised of (1) Five layers (one input layer and four hidden layers) (2) 70 activation neurons
(10+12+14416418)and (3) 10x 12412 x 14+ 14 x 16416 x 18+ 18 = 818 weighted synapses. Our objective
is the use of genetic-based machine-learning to calibrate the 818 weights for the synapses. The cost function is

H(wi) — Eij:[lO()lF(Asolar,j) _ O(Wi, Asolar,j)l’ (7.22)

where w' is the vector of synapse weights to be calibrated with the genetic-based machine-learning algorithm.

7.6.7. Algorithmic settings
In the upcoming example:

e Search parameter ranges: —1 = w,, < wy < w,j =1forthe k =1,2,..., 818 synapse weights,
e Number of weight variables: 818,

e Population size per generation: 24,

e Number of parents to keep in each generation: 6,

e Number of children created in each generation: 6,

e Number of completely new genes created in each generation: 12,

e Number of generations for re-adaptation around a new search interval: 20 and

e Number of generations: 50.

A double sigmoid function (Fig. 7) was used. Any advantage of one type of activation function over another, when
training with genetic algorithms, is problem specific. Fig. 8 illustrates the one hundred synthetic data points used to
train the Neural Net (OP¢ir¢?), Fig. 9 illustrates the reduction of error by the genetic-Machine Learning Algorithm
(best performing gene (red) and the average of the population (green)). Also shown are the values optimized (818)
synapse weights that comprise the design vector. The evolution of the best synapse weights stabilized after about
25 generations. From left to right and top to bottom at generations 1, 2, 4, 8, 16 and 32. The ANN is comprised
of (1) Five layers (one input layer and four hidden layers) (2) 70 activation neurons (10 + 12 + 14 4+ 16 + 18) and
3)10x 12+ 12x 144+ 14 x 164+ 16 x 18 + 18 = 818 weighted synapses. The color-coding represents the value of
the synapse weights. Fig. 10 illustrates the evolution of the best synapse weights, which stabilized after about 25
generations. From left to right and top to bottom at generations 1, 2, 4, 8, 16 and 32. The ANN is comprised of
(1) Five layers (one input layer and four hidden layers) (2) 70 activation neurons (10 + 12 + 14 4 16 4 18) and (3)
10x 12+ 12 x 14414 x 16 + 16 x 18 4+ 18 = 818 weighted synapses. The color-coding represents the value of
the synapse weights. The weights were chosen to vary between —1 and +1, but of course there is nothing stopping
choices outside of this range. This was done simply to allow for a clear presentation in the example. The best gene’s
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Fig. 8. One hundred synthetic data points used to train the Neural Net (OPesired),
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Fig. 9. Left: The reduction of error by the genetic-Machine Learning Algorithm (best performing gene (red) and the average of the
population (green)). Right: The values optimized (818) synapse weights that comprise the design vector. The evolution of the best synapse
weights, which stabilized after about 25 generations. From left to right and top to bottom at generations 1, 2, 4, 8, 16 and 32. The
ANN is comprised of (1) Five layers (one input layer and four hidden layers) (2) 70 activation neurons (10 4+ 12 + 14 4 16 + 18) and
3)10x 124+ 12x 14+ 14 x 164+ 16 x 18 + 18 = 818 weighted synapses. The color-coding represents the value of the synapse weights. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

cost function stabilized at II =~ 0.176 from a starting population average of I/ ~ 8.305; a reduction of error by a
factor of % = 47.18. The refocussing was implemented at generation 20, which reduced the best gene’s cost
function from approximately II =~ 0.189 to II ~ 0.176 over the course of generations 21 through 50. The approach
is quite simple to implement and the entire 50 generation simulation, with 24 genes per evaluation (1200 total
designs) took under a second on a laptop, making it ideal as a design tool. This example was representative of how
this algorithm performed across a wide range of problems. Although the original computational model introduced
earlier in the paper is extraordinarily fast, the ANN reduced order model accelerates simulations even further.
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Fig. 10. The evolution of the best synapse weights, which stabilized after about 25 generations. From left to right and top to bottom at
generations 1, 2, 4, 8, 16 and 32. The ANN is comprised of (1) Five layers (one input layer and four hidden layers) (2) 70 activation
neurons (104+12+14+16418) and (3) 10 x 12412 x 14+ 14 x 16416 x 18 + 18 = 818 weighted synapses. The color-coding represents
the value of the synapse weights.

8. Summary

In summary, the objective of this work was to develop a flexible and rapidly computable framework that
researchers can easily alter and manipulate to design solar-thermal storage and distribution systems. Specifically, this
work developed a digital-twin Model to track and optimize the flow of solar power through a complex multistage
solar-thermal storage system with customers drawing energy at peak hours. The method allows for a solar installation
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performance to be tested quickly (in microseconds) for extremely long simulation periods, such as weeks, months
and years using a genetic-based machine-learning digital-twin framework which integrates submodels for:

e optics and tracking of the Fresnel multi-mirror system,
e thermal absorption of the optical energy by the receiver and
e optimal operating temperature balancing radiative losses with heat storage.

The overall machine-learning digital-twin optimizes the configuration layout to balance meeting customer demands
and operational efficiency. Numerical examples were provided to illustrate the approach. In addition to the motiva-
tion provided by the massive growth of data-centers and the corresponding need for precise energy management,
another application of high interest is the development of combined solar-thermal and photovoltaic digital-twin
technologies for sustainable continuous large-scale precision farming. There are two areas at the forefront which
can immediately benefit from integration of a precisely controlled solar-thermal system:

e LED-based indoor hydroponic farming: Indoor farming “pods” consist of enclosed trailers with hydro-
ponically grown plants, with energy supplied by carefully controlled LEDs, whereby a continuous and
constant supply of nutrient-rich water that helps plants grow more consistently, using 90% less water than
traditional agriculture with a customizable nutrient solution, using much fewer chemicals such as herbicides
and pesticides, and avoiding an array of pathogens, such as salmonella and E. coli, which pose risks to human
health. LED light strip “walls” provide crops with light from only the part of the spectrum they specifically
need for photosynthesis, reducing energy waste in addition to capturing secondary reflections to maximize
absorption efficiency. This technology supports the growth of the hydroponics industry, which is accelerating
rapidly due to climate change, in addition to a more general trend of society transcending the archaic approach
of outdoor farming of the last 10,000 years, which requires combatting insects, fungi and other plant pathogens.

e Agrophotovoltaic systems: Agrophotovoltaic (APV) systems attempt to co-develop the same area of land for
both solar photovoltaic power and agriculture. APV systems were pioneered in the 1980s (Goetzberger and
Zastrow [54]) and have steadily grown as photovoltaic systems have become more robust and inexpensive. We
refer the reader to [28,54-77] for a broad survey of such systems.® However, as with all photovoltaic systems,
they suffer from operation at night or peak hours, in particular if the system is greenhouse-based with 24 h
growing cycles. Such systems can benefit greatly from integration with solar-thermal storage systems.

The integration of such agricultural systems with solar-thermal technologies and, more generally, Green Energy
Management Systems, is underway by the author.
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