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Abstract

The objective of this work is to ascertain the optimal bending kick velocity and spin that a player should impart to exactly
it a target within a soccer goal, using machine-learning optimization. Specifically, the work develops a model of a kicking
layer producing a high-velocity spinning soccer ball which interacts with the surrounding air that induces drag forces and the
agnus effect, both of which are functions of the Reynolds number. This yields a set of highly nonlinear, coupled, differential

quations. The framework is designed to enable digital-twin type technologies, i.e. digital replicas that run in real time with
he physical system on laptops or other mobile systems for rapid feedback. The overall guiding motivation is to provide a
seful tool to assist coaches and to rapidly train players. Numerical examples are provided to illustrate the process.
2023 Elsevier B.V. All rights reserved.
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1. Introduction

Soccer is the most popular sport on Earth. One of the most fascinating shots in the sport is a high-velocity
ending shot on goal, which is induced by the spin a player imparts on the ball. Probably the most famous goal
arnessing this effect was the 1997 free kick of R. Carlos (https://www.youtube.com/watch?v=crKwlbwvr88, [1],
hich is arguably the greatest kick in the history of the game. The effect that bends the shot is referred to as the
agnus effect, and is due to a pressure differential between the points on the ball whose relative spinning action
oves in the same direction as the velocity of the surrounding fluid and the relative spinning action of points

hat move in the opposite direction of the velocity of the surrounding fluid (Fig. 1). The detailed physics behind
he Magnus effect are well-explored (see [1],[2], [3], [4], [5], [6], [7], [8], [9], [10], [11]). The objective of this
ork is to ascertain the optimal kick velocity, direction and spin that a player should impart to exactly hit within
target soccer goal with a bending kick, using machine-learning optimization. Specifically, the work develops a
odel of a kicking player and the subsequent high-velocity spinning soccer ball, interacting with the surrounding

ir which induces drag forces and the Magnus effect, which are both functions of the Reynolds number. This yields
set of highly nonlinear, coupled differential equations. The framework is designed to enable digital-twin type

echnologies, i.e. digital replicas that run in real time with the physical system on laptops or other mobile systems
or rapid feedback. The overall guiding motivation is to provide a useful tool to rapidly train players. Numerical
xamples are provided to illustrate the process.
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Fig. 1. The basic action of the Magnus effect. The effect that bends the shot is due to a pressure differential between the points whose
relative spinning action move in the same direction as the velocity of the surrounding fluid and the relative spinning action that moves points
move in the opposite direction to the velocity of the surrounding fluid. On the left, frames of a kick simulation yielding a precise target
goal are shown. The optimization of was a byproduct of machine-learning algorithm developed later in this work. The arrows indicate the
direction of the axis of spin.

2. Model

We assume that the soccer ball is spherical, with radius R and mass m. From Newton’s laws, a force balance
yields the following differential equation

mv̇ = Ψ grav
+ Ψ drag

+ ΨMagnus, (2.1)

where three main forces are (a) gravity, (b) drag and (c) the Magnus force from spinning. We make the following
assumptions:

• For the drag, we will employ a general phenomenological model

Ψ drag
=

1
2
ρaCD∥v f

− v∥(v f
− v)A, (2.2)

where CD is the drag coefficient, A is the reference area, which for a sphere is A = πR2, R being the radius,
ρa is the density of the ambient fluid environment and v f is the velocity of the surrounding medium which,
in the case of interest, is air. We will assume that the velocity of the surrounding fluid medium (v f ) is given,
implicitly assuming that the dynamics of the surrounding medium is unaffected by the ball.1

• For the Magnus effect

ΨMagnus
= ρaCL ARω × (v − v f ), (2.3)

where ω is the angular velocity of the ball, the lift coefficient correlates in the following manner for moderate
Reynolds numbers (see Bush [2])

CL =
∥ω∥R

∥v − v f ∥
. (2.4)

From Newton’s laws, this yields the following differential equation

mv̇ = Ψ grav
+ Ψ drag

+ ΨMagnus (2.5)

= mg +
1
2
ρaCD∥v f

− v∥(v f
− v)A + ρa

∥ω∥R
∥v − v f ∥

ARω × (v − v f ).

n order to accurately model the effects of drag, one can take into account that the empirical drag coefficient varies
ith Reynolds number. For example, consider the following piecewise relation (Chow [12]):

1 We will discuss these assumptions further, later in the work.
2
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• For 0 < Re ≤ 1, CD =
24
Re ,

• For 1 < Re ≤ 400, CD =
24

Re0.646 ,
• For 400 < Re ≤ 3 × 105, CD = 0.5,
• For 3 × 105 < Re ≤ 2 × 106, CD = 0.000366Re0.4275 and
• For 2 × 106 < Re < ∞, CD = 0.18,

where the local Reynolds number for a ball is Re def
=

2Rρa∥v f
−v∥

µ f
and µ f is the fluid viscosity. We note that in the

zero Reynolds number limit, the drag is Stokesian.

3. Numerical solution

The resulting set of nonlinear, highly coupled differential equations in Eq. (2.5) requires temporal discretization,
where we integrate the velocity numerically

v(t + ∆t) = v(t) +
1
m

∫ t+∆t

t
(Ψ grav

+ Ψ drag
+ ΨMagnus) dt

≈ v(t) +
∆t
m

(
Ψ grav(t) + Ψ drag(t) + ΨMagnus(t)

)
. (3.1)

he position is the obtained by integrating again:

r(t + ∆t) = r(t) +

∫ t+∆t

t
v(t) dt ≈ r(t) + ∆tv(t). (3.2)

Remark 1. There are a large number of physically similar phenomena relating to solid–fragment–fluid dynamics
associated with blasts, explosions and fire embers. We refer the interested reader to the wide array of literature on
this topic; see Plimpton [13], Brock [14], Russell [15], Shimanzu [16], Werrett [17], Kazuma [18,19], Wingerden
et al. [20] and Fernandez-Pello [21], Pleasance and Hart [22], Stokes [23] and Rowntree and Stokes [24], Hadden
et al. [25] and Urban et al. [26]. This numerical approach has been used repeatedly for a variety of physically
similar problems in Zohdi [27–30].

Remark 2. The piecewise drag law of Chow [12] is a mathematical description for the Reynolds number over a
wide range and is a curve-fit of extensive data from Schlichting [31].

Remark 3. More detailed analysis of the solid–fluid interaction between the ball and surrounding fluid would need
to employ high-fidelity models requiring discretization of the Navier–Stokes equations:

Balance of mass :
∂ρ

∂t
= −∇xρ · v − ρ∇x · v,

Balance of momentum : ρ(
∂v
∂t

+ (∇x v) · v) = ∇x · σ + f ,
(3.3)

where ρ(x) is the density field of the fluid, v(x) is the fluid velocity field, σ (x) is the fluid stress field and f (x) is
he body force field. Such models are significantly more complex than the models used in the current work, and
ould require spatio-temporal discretization solid–fluid interaction schemes, treating the ball as a part of the fluid

ontinuum (as another fluid or solid phase), and thus meshing them in a detailed manner. However, while such
odels may be necessary in many industrial applications where high precision is required, for the objectives of this
ork, namely the overall motion of the ball, it is unwarranted.

. Machine-learning for system optimization

The rapid rate at which simulations of the previous equations can be completed, enables the ability to explore
nverse problems seeking to determine what parameter combinations can deliver a desired result (Figs. 2). In order
o cast the objective mathematically, we set the problem up as a Machine Learning Algorithm (MLA); specifically a
enetic Algorithm (GA) variant, which is well-suited for nonconvex optimization. Following Zohdi [32], [33], [34],
3



T.I. Zohdi Computer Methods in Applied Mechanics and Engineering 415 (2023) 116261

γ

t
{

c
l

4

u
e
G
G
d

4

a

Fig. 2. The basic multi-frontal search induced by a MLA/GA-Machine Learning Algorithm/Genetic Algorithm (Zohdi [32], [33], [34], [35],
[36], [37]).

[35], [36], [37], we formulate the objective as a cost function minimization problem that seeks system parameters
that match a desired response

Π (λ1, . . . λ8) = w1
∥r − T∥

R
+ w2γ, (4.1)

where w1 and w2 are weights, r is the position of the ball, T is the position of the target within the goal and
is an indicator function where (1) if the ball is in the goal, γ = 0 and where (2) if the ball is outside of

he goal, γ = 1. We systematically minimize Remark 6, minΛΠ , by varying the design parameters: Λi def
=

Λi
1,Λ

i
2,Λ

i
3, . . . ,Λ

i
N }

def
= {veloci ty, directions, spin, . . .}. The system parameter search is conducted within the

onstrained ranges of Λ(−)
1 ≤ Λ1 ≤ Λ(+)

1 , Λ(−)
2 ≤ Λ2 ≤ Λ(+)

2 and Λ(−)
3 ≤ Λ3 ≤ Λ(+)

3 , etc. These upper and lower
imits would, in general, be dictated by what is physically feasible.

.1. Machine-learning algorithm (MLA)

Cost functions such as Π are nonconvex in design parameter space and often nonsmooth. Their minimization is
sually difficult with direct application of gradient-based methods. This motivates nonderivative search methods, for
xample those found in machine-learning algorithms (MLAs). One of the most basic subsets of MLAs are so-called
enetic Algorithms (GAs). For a review of GAs, see the pioneering work of John Holland ([38,39]), as well as
oldberg [40], Davis [41], Onwubiko [42] and Goldberg and Deb [43]. A description of the algorithm will be
escribed next, following Zohdi [32], [33], [34], [35], [36], [37].

.2. Algorithmic structure

The MLA/GA approach is extremely well-suited for nonconvex, nonsmooth, multicomponent, multistage systems
nd, broadly speaking, involves the following essential concepts (Fig. 2):

1. POPULATION GENERATION: Generate a parameter population of genetic strings: Λi

2. PERFORMANCE EVALUATION: Compute performance of each genetic string: Π (Λi )
3. RANK STRINGS: Rank them Λi , i = 1, . . . , S from best to worst
4. MATING PROCESS: Mate pairs/produce offspring
5. GENE ELIMINATION: Eliminate poorly performing genetic strings
6. POPULATION REGENERATION: Repeat process with updated gene pool and new random genetic strings
7. SOLUTION POST-PROCESSING: Employ gradient-based methods afterwards in local “valleys”-if smooth

enough
4



T.I. Zohdi Computer Methods in Applied Mechanics and Engineering 415 (2023) 116261

R
c
i
i
p
o
t
g
[
p

4.3. Specifics

Following Zohdi [32], [33], [34], [35], [36], [37], the algorithm is as follows:

• STEP 1: Randomly generate a population of S starting genetic strings, Λi , (i = 1, 2, 3, . . . , S) :

Λi def
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Λi
1

Λi
2

Λi
3

...

Λi
N

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.2)

• STEP 2: Compute fitness of each string Π (Λi ), (i=1, . . . , S)
• STEP 3: Rank genetic strings: Λi , (i=1, . . . , S) from best to worst
• STEP 4: Mate nearest pairs and produce two offspring, (i=1, . . . , S):

λi def
= Φ ◦ Λi

+ (1 − Φ) ◦ Λi+1 def
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φ1Λ
i
1

φ2Λ
i
2

φ3Λ
i
3

...

φNΛ
i
N

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 − φ1)Λi+1
1

(1 − φ2)Λi+1
2

(1 − φ3)Λi+1
3

...

(1 − φN )Λi+1
N

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.3)

and

λi+1 def
= Ψ ◦ Λi

+ (1 − Ψ ) ◦ Λi+1 def
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ψ1Λ
i
1

ψ2Λ
i
2

ψ3Λ
i
3

...

ψNΛ
i
N

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 − ψ1)Λi+1
1

(1 − ψ2)Λi+1
2

(1 − ψ3)Λi+1
3

...

(1 − ψN )Λi+1
N

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.4)

where for this operation, the φi and ψi are random numbers, such that 0 ≤ φi ≤ 1, 0 ≤ ψi ≤ 1, which are
different for each component of each genetic string

• STEP 5: Eliminate the bottom M strings and keep top K parents and their K offspring (K offspring+K
parents+M = S)

• STEP 6: Repeat STEPS 1–5 with top gene pool (K offspring and K parents), plus M new, randomly
generated, strings

• REFOCUS OPTION: One can refocus search around best performing parameter set every few generations,
thus concentrating the computation effort around the most promising (optimal) areas of design space. This
operation is performed by re-centering the search around the best genetic string and performing the search in
a new constrained local interval about that best genetic string, then proceeding to STEP 1, as before.

emark 4. If one selects the mating parameters φ′s and ψ ′s to be greater than one and/or less than zero, one
an induce “mutations”, i.e. characteristics that neither parent possesses. However, this is somewhat redundant with
ntroduction of new random members of the population in the current algorithm. If one does not retain the parents
n the algorithm above, it is possible that inferior performing offspring may replace superior parents. Thus, top
arents should be kept for the next generation. This guarantees a monotone reduction in the cost function, unless
ne implements the refocusing option mentioned previously. Retained parents do not need to be reevaluated, making
he algorithm less computationally expensive, since these parameter sets do not have to be reevaluated in the next
eneration’s calculations. In the absence of refocussing, numerous studies of the author (Zohdi [32], [33], [34],
35], [36], [37]) have shown that the advantages of parent retention outweighs inbreeding, for sufficiently large

opulation sizes. Finally, we observe that this algorithm is easy to parallelize.

5
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Fig. 3. The unilateral constraints to disallow improper penetration of the goal from the top, sides, bottom or back.

emark 5. After application of such a global search algorithm, one can apply a gradient-based method around
he best performing parameter set, if the objective function is sufficiently smooth in that region of the parameter
pace. In other words, if one has located a convex portion of the parameter space with a global genetic search, one
an employ gradient-based procedures locally to minimize the objective function further, since they are generally
uch more efficient for convex optimization of smooth functions. An exhaustive review of these methods can be

ound in the texts of Luenberger [44] and Gill, Murray and Wright [45]. However, refocussing usually makes this
extra step unnecessary, since the search eventually concentrates the computational effort locally around the best
parameter set beforehand.

Remark 6. Unilateral constraints are enforced to disallow improper penetration of the goal from the top, sides,
bottom or back (referred to as invalid planar boundaries, Fig. 3). If the ball hits the ground or the invalid planar
boundaries or if the ball enters the goal in a valid manner, the simulation is stopped: v(t) = 0 and the cost function
n Equation is assessed.

.4. Model problem-parameter settings

We applied the MLA algorithm, with the following parameters (eight):

• Λ1 =the ball’s initial velocity (magnitude),
• Λ2,Λ3,Λ4 = the ball’s velocity direction,
• Λ5 =the ball’s angular velocity (magnitude),
• Λ6,Λ7,Λ8 = the ball’s angular velocity direction.

xplicitly, the design vector is:

Λ = {∥v(0)∥, n1, n2, n3, ∥ω(0)∥, n1, n2, n3}. (4.5)

he search ranges were

• 30 m/s = Λ−

1 ≤ Λ−

1 ≤ Λ+

1 = 70 m/s,
• (−1,−1,−1) = (Λ−

2 ,Λ
−

3 ,Λ
−

4 ) ≤ (Λ2,Λ3,Λ4) ≤ (Λ+

2 ,Λ
+

3 ,Λ
+

4 ) = (1, 1, 1),
• 50 rad/s = Λ−

5 ≤ Λ−

5 ≤ Λ+

5 = 150 rad/s,
• (−1,−1,−1) = (Λ−

6 ,Λ
−

7 ,Λ
−

8 ) ≤ (Λ6,Λ7,Λ8) ≤ (Λ+

6 ,Λ
+

7 ,Λ
+

8 ) = (1, 1, 1),

which of course will change if the search re-adaptation option is chosen. Also note that the direction components
are normalized during the search to yield a unit normal vector n

∥n∥
. Additionally, we used total time T = 0.5 seconds

see Fig. 4). .
6
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Fig. 4. Model problem for optimization of a kick avoiding the wall. The ball was initially located at r(0) = {10, 20, 0}, and goal centerline
at {0, 0, 0}, and the target being in the upper left corner of the goal T = {0,−3, 2.3}. We also inserted a wall located at {5, 7.5, 0} that was
.5 m thick, 4 m wide and 2 m tall.

.4.1. Numerical results
In order to illustrate the model, the following simulation parameters were chosen (Figs. 5–7):

• The size of the ball R = 0.11m with mass m = 0.43 kg (FIFA standard).
• The goal dimensions are 7.32 m wide and 2.44 m in height (FIFA standard).
• The ball was initially located at r(0) = {10, 20, 0}, and goal centerline at {0, 0, 0}, and the target being in the

upper left corner of the goal T = {0,−3, 2.3}.
• The density of air, ρa = 1.225, kg/m3.
• The viscosity for air, µ f = 0.000018 Pa-s.
• The surrounding fluid velocity was set to zero (v f

= 0).
• Total simulation duration, 0.5 s with time step size, ∆t= 0.001 s.
• The weights in the cost function in Remark 6 were w1 = w2 = 1.

e also inserted a wall located at {5, 7.5, 0} that was 0.5 m thick, 4 m wide and 2 m tall. The design parameters
= {Λ1,Λ2...ΛN } were optimized over the search intervals (8 variables): Λ−

i ≤ Λ ≤ Λ+

i , i = 1, 2, . . . , 8. We
sed the following MLA settings:

• Number of design variables: 8,
• Population size per generation: 24,
• Number of parents to keep in each generation: 6,
• Number of children created in each generation: 6,
• Number of completely new genes created in each generation: 12,
• Number of generations for re-adaptation around a new search interval: 10 and
• Number of generations: 500.

The algorithm was automatically reset every 10 generations. The entire 500 generation simulation, with 24
enes per evaluation (12000 total designs) took approximately 0.25 s on a Macbook Pro laptop, making it ideal as
design tool. Fig. 8 (average population of 24 genes performance and top gene performance) and Table 1 (values

f the gene components) illustrate the results. Fig. 8 shows reduction of the cost function for the 8 parameter set.
llowing the MLA/GA to readapt every 10 generations, leads to the nonmonotone reduction of the cost function.

hown are the best performing gene (design parameter set, in red) as a function of successive generations, as well

7
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t

Fig. 5. Zoom on model problem for optimization of a kick avoiding the wall. The ball was initially located at r(0) = {10, 20, 0}, and goal
centerline at {0, 0, 0}, and the target being in the upper left corner of the goal T = {0,−3, 2.3}. We also inserted a wall located at {5, 7.5, 0}

hat was 0.5 m thick, 4 m wide and 2 m tall.

Table 1
The top system parameter performers (Λ1 − Λ8).

Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7 Λ8 Π

56.2833 −0.3043 −0.9282 0.2287 146.8512 0.6590 −0.0631 −0.7495 0.1158

as the average performance of the entire population of genes (designs, in green). The optimal design is extremely
tight after approximately 260 generations, and any deviation from the optimal leads to the wall stopping the ball
(as exhibited by the green population average). On the right of Fig. 8, the reduction of the cost function for the 8
parameter set without the wall present. In that case, the optimal design is not extremely tight after approximately
260 generations, relative to the simulation with the wall, hence the insensitivity of the population average. The cost
function (error) was massively reduced to Π = 0.1158, which implies

Π (λ1, . . . λ8) =
∥r − T∥

R
= 0.1158 ⇒ ∥r − T∥ = 0.1158R, (4.6)

or with a ball radius of R = 0.11 m, an error distance of ∥r − T∥ = 0.0127 m, i,.e. approximately a 1.27 cm
difference between the ball center and the exact target, from a shot of over 20 m away. In Fig. 6, from left to right
and top to bottom, frames of a kick simulation yielding a precise target goal, using the machine-learning algorithm.
The arrows indicate the direction of the velocity and the axis of spin. In summary, Figs. 5–7 illustrate the power
of the approach to ascertain extremely complex parameter sets for optimal training purposes.
8
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Fig. 6. From left to right and top to bottom: frames of a kick simulation yielding a precise target goal. The optimization of was a byproduct
f the machine-learning algorithm developed in this work. The arrows indicate the direction of the velocity and the axis of spin.

.5. An example of instructions to players

In order to provide actionable instructions to player (Fig. 5), one can post-process the results by utilizing basic
inematics, namely the velocity relationship between the ball center of mass and a possible point of contact (rp,
ig. 9)
vp = vcm + vcm→p = vcm + ω × rcm→p. (4.7)

9
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{

i
f

Fig. 7. Result of the model problem for optimization of a kick avoiding the wall. The ball was initially located at r(0) = {10, 20, 0}, and
goal centerline at {0, 0, 0}, and the target being in the upper left corner of the goal T = {0,−3, 2.3}. We also inserted a wall located at
5, 7.5, 0} that was 0.5 m thick, 4 m wide and 2 m tall.

Fig. 8. Left: The reduction of the cost function for the 8 parameter set with the wall present. Shown are the best performing gene (design
parameter set, in red) as a function of successive generations, as well as the average performance of the entire population of genes (designs,
n green). Allowing the MLA/GA to readapt every 10 generations, leading to the nonmonotone reduction of the cost function. The cost
unction was reduced to Π = 0.1158, which implies, with ball radius of R = 0.11 m, a distance of ∥r − T∥=0.1158 m, i,.e. approximately a

1.27 cm difference between the ball center and the exact target. The optimal design is extremely tight after approximately 260 generations,
and any deviation from the optimal leads to the wall stopping the ball (as exhibited by the green population average). Right: The reduction
of the cost function for the 8 parameter set without the wall present. The optimal design is not extremely tight after approximately 260
generations, relative to the simulation with the wall..

One can interpret the term ω × rcm→p as “velocity compensation” to induce the necessary spin, in addition to the
needed center of mass velocity. Depending on the choice of rp, the compensation will change. It is important to
recognize that this level of analysis is the effective result of player–ball contact. In order to provide more precise
instructions to a player, more details on the complex impact event, accounting of the large deformability of the ball
and players foot at the point of contact would need to be computed, involving Finite Element Methods, such those
found in the well-known books of Wriggers [46,47].
10
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Fig. 9. The general relationship between the velocity of the mass center, desired spin and the point of contact. One can interpret the term
ω × rcm→p as “velocity compensation” to induce the necessary spin. Depending on the choice of rp , the compensation will change.

5. Conclusions

The objective of this work was to provide a framework to ascertain the optimal kick velocity, direction and spin
that a player should impart to precisely hit a target goal with a bending kick, using machine-learning optimization.
Specifically, the work developed a model consisting of a kicking player, resulting in a high-velocity spinning soccer
ball, interacting with the surrounding fluid, subject to drag forces and the Magnus effect, which are both functions
of the Reynolds number. The framework is designed to enable digital-twin type technologies, i.e. digital replicas that
run in real time with the physical system on laptops or other mobile systems for rapid feedback. The overall guiding
motivation is to provide a useful tool to rapidly train players. Numerical examples were provided to illustrate the
process. As alluded to earlier, more detailed analysis of the solid–fluid interaction between the ball and surrounding
air requires high-fidelity spatio-temporal models. For example, in Zohdi [48,49], more detailed, computationally
intensive models were developed to characterize the motion of large-numbers of small-scale spheres embedded
in a flowing fluid, where the dynamics of the spheres affects the dynamics of the fluid and vice-versa. In such a
framework, a fully implicit Finite-Difference discretization of the Navier–Stokes equations was used for the fluid and
a direct sphere-dynamics discretization is performed for the spheres. Because of the large computational difficulty
and expense of a conforming spatial discretization needed for large numbers of embedded spheres, simplifying
assumptions were made for the coupling, based on semi-analytical computation of drag-coefficients, which allows
for the use of coarser meshes. Even after the se simplifications, the sphere–fluid system was strongly-coupled. The
approach taken in that work was to construct a sub-model for each primary physical process. In order to resolve the
coupling, a recursive staggering scheme was constructed, which was built on works found in Zohdi [48,49]. The
procedure was as follows (at a given time increment): (1) each submodel equation (fluid or sphere-system) is solved
individually, “freezing” the other (coupled) fields in the system, allowing only the primary field to be active, (2) after
the solution of each submodel, the associated field variable was updated, and the next submodel was solved and (3)
the process is then repeated, until convergence. The time-steps were adjusted to control the rates of convergence,
which is dictated by changes in the overall physics. Specifically, the approach was a staggered implicit time-stepping
scheme, with an internal recursion that automatically adapted the time-step sizes to control the rates of convergence
within a time-step. If the process did not converge (below an error tolerance) within a preset number of iterations,
the time-step was adapted (reduced) by utilizing an estimate of the spectral radius of the coupled system. The
developed approach can be incorporated within any standard computational fluid mechanics code based on finite
difference, finite element, finite volume or discrete/sphere element discretization (see Onate et al. [50–52] and Avci
and Wriggers [53]). However, while useful in many industrial applications where high precision is required, the use

of such a paradigm, for the relatively coarser application of interest in this work, appears to be unwarranted.
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