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A B S T R A C T

The rapid identification of unknown objects by their thermo-fluid flow field signature is be-
coming increasingly more important. In this work, a machine-learning framework is developed
that efficiently simulates and adapts object geometries in order to match the thermo-flow field
signature generated by an unknown object, across a time series of voxel-frames. In order to
achieve this, a thermo-fluid model is developed, based on the Navier–Stokes equations and the
first law of thermodynamics, using a voxel rendering of the system, which is rapidly solved
with a voxel-tailored, temporally-adaptive, iterative solution scheme. This voxel-framework is
then combined with a genomic-based machine-learning algorithm to develop a digital-twin
(digital-replica) of the system that can run in real-time or faster than the actual physical system.
Numerical examples are provided to illustrate the framework.

. Introduction

Since their inception, cameras have been continuously used for medical, industrial and military purposes. In the last 20 years,
here has been a dramatic evolution incorporating (a) multispectral cameras, based on technologies that extend the classical visible
avelength paradigms (380–720 nm), to thermographic/infrared regimes (1000–14000 nm) to create an image and (b) 3D (time-
f-flight) cameras, using LIDAR, radio-based imaging and tomography. They have fundamentally changed the ability to extract
nformation from complex events that would have been unthinkable until recently. In particular, the ability to extract thermo-
luid flow data in three dimensions, utilizing real-time tomographically-based imaging, has now brought forth many possibilities
Fig. 1). For example, tomography, which uses multidirectional penetrating waves and the splicing of sections with tomographic
econstruction, has become a critical component for 3D data extraction. Several commercial products now exist that enable the
nstantaneous measurement within a 3D measurement volume of all three velocity components, in addition to thermal fields
Thermographic Particle Image Velocimetry (PIV)). This immediately allows for voxelization of a 3D space, which yields an image
omprised of 3D cubes (volume pixels=voxels), each containing velocity and thermal field data.1 Thus, it is now possible to
apidly extract, frame-by-frame, voxel fields of dynamic thermo-fluidic events. We refer the interested reader to Elsinga et al. [1],
erman [2], Herman and Lent et al. [3], Schroder et al. [4], Wienke [5], Aguirre-Pablo et al. [6], Atkinson and Soria [7], Discetti
t al. [8], Geoghegan et al. [9], Willert et al. [10], Buchmann et al. [11], Casey et al. [12], Tien et al. [13], Xiong et al. [14],
atamura et al. [15], Klinner and Willert [16], McPhail et al. [17], Cierpka et al. [18], Scarano et al. [19], McPhail et al. [20],
icham et al. [21], Zhu et al. [22], Lynch and Wagner [23], Liu et al. [24], He et al. [25], Liu and Mason [26], Chilton [27], Tariq

E-mail address: zohdi@berkeley.edu.
1 Tomographic-PIV utilizes tomographic reconstruction (Computed Tomography, CT) of voxel intensities, as is the norm in medical applications. For example,

ne of most advanced systems in the world is the FlowMaster Tomographic PIV https://www.lavision.de/en/products/flowmaster/tomographic-piv/, which allows
or instantaneous measurement of all three components of the velocity in a 3D volume and uses CT to reconstruct voxel intensities. Other products such as
icrovec https://piv.com.sg/piv-products/tomographic-piv/ and HSI: https://hsi.ca/product/tomo-piv/ have similar approaches.
vailable online 10 November 2023
045-7825/© 2023 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.cma.2023.116571
eceived 24 September 2023; Received in revised form 24 October 2023; Accepted 25 October 2023

https://www.elsevier.com/locate/cma
http://www.elsevier.com/locate/cma
mailto:zohdi@berkeley.edu
https://www.lavision.de/en/products/flowmaster/tomographic-piv/
https://piv.com.sg/piv-products/tomographic-piv/
https://hsi.ca/product/tomo-piv/
https://doi.org/10.1016/j.cma.2023.116571
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2023.116571&domain=pdf
https://doi.org/10.1016/j.cma.2023.116571


Computer Methods in Applied Mechanics and Engineering 418 (2024) 116571T.I. Zohdi
Fig. 1. A model problem of object detection.

Fig. 2. Model problem: A cross-section of the schematic for the system with the two types of domains: (a) A thermo-fluid domain (ambient domain) and a (solid)
thermo-only domain(unidentified object). (b) The domain of interest where the object is detected. Fig. 7 illustrates the results (evolution of flow streamlines).

et al. [28] for details on the wide-range of topics discussed. This is particularly critical due to the increase of unidentified flying
objects, heat seeking weaponry, drones, high-altitude remote sensing, satellite constellations, etc., in a progressively more crowded
airspace. Accordingly, it is critical to perform inverse problem calculations to ascertain what is producing a detected signature-which
is the subject of the current work.

In this work, a machine-learning framework is developed that rapidly simulates and adapts object geometries in order to match
the thermo-flow field signature generated by an unknown object, across a time series of voxel-frames. In order to achieve this, a
thermo-fluid model is developed, based on the Navier–Stokes equations and the first law of thermodynamics, using a voxel rendering
of the system, which is rapidly solved with a voxel-tailored, temporally-adaptive, iterative solution scheme. This voxel-framework
is then combined with a genomic-based machine-learning algorithm to develop a digital-twin (digital-replica) of the system that
can run in real-time or faster than the actual physical system. Numerical examples are provided to illustrate the framework on the
model problem shown in Fig. 3.

2. Camera to PDE: Voxel-based computing for voxel-based data

Tomographic-PIV has evolved over the last 20 years to extend PIV to measuring 3D vector fields, and is based on computing the
velocity vector field in a flow from the displacement of imaged tracer particles, from two subsequently captured images of the region
of interest. This employs a multicamera stereoscopic set up, focusing on a 3D volume. Two subsequent time steps are illuminated and
imaged in order to compute velocities. This employs tomographic reconstruction of an instantaneous particle distribution based on
the projections of this distribution onto several cameras where tiny tracer particles are added to the flow of interest and illuminated
with a short laser light pulse. The light scattered by the particles is captured by several cameras (typically 3–6), which are arranged
to maximize stereographic processing. The process also uses MART (Multiplicative Algebraic Reconstruction Technique), which was
introduced by Herman and Lent [3] that creates a digital voxel representation of the volume, where the intensity values correlate
to the values represented by the particles at those locations. We refer the interested reader to Elsinga et al. [1]-Tariq et al. [28].

Relatively recently, Aguirre-Pablo, et al. [6] demonstrated the viability of using four low-cost smartphone cameras to perform
Tomographic PIV using colored shadows to imprint two or three different time-steps on the same image. In that work, they used
2
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Fig. 3. Model problem: A cross-section of the schematic for the system with the desired domain identified. The calculation is first made without the object
present, which then provides the objective function for the system with the object present.

Fig. 4. Left: an actual structure and Right: a voxel representation.

commercially available Tomographic PIV software for the calibration, 3-D particle reconstruction and particle–field correlations, to
obtain all three velocity components in a volume. Their system was compared to a commercial stereoscopic PIV system for error
estimates and provided a proof of concept that can make Tomographic-PIV cost a fraction of traditional approaches, in particular
due to the massive economies of scale associated with the worldwide spread of smartphone camera technologies, similar to the
ubiquitous spread of LIDAR, which is driven more by consumer demand than scientific need. Thus, as the authors indicate, taking
advantage of smartphone computing power to process data and enabling smartphone Tomographic-PIV is, as with so many previous
technologies, not a matter of ‘‘if’’, it is a matter of ‘‘when’’.

The huge increase in camera capabilities has led to ‘‘digital/voxel’’ based computing methods, which utilize camera-generated
voxels (Figs. 4) as computational units of a very regular ‘‘voxel-grid’’. In order to solve PDE’s posed over such domains, extremely fast
methods can then be used to construct the various derivatives needed in a differential operator, circumventing meshing, mapping,
volume integration and stiffness matrix generation (needed for example in Finite Element Methods), as well as matrix-based solution
methods, since the voxel structure allows for incredibly efficient matrix-free iterative solvers. In short, voxel-based camera data is
ideally-suited to voxel-based computation. The use of voxels (Foley et al. [29]), is widespread in the visualization and analysis of
medical and scientific data (Chmielewski et al. [30]) and in the video-gaming industry. The well-known video-game ‘‘Outcast’’,
and others in the 1990s employed this graphics technique for effects such as reflection and bump-mapping and usually for terrain
rendering, although other techniques have overtaken it as the method of choice. However, the most widely used application of a
voxel is to represent solid and fluid structures possessing heterogeneous material properties. For example, in CT scans, so-called
Hounsfield units are used which measure the opacity of material to X-rays Novelline [31]. There are approximately 30 different
types of values acquired from MRI or ultrasound.

Additionally, LIDAR-based technologies can acquire more data. LIDAR is a technique by which a target is illuminated with a laser
and the reflected light is analyzed. LIDAR was developed in the 1960’s and combines laser focusing with radar-like technology for
calculating distances by measuring the time for a signal to return. It enjoys a wide range of uses (see [32–37]) in the motion capture
community and is a relatively standard tool in the atmospheric sciences, ranging from remote sensing, airborne laser mapping and
cloud measurement, and has been extended to a variety of applications in engineering and science. Typically, LIDAR uses high-
frequency ultraviolet, visible of near infrared light. For reviews, we refer the reader to Ring [38], Cracknell and Hayes [39], Goyer
and Watson [40], Medina et al. [41] and Trickey et al. [42]. LIDAR can be considered as one of a family of methods classified
as ‘‘time-of-flight’’ cameras, whereby a pulse (optical) energy is released and the time it takes to reach the target and to return,
coupled with knowledge of the propagation speed, determines the relative distance. Such devices have steadily evolved for the last
3
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20 years ( [43–49]). In particular, due to the large number of UAV’s and aircraft available, LIDAR has become quite popular as a
surveying method that measures distance by illuminating the target-essentially as a 3D laser scanner. LIDAR became popular in 1971
to map the moon’s surface and also as a lunar altimeter. The most common use of time-of-flight methods is as a Digital Elevation
Model (DEM) using the concept of a point cloud. The wavelengths used are most commonly 600–1000 nm. However, 1550 nm
devices are ‘‘eye safe’’ (for large surface areas), but less accurate (this requires the use of gallium-arsenide, which is costly). Typical
airborne topographic lasers operate at 1069 nm. Historically, they enjoy widespread use in agriculture, archaeology, etc. coupled
with unmanned autonomous vehicles. This ranges from (1) Profiling LIDAR, where an individual pulse is placed in a single line (2)
Small footprint LIDAR: scans at 20 degrees back and forth (3) Large-footprint LIDAR, which pulses an entire area (4) Topographical
LIDAR using near infrared (5) Bathymetric LIDAR, which is water penetrating green light to measure seafloor and riverbed elevations
and (6) Ground-based LIDAR, where a tripod unit scans a hemisphere. The components can entail (1) LIDAR sensors which scan
from side to side: green light or infrared, (2) GPS receivers: tracks the altitude of the plane or UAV, (3) Inertial measurements (IMU)
tracks the tilt of the plane or UAV and (4) Computers/data recorders. There are usually two forms of signal storage: (1) Discrete
LIDAR stores peak return signals and (2) Full wave LIDAR, which stores everything. Voxelization of LIDAR data can be performed
by dividing the entire scanned volume into a collection of 3D regular cubes (voxels) and voxel values are assigned according to the
attribute values of the LIDAR point(s) within the corresponding voxels. In summary, regardless of the types of camera technologies
combined, in many cases, the voxels are already supplied, and it makes little sense to employ, for example, Finite Element Methods,
involving meshing, mapping, volume integration, stiffness matrix generation, etc.

3. Objective function construction: matching voxel-by-voxel and frame by frame

We develop an objective function based on the sum of a frame by frame, voxel by voxel difference (each located at 𝒙𝑣𝑖 , 𝑖 =
1, 2, 3...𝑁𝑣) between the trial simulation and the observed data-set quantities of interest

𝛱(𝛬1,…𝛬𝑁 ) ∝
𝑊
∑

𝑗=1

𝑁𝑓
∑

𝑓=1

𝑁𝑣
∑

𝑖=1
𝑤𝑗‖𝐴

𝑠𝑖𝑚,𝑤(𝒙𝑣𝑖 ) − 𝐴
𝑑𝑎𝑡𝑎,𝑤(𝒙𝑣𝑖 )‖𝐿2(𝛺𝑓 ), (3.1)

where the number of frames are 𝑓 = 1, 2,… , 𝑁𝑓 , the number of voxels are 𝑖 = 1, 2,… , 𝑁𝑣, 𝑤𝑗 are the number of weighted different
objectives, 𝐿2(𝛺𝑓 ) is the norm over each domain frame volume𝛺𝑓 and the structural design variables are 𝜦 = {𝛬1,…𝛬𝑁}. Following
Zohdi [50–54], we formulate the objective as a cost-error function minimization problem that seeks geometrical designs that produce
a match. We specifically focus minimizing a thermo-fluid flow objective comprised of

𝜋(𝛬1,…𝛬𝑁 ) = 𝑤𝜃
1

𝑁𝑣𝑁𝑓

∑𝑁𝑓
𝑓=1

∑𝑁𝑣
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𝑠𝑖𝑚(𝒙𝑣𝑖 ) − 𝜃
𝑑𝑎𝑡𝑎(𝒙𝑣𝑖 )‖𝐿2(𝛺𝑓 )

∑𝑁𝑓
𝑓=1

∑𝑁𝑣
𝑖=1 ‖𝜃

𝑑𝑎𝑡𝑎(𝒙𝑣𝑖 )‖𝐿2(𝛺𝑓 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
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∑𝑁𝑓
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∑𝑁𝑣
𝑖=1 ‖𝒗

𝑑𝑎𝑡𝑎(𝒙𝑣𝑖 )‖𝐿2(𝛺𝑓 )
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(3.2)

+ 𝑤𝑠
1

𝑁𝑣𝑁𝑓

∑𝑁𝑓
𝑓=1

∑𝑁𝑣
𝑖=1 ‖𝑆

𝑠𝑖𝑚(𝒙𝑣𝑖 ) − 𝑆
𝑑𝑎𝑡𝑎(𝒙𝑣𝑖 )‖𝐿2(𝛺𝑓 )

∑𝑁𝑓
𝑓=1

∑𝑁𝑣
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𝑑𝑎𝑡𝑎(𝒙𝑣𝑖 )‖𝐿2(𝛺𝑓 )
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𝛱 (𝑉 𝑜𝑥𝑒𝑙)

,

where 𝜃 is the temperature field AND 𝒗 is the velocity field. 𝑆(𝒙𝑣𝑖 ) indicates that the voxel is considered to be a solid. We further
normalize the cost function to yield

𝛱(𝛬1,…𝛬𝑁 ) =
𝜋(𝛬1,…𝛬𝑁 )
𝑤𝜃 +𝑤𝒗 +𝑤𝑠

. (3.3)

. Governing equations

For completeness, in the appendix we start from first principles, proceeding by developing a coupled thermo-fluid model for
he fluid surrounding the unidentified object and the heat-generated by the fluid flow, resulting in the following for the balance of
inear momentum,

𝜕𝒗
𝜕𝑡

= 1
𝜌
(

∇𝑥 ⋅ 𝝈 + 𝒇
)

− ∇𝑥𝒗 ⋅ 𝒗, (4.1)

where 𝜌 is the density, 𝒗 is the velocity field, 𝝈 is the stress field and 𝒇 are body forces and for the first law of thermodynamics we
ave

𝜕𝜃
𝜕𝑡

= 1
𝜌𝐶

(

𝝈 ∶ ∇𝑥𝒗 − ∇𝑥 ⋅ 𝒒 + 𝜌𝑧
)

− ∇𝑥𝜃 ⋅ 𝒗, (4.2)

here 𝜃 is the temperature field, 𝐶 is the heat capacity, 𝒒 is the thermal flux and 𝒛 are the heat sources (see Figs. 5, 6 and 8).
4
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Fig. 5. Voxel-stencils for the (a) derivative, 𝜕()
𝜕𝑥1

, (b) the second derivative 𝜕2 ()
𝜕𝑥21

and (c) the cross derivative, 𝜕2 ()
𝜕𝑥1𝜕𝑥2

Eqs. (6.1)–(6.8) provide the details. Laplacian
smoothing is also applied to the assumed solid–fluid interface, using Eqs. (6.9) and (6.10).

Fig. 6. The overall iterative (left) solution and the matrix-free approach using a moving front through the voxels(right) During the iterative solution process, the
most current value of a voxel is used in any calculation, for example a construction of the Laplacian, or any other term in the governing differential equations.

5. Temporal discretization

For the fluid, we write
𝜕𝒗
𝜕𝑡

= 1
𝜌
(

∇𝑥 ⋅ 𝝈 + 𝒇
)

− ∇𝑥𝒗 ⋅ 𝒗
def
= 𝑳. (5.1)

e discretize for time=𝑡 + 𝜙𝛥𝑡, and using a trapezoidal ‘‘𝜙 − 𝑠𝑐ℎ𝑒𝑚𝑒’’ (0 ≤ 𝜙 ≤ 1)
𝜕𝒗
𝜕𝑡

≈
𝒗(𝑡 + 𝛥𝑡) − 𝒗(𝑡)

𝛥𝑡
≈ 𝑳(𝑡 + 𝜙𝛥𝑡) ≈ 𝜙𝑳(𝑡 + 𝛥𝑡) + (1 − 𝜙)𝑳(𝑡). (5.2)

Rearranging yields

𝒗(𝑡 + 𝛥𝑡) ≈ 𝒗(𝑡) + 𝛥𝑡 (𝜙𝑳(𝑡 + 𝛥𝑡) + (1 − 𝜙)𝑳(𝑡)) (5.3)

where the voxel-based spatial discretization, which will be applied to the derivative terms (such as ∇𝑥 ⋅ 𝝈), are contained in 𝑳. The
discretized system is formulated next as an implicit time-stepping scheme within each time step 𝐿.

Remark 1. The same process is applied to the thermal field
𝜕𝜃
𝜕𝑡

= 1
𝜌𝐶

(

𝝈 ∶ ∇𝑥𝒗 − ∇𝑥 ⋅ 𝒒 + 𝜌𝑧
)

− ∇𝑥𝜃 ⋅ 𝒗
def
= 𝑍, (5.4)

ielding

𝜃(𝑡 + 𝛥𝑡) ≈ 𝜃(𝑡) + 𝛥𝑡 (𝜙𝑍(𝑡 + 𝛥𝑡) + (1 − 𝜙)𝑍(𝑡)) (5.5)

6. Spatial voxel-based discretization

Referring to Fig. 2, the following voxel-based approximations are used:
5
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1. VOXEL GRADIENT: For the first derivative of a primal variable 𝑣 at (𝑥1, 𝑥2, 𝑥3):

𝜕𝑣
𝜕𝑥1

≈
𝑣(𝑥1 + 𝛥𝑥1, 𝑥2, 𝑥3) − 𝑣(𝑥1 − 𝛥𝑥1, 𝑥2, 𝑥3)

2𝛥𝑥1
(6.1)

2. VOXEL LAPLACIAN: For the derivative of a flux at (𝑥1, 𝑥2, 𝑥3):

𝜕
𝜕𝑥1

(

𝐴 𝜕𝑣
𝜕𝑥1

)

≈

(

𝐴 𝜕𝑣
𝜕𝑥1

)

|

𝑥1+
𝛥𝑥1
2 ,𝑥2 ,𝑥3

−
(

𝐴 𝜕𝑣
𝜕𝑥1

)

|

𝑥1−
𝛥𝑥1
2 ,𝑥2 ,𝑥3

𝛥𝑥1
(6.2)

= 1
𝛥𝑥1

[

𝐴(𝑥1 +
𝛥𝑥1
2
, 𝑥2, 𝑥3)

(

𝑣(𝑥1 + 𝛥𝑥1, 𝑥2, 𝑥3) − 𝑣(𝑥1, 𝑥2, 𝑥3)
𝛥𝑥1

)]

− 1
𝛥𝑥1

[

𝐴(𝑥1 −
𝛥𝑥1
2
, 𝑥2, 𝑥3)

(

𝑣(𝑥1, 𝑥2, 𝑥3) − 𝑣(𝑥1 − 𝛥𝑥1, 𝑥2, 𝑥3)
𝛥𝑥1

)]

,

where we have used

𝐴(𝑥1 +
𝛥𝑥1
2
, 𝑥2, 𝑥3) ≈

1
2
(

𝐴(𝑥1 + 𝛥𝑥1, 𝑥2, 𝑥3) + 𝐴(𝑥1, 𝑥2, 𝑥3)
)

(6.3)

and

𝐴(𝑥1 −
𝛥𝑥1
2
, 𝑥2, 𝑥3) ≈

1
2
(

𝐴(𝑥1, 𝑥2, 𝑥3) + 𝐴(𝑥1 − 𝛥𝑥1, 𝑥2, 𝑥3)
)

(6.4)

3. VOXEL CROSS-DERIVATIVE: For the cross-derivative of a flux at (𝑥1, 𝑥2, 𝑥3):

𝜕
𝜕𝑥2

(

𝐴 𝜕𝑣
𝜕𝑥1

)

≈ 𝜕
𝜕𝑥2

(

𝐴(𝑥1, 𝑥2, 𝑥3)
(

𝑣(𝑥1 + 𝛥𝑥1, 𝑥2, 𝑥3) − 𝑣(𝑥1 − 𝛥𝑥1, 𝑥2, 𝑥3)
2𝛥𝑥1

))

(6.5)

≈ 1
4𝛥𝑥1𝛥𝑥2

(𝐴(𝑥1, 𝑥2 + 𝛥𝑥2, 𝑥3)
[

𝑣(𝑥1 + 𝛥𝑥1, 𝑥2 + 𝛥𝑥2, 𝑥3) − 𝑣(𝑥1 − 𝛥𝑥1, 𝑥2 + 𝛥𝑥2, 𝑥3)
]

− 𝐴(𝑥1, 𝑥2 − 𝛥𝑥2, 𝑥3)
[

𝑣(𝑥1 + 𝛥𝑥1, 𝑥2 − 𝛥𝑥2, 𝑥3) − 𝑣(𝑥1 − 𝛥𝑥1, 𝑥2 − 𝛥𝑥2, 𝑥3)
]

).

emark 2. To illustrate second-order accuracy, consider a Taylor series expansion for an arbitrary function 𝑤

𝑤(𝑥 + 𝛥𝑥) = 𝑤(𝑥) + 𝜕𝑤
𝜕𝑥

|𝑥𝛥𝑥 +
1
2
𝜕2𝑤
𝜕𝑥2

|𝑥(𝛥𝑥)2 +
1
6
𝜕3𝑤
𝜕𝑥3

|𝑥(𝛥𝑥)3 + ((𝛥𝑥)4) (6.6)

nd

𝑤(𝑥 − 𝛥𝑥) = 𝑤(𝑥) − 𝜕𝑤
𝜕𝑥

|𝑥𝛥𝑥 +
1
2
𝜕2𝑤
𝜕𝑥2

|𝑥(𝛥𝑥)2 −
1
6
𝜕3𝑤
𝜕𝑥3

|𝑥(𝛥𝑥)3 + ((𝛥𝑥)4) (6.7)

ubtracting the two expressions yields

𝜕𝑤
𝜕𝑥

|𝑥 =
𝑤(𝑥 + 𝛥𝑥) −𝑤(𝑥 − 𝛥𝑥)

2𝛥𝑥
+ ((𝛥𝑥)2). (6.8)

ll other derivatives follow from this basic process, which is relatively standard in the Finite Difference community.

emark 3. At the length-scales of interest, it is questionable whether the ideas of a sharp material interface are justified. Accordingly,
ater, we simulated the system with and without Laplacian smoothing, whereby one smooths the material data by post-processing
he original material data, voxel by voxel, to produce a smoother material representation, for example, for the density, 𝜌̂ (using the
revious voxel approximations and nodal subscript notation):

∇2𝜌 = 1
(𝛥𝑥𝑖)2

(

𝜌𝑖+1,𝑗,𝑘 − 2𝜌𝑖,𝑗,𝑘 + 𝜌𝑖−1,𝑗,𝑘
)

+ 1
(𝛥𝑥𝑗 )2

(

𝜌𝑖,𝑗+1,𝑘 − 2𝜌𝑖,𝑗,𝑘 + 𝜌𝑖,𝑗−1,𝑘
)

+ 1
(𝛥𝑥𝑘)2

(

𝜌𝑖,𝑗,𝑘+1 − 2𝜌𝑖,𝑗,𝑘 + 𝜌𝑖,𝑗,𝑘−1
)

= 0 (6.9)

hich yields a smoother value of 𝜌𝑖,𝑗,𝑘, denoted 𝜌̂𝑖,𝑗,𝑘, given by

∇2𝜌 = 0 ⇒ 𝜌̂𝑖,𝑗,𝑘 =
1
6
(

𝜌𝑖+1,𝑗,𝑘 + 𝜌𝑖−1,𝑗,𝑘 + 𝜌𝑖,𝑗+1,𝑘 + 𝜌𝑖,𝑗−1,𝑘 + 𝜌𝑖,𝑗,𝑘+1 + 𝜌𝑖,𝑗,𝑘−1
)

. (6.10)

The same process was applied to the other parameters, generically denoted, 𝐴(𝒙), by enforcing ∇2
𝑥𝐴 = 0, as well as for any other

material data. The simulations were run with and without data smoothing, with the results being negligibly different for sufficiently
fine voxel-meshes.
6
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7. Overall iterative (implicit) solution method

Following the basic framework in Zohdi [55–58], let us consider the finite difference nodes (𝑖) for the velocity field:

𝒗𝐿+1,𝐾𝑖 = 𝒗𝐿𝑖 + 𝛥𝑡
(

𝜙𝑳𝐿+1,𝐾−1
𝑖 + (1 − 𝜙)𝑳𝐿𝑖

)

, (7.1)

here 𝑖 is the node counter, which is of the form

𝒗𝐿+1,𝐾𝑖 = (𝒗𝐿+1,𝐾−1
𝑖 ) + 𝑅𝑖, (7.2)

here 𝐾 = 1, 2, 3,… is the index of iteration within time step 𝐿 + 1 and

• (𝒗𝐿+1,𝐾−1
𝑖 ) = 𝜙𝛥𝑡𝑳𝐿+1,𝐾−1

𝑖 and
• 𝑅𝑖 = 𝒗𝐿𝑖 + 𝛥𝑡(1 − 𝜙)𝑳𝐿𝑖 .

he term 𝑅𝑖 is a remainder term that does not depend on the current solution (only on the previous time step’s solution). The
onvergence of such a scheme is dependent on the behavior of . Namely, a sufficient condition for convergence is that  is a
ontraction mapping for all 𝒗𝐿+1,𝐾𝑖 , 𝐾 = 1, 2, 3,… In order to investigate this further, we define the iteration error as

𝜖𝐿+1,𝐾𝑖
def
= 𝒗𝐿+1,𝐾𝑖 − 𝒗𝐿+1𝑖 . (7.3)

necessary restriction for convergence is iterative self-consistency, i.e. the ‘‘exact’’ (discretized) solution must be represented by
he scheme, 𝒗𝐿+1𝑖 = (𝒗𝐿+1𝑖 ) + 𝑅𝑖. Enforcing this restriction, a sufficient condition for convergence is the existence of a contraction
apping

‖ 𝒗𝐿+1,𝐾𝑖 − 𝒗𝐿+1𝑖
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝜖𝐿+1,𝐾𝑖

‖ = ‖(𝒗𝐿+1,𝐾−1
𝑖 ) − (𝒗𝐿+1𝑖 )‖

≤ 𝜂𝐿+1,𝐾‖𝒗𝐿+1,𝐾−1
𝑖 − 𝒗𝐿+1𝑖 ‖, (7.4)

here, if 0 ≤ 𝜂𝐿+1,𝐾 < 1 for each iteration 𝐾, then 𝜖𝐿+1,𝐾𝑖 → 𝟎 for any arbitrary starting value 𝒗𝐿+1,𝐾=0
𝑖 , as 𝐾 → ∞, which is

contraction condition that is sufficient, but not necessary, for convergence. The convergence of Eq. (7.1) is scaled by 𝜂 ∝ 𝜙𝛥𝑡.
herefore, we see that the contraction constant of  is:

• directly dependent on the magnitude of the interaction forces (‖𝑳‖),
• directly proportional to 𝛥𝑡.

hus, decreasing the time step size improves the convergence. In order to maximize the time-step sizes (to decrease overall computing
ime) and still meet an error tolerance on the numerical solution’s accuracy, we build on an approach originally developed for continuum
hermo-chemical multifield problems (Zohdi [55–58]), where one assumes: (1) 𝜂𝐿+1,𝐾 ≈ 𝑆(𝛥𝑡)𝑝, (𝑆 is a constant) and (2) the error
ithin an iteration behaves according to (𝑆(𝛥𝑡)𝑝)𝐾𝜖𝐿+1,0 = 𝜖𝐿+1,𝐾 , 𝐾 = 1, 2,…, where 𝜖𝐿+1,0 = 𝒗𝐿+1,𝐾=1

𝑖 −𝒗𝐿𝑖 is the initial norm of the
terative (relative) error and 𝑆 is intrinsic to the system. For example, for second-order problems, due to the quadratic dependency
n 𝛥𝑡, 𝑝 ≈ 1. The objective is to meet an error tolerance in exactly a preset (the analyst sets this) number of iterations. To this
nd, one writes (𝑆(𝛥𝑡tol)𝑝)𝐾𝑑 𝜖𝐿+1,0 = 𝑇𝑂𝐿, where 𝑇𝑂𝐿 is a tolerance and where 𝐾𝑑 is the number of desired iterations. If the error
olerance is not met in the desired number of iterations, the contraction constant 𝜂𝐿+1,𝐾 is too large. Accordingly, one can solve for
new smaller step size, under the assumption that 𝑆 is constant,

𝛥𝑡tol = 𝛥𝑡

⎛

⎜

⎜

⎜

⎝

( 𝑇𝑂𝐿
𝜖𝐿+1,0

)
1

𝑝𝐾𝑑

( 𝜖
𝐿+1,𝐾

𝜖𝐿+1,0
)

1
𝑝𝐾

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
def
= 𝛬𝐾

.
(7.5)

he assumption that 𝑆 is constant is not critical, since the time steps are to be recursively refined and unrefined throughout the
imulation. Clearly, the expression in Eq. (7.5) can also be used for time step enlargement, if convergence is met in less than 𝐾𝑑
terations (typically chosen to be between five to ten iterations). Specifically, the solution steps are, for a multiphysics problem (𝒗
nd 𝜃) within a time-step:
7

• (1): Start a global fixed iteration (set 𝑖 = 1,… , 𝑁𝑛 (node counter) and 𝐾 = 0 (iteration counter))
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T
t
t

• (2): If 𝑖 > 𝑁𝑛 then go to (4)
• (3): If 𝑖 ≤ 𝑁𝑛 then:

(a) Compute the velocity 𝒗𝐿+1,𝐾𝑖 and 𝜃𝐿+1,𝐾𝑖
(b) Go to (2) for the next node (𝑖 = 𝑖 + 1)

• (4): Measure weighted error (normalized) quantities

(a) 𝜖𝐾
def
= 𝛾𝑣

∑𝑁𝑛
𝑖=1 ‖𝒗

𝐿+1,𝐾
𝑖 − 𝒗𝐿+1,𝐾−1

𝑖 ‖

∑𝑁𝑛
𝑖=1 ‖𝒗

𝐿+1,𝐾
𝑖 ‖

+ 𝛾𝜃

∑𝑁𝑛
𝑖=1 ‖𝜃

𝐿+1,𝐾
𝑖 − 𝜃𝐿+1,𝐾−1

𝑖 ‖

∑𝑁𝑛
𝑖=1 ‖𝜃

𝐿+1,𝐾
𝑖 ‖

(b) 𝐸𝐾
def
=

𝜖𝐾
𝑇𝑂𝐿𝑟

(c) 𝛬𝐾
def
=

⎛

⎜

⎜

⎜

⎝

( 𝑇𝑂𝐿
𝜖0

)
1

𝑝𝐾𝑑

( 𝜖
𝐾

𝜖0
)

1
𝑝𝐾

⎞

⎟

⎟

⎟

⎠

.

• (5): If the tolerance is met: 𝐸𝐾 ≤ 1 and 𝐾 < 𝐾𝑑 then

(a) Increment time: 𝑡 = 𝑡 + 𝛥𝑡
(b) Construct the next time step: 𝛥𝑡𝑛𝑒𝑤 = 𝛬𝐾𝛥𝑡𝑜𝑙𝑑 ,
(c) Select the minimum size: 𝛥𝑡 = 𝑚𝑖𝑛(𝛥𝑡𝑙𝑖𝑚, 𝛥𝑡𝑛𝑒𝑤) and go to (1)

• (6): If the tolerance is not met: 𝐸𝐾 > 1 and 𝐾 < 𝐾𝑑 then

(a) Update the iteration counter: 𝐾 = 𝐾 + 1
(b) Reset the node counter: 𝑖 = 1
(c) Go to (2)

• (7): If the tolerance is not met (𝐸𝐾 > 1) and 𝐾 = 𝐾𝑑 then

(a) Construct a new time step: 𝛥𝑡𝑛𝑒𝑤 = 𝛬𝐾𝛥𝑡𝑜𝑙𝑑

(b) Restart at time 𝑡 and go to (1)

ime-step size adaptivity is critical, since the system’s dynamics and configuration can dramatically change over the course of
ime, possibly requiring quite different time step sizes to control the iterative error. However, to maintain the accuracy of the
ime-stepping scheme, one must respect an upper bound dictated by the discretization error, i.e., 𝛥𝑡 ≤ 𝛥𝑡𝑙𝑖𝑚. Note that in step (5),
𝛬𝐾 may enlarge the time-step if the error is lower than the preset tolerance. At a given time, once the process is complete, then
the time is incremented forward and the process is repeated. The overall goal is to deliver solutions where the iterative error is
controlled and the temporal discretization accuracy dictates the upper limit on the time step size (𝛥𝑡𝑙𝑖𝑚). Clearly, there are various
combinations of solution methods that one can choose from. For example, for the overall field coupling, one may choose implicit or
explicit staggering and within the staggering process, either implicit (0 < 𝜙 ≤ 1) or explicit time-stepping (𝜙 = 0), and, in the case of
implicit time-stepping, iterative or direct solvers for the Navier–Stokes equations and the first law of thermodynamics. Furthermore,
one could employ internal iterations for each field equation, then update more sophisticated metrics for certain components of the
error.

Remark 4. The cost of constructing an array for the temporal update using a voxel calculation is primarily associated with summing
up the voxel derivative terms needed to construct 𝑳 and 𝑍 in Eqs. (5.2) and (5.5), multiplied by the number of internal iterations
needed for convergence within a time step (since it is a temporally implicit method), times the number of time steps. There is no
matrix inversion or linearization needed, simply vector-array updates for the voxel values. This is in contrast to the Finite Element
Method, with costs associated with (1) conformally meshing the domain (mappings, etc.) (2) numerically integrating the weak
form to generate the stiffness matrix and (3) solving a system of simultaneous equations (see Zohdi [59]). The operation counts of
the voxel approach, relative to FEM, is dramatically less however, the FEM can potentially be more accurate with adaptive mesh
refinement. However, the comparison is somewhat moot, since the voxels are the only data available in this model problem scenario.

7.1. Model problem and numerical example

As an example, we consider the direct numerical simulation of the fluid flow using the Navier–Stokes equations and first law of
thermodynamics (streamlines shown) with two side vents. Fig. 2 illustrates a cross-section of the schematic for the system with the
two types of domains: (a) A thermo-fluid domain (ambient domain) and (b) a thermo-only domain (unidentified object), where the
velocity field is set to zero (𝒗 = 𝟎). Fig. 7 illustrates the results (evolution of flow streamlines). In the model problem, we have made
the vent sizes 0.25 that of the wall. A 20 × 20 × 20 stencil grid was used. A standard MacBook Pro was used for all calculations
using a code written by the author. A simulation of this type takes a fraction of a second (the rest of the thermo-flow parameters
8

were those immediately following Eq. (8.9)).
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Fig. 7. Successive frames of flow using a direct numerical simulation of the fluid flow using the Navier–Stokes equations (streamlines shown) with two side
vents. The evolution of flow streamlines are shown, as well as slices through the orthogonal planes.

8. Genomic machine-learning thermal signature optimization

The rapid rate at which these simulations can be completed enables the ability to explore inverse problems seeking to determine
what parameter combinations can deliver a desired result (Fig. 9). In order to cast the objective mathematically, we set the problem
up as a Machine Learning Algorithm (MLA); specifically a Genetic Algorithm (GA) variant, which is well-suited for nonconvex
optimization. Following Zohdi [50–54], we formulate the objective as a cost function minimization problem that seeks system
parameters that match the detected fields, characterized by the cost-error function in 𝛱 . The weights can be adjusted according to
what is deemed more important the (1) thermal, (2) flow-field and/or (3) volume measurement. We systematically minimize 𝑚𝑖𝑛𝛬𝛱 , by
varying the design parameters: 𝜦𝑖 def= {𝛬𝑖1, 𝛬

𝑖
2, 𝛬

𝑖
3,… , 𝛬𝑖𝑁}. The system parameter search is conducted within the constrained ranges

of 𝛬(−)
1 ≤ 𝛬1 ≤ 𝛬(+)

1 , 𝛬(−)
2 ≤ 𝛬2 ≤ 𝛬(+)

2 , 𝛬(−)
3 ≤ 𝛬3 ≤ 𝛬(+)

3 , etc. These upper and lower limits are dictated by what is physically feasible.

8.1. Machine-Learning Algorithm (MLA)

Cost functions such as 𝛱 are nonconvex in design parameter space and often nonsmooth. Their minimization is usually difficult
with direct application of gradient methods. This motivates nonderivative search methods, for example those found in Machine-
Learning Algorithms (MLA’s). One of the most basic subsets of MLAs are so-called Genetic Algorithms (GAs). For a review of GAs,
see the pioneering work of John Holland ( [60], [61]), as well as Goldberg [62], Davis [63], Onwubiko [64] and Goldberg and
Deb [65]. A description of the algorithm will be described next, following Zohdi [50–54].

8.2. Algorithmic structure

The MLA/GA approach is extremely well-suited for nonconvex, nonsmooth, multicomponent, multistage systems and, broadly
9

speaking, involves the following essential concepts (Fig. 9):
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8

Fig. 8. The computational flow of the MLA/GA-Machine Learning Algorithm/Genetic Algorithm (Zohdi [50–54]).

1. POPULATION GENERATION: Generate a parameter population of genetic strings: 𝜦𝑖

2. PERFORMANCE EVALUATION: Compute performance of each genetic string: 𝛱(𝜦𝑖)
3. RANK STRINGS: Rank them 𝜦𝑖, 𝑖 = 1,… , 𝑆 from best to worst
4. MATING PROCESS: Mate pairs/produce offspring
5. GENE ELIMINATION: Eliminate poorly performing genetic strings
6. POPULATION REGENERATION: Repeat process with updated gene pool and new random genetic strings
7. SOLUTION POST-PROCESSING: Employ gradient-based methods afterwards in local ‘‘valleys’’-if smooth enough

.3. Specifics

Following Zohdi [50–54], the algorithm is as follows:

• STEP 1: Randomly generate a population of 𝑆 starting genetic strings, 𝜦𝑖, (𝑖 = 1, 2, 3,… , 𝑆) ∶

𝜦𝑖 def=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛬𝑖1
𝛬𝑖2
𝛬𝑖3
...

𝛬𝑖𝑁

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(8.1)

• STEP 2: Compute fitness of each string 𝛱(𝜦𝑖), (i=1, . . . , S)
• STEP 3: Rank genetic strings: 𝜦𝑖, (i=1, . . . , S) from best to worst
• STEP 4: Mate nearest pairs and produce two offspring, (i=1, . . . , S):

𝝀𝑖
def
= 𝜱◦𝜦𝑖 + (𝟏 −𝜱)◦𝜦𝑖+1 def

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜙1𝛬𝑖1
𝜙2𝛬𝑖2
𝜙3𝛬𝑖3
...

𝜙𝑁𝛬𝑖𝑁

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

+

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1 − 𝜙1)𝛬𝑖+11

(1 − 𝜙2)𝛬𝑖+12

(1 − 𝜙3)𝛬𝑖+13

...

(1 − 𝜙𝑁 )𝛬𝑖+1𝑁

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(8.2)

and

𝝀𝑖+1
def
= 𝜳◦𝜦𝑖 + (𝟏 − 𝜳 )◦𝜦𝑖+1 def

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜓1𝛬𝑖1
𝜓2𝛬𝑖2
𝜓3𝛬𝑖3
...

𝜓𝑁𝛬𝑖𝑁

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

+

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1 − 𝜓1)𝛬𝑖+11

(1 − 𝜓2)𝛬𝑖+12

(1 − 𝜓3)𝛬𝑖+13

...

(1 − 𝜓𝑁 )𝛬𝑖+1𝑁

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(8.3)

where for this operation, the 𝜙𝑖 and 𝜓𝑖 are random numbers, such that 0 ≤ 𝜙𝑖 ≤ 1, 0 ≤ 𝜓𝑖 ≤ 1, which are different for each
component of each genetic string

• STEP 5: Eliminate the bottom 𝑀 strings and keep top 𝐾 parents and their 𝐾 offspring (𝐾 offspring+𝐾 parents+𝑀 = 𝑆)
10

• STEP 6: Repeat STEPS 1–5 with top gene pool (𝐾 offspring and 𝐾 parents), plus 𝑀 new, randomly generated, strings
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• OPTION: One can rescale and restart search around best performing parameter set every few generations, thus refocussing
the computation effort around the most promising (optimal) areas of design space.

Remark 5. If one selects the mating parameters 𝜙′𝑠 and 𝜓 ′𝑠 to be greater than one and/or less than zero, one can induce ‘‘mutations’’,
i.e. characteristics that neither parent possesses. However, this is somewhat redundant with introduction of new random members
of the population in the current algorithm. If one does not retain the parents in the algorithm above, it is possible that inferior
performing offspring may replace superior parents. Thus, top parents should be kept for the next generation. This guarantees a
monotone reduction in the cost function. Furthermore, retained parents do not need to be reevaluated, making the algorithm less
computationally expensive, since these parameter sets do not have to be reevaluated (or ranked) in the next generation. Numerous
studies of the author (Zohdi [50–54]) have shown that the advantages of parent retention outweighs inbreeding, for sufficiently large
population sizes. Finally, we observe that this algorithm is easy to parallelize. After application of such a global search algorithm,
one can apply a gradient-based method, if the objective function is sufficiently smooth in that region of the parameter space. In
other words, if one has located a convex portion of the parameter space with a global genetic search, one can employ gradient-based
procedures locally to minimize the objective function further, since they are generally much more efficient for convex optimization
of smooth functions. An exhaustive review of these methods can be found in the texts of Luenberger [66] and Gill, Murray and
Wright [67].

8.4. Algorithmic settings

In the upcoming example, the design parameters 𝜦 = {𝛬1, 𝛬2...𝛬𝑁} are optimized over the search intervals (12 variables):
𝜦−
𝑖 ≤ 𝜦𝑖 ≤ 𝜦+

𝑖 , 𝑖 = 1, 2,… , 12. Specifically, we varied the 12 parameters associated with the body and used the following MLA
settings2:

• Number of design variables: 12,
• Population size per generation: 24,
• Number of parents to keep in each generation: 6,
• Number of children created in each generation: 6,
• Number of completely new genes created in each generation: 12,
• Number of generations for re-adaptation around a new search interval: 20 and
• Number of generations: 100.

8.5. Parameter search ranges and results

In order to drive the process of searching for object shapes that could possibly produce the observed thermo-flow field, one needs
some sort of general shape representation that can be morphed and combined with other shapes, in order to make complex objects.
For illustration purposes, we will use generalized hyper-ellipsoids. We considered a 12 parameter system design representing (a) 3
nosecone length parameters (𝐿1, 𝐿2, 𝐿3) and 3 shape parameters (𝑞1, 𝑞2, 𝑞3)

(
‖𝑥1 − 𝑥10‖

𝐿1
)𝑞1 + (

‖𝑥2 − 𝑥20‖
𝐿2

)𝑞2 + (
‖𝑥3 − 𝑥30‖

𝐿3
)𝑞3 = 1. (8.4)

and (b) 3 fuselage length parameters (𝑅1, 𝑅2, 𝑅3) and 3 fuselage shape parameters (𝑝1, 𝑝2, 𝑝3)

(
‖𝑥1 − 𝑥10‖

𝑅1
)𝑝1 + (

‖𝑥2 − 𝑥20‖
𝑅2

)𝑝2 + (
‖𝑥3 − 𝑥30‖

𝑅3
)𝑝3 = 1. (8.5)

The design vector is

𝜦 = {𝛬1, 𝛬2,… , 𝛬𝑁} = {𝐿1, 𝐿2, 𝐿3, 𝑞1, 𝑞2, 𝑞3, 𝑅1, 𝑅2, 𝑅3, 𝑝1, 𝑝2, 𝑝3}. (8.6)

e note that we can select a subset of parameters to generate simple shapes, such as if we wanted a smooth geometrical transition
rom the nosecone and the fuselage, then we enforce

𝐿1 = 𝑅1, 𝐿2 = 𝑅2, 𝑞1 = 𝑝1 and 𝑞2 = 𝑝2, (8.7)

r using only one shape and

𝐿1 = 𝐿2 = 𝐿3 and 𝑞1 = 𝑞2 = 𝑞3 = 2, (8.8)

o generate a sphere.
The domain size was (−1∕2 ≤ 𝑥1 ≤ 1∕2,−1∕2 ≤ 𝑥2 ≤ 1∕2,−1∕2 ≤ 𝑥3 ≤ 1∕2) The following search parameter ranges were used

with 𝑤1 = 𝑤2 = 𝑤3 = 1):

2 As in the previous example, a 20 × 20 × 20 stencil grid was used along with a standard MacBook Pro laptop for all calculations using a voxel code written
11

y the author.
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Fig. 9. LEFT: The structural parameters of the system. 12 in total: (a) 3 nosecone shape parameters and 3 length parameters and (a) 3 fuselage shape
arameters and 3 length parameters. We note that if we want a smooth geometrical transition from the nosecone and the fuselage, then we enforce
1 = 𝑅1 , 𝐿2 = 𝑅2 , 𝑞1 = 𝑝1 and 𝑞2 = 𝑝2. RIGHT: The basic action of a MLA/GA-Machine Learning Algorithm/Genetic Algorithm, which searches over multiple

ocations in parameter space simultaneously (Zohdi [50–54]).

• 𝛬𝑖=1−3 = Nosecone length ratios (relative to the box size ±1∕2): 𝛬−
𝑖 = 0.2 ≤ 𝛬𝑖 ≤ 𝛬+

𝑖 = 1, 𝑖 = 1, 2, 3
• 𝛬𝑖=4 = Nosecone shape: 𝛬−

4 = 1 ≤ 𝛬4 ≤ 𝛬+
4 = 20,

• 𝛬𝑖=5 = Nosecone shape: 𝛬−
5 = 1 ≤ 𝛬5 ≤ 𝛬+

5 = 20,
• 𝛬𝑖=6 = Nosecone shape: 𝛬−

6 = 1 ≤ 𝛬6 ≤ 𝛬+
6 = 20,

• 𝛬𝑖=7−9 = Fuselage length ratios (relative to the box size ±1∕2): 𝛬−
𝑖 = 0.2 ≤ 𝛬𝑖 ≤ 𝛬+

𝑖 = 1,
• 𝛬𝑖=10 = Fuselage shape: 𝛬−

𝑖 = 1 ≤ 𝛬𝑖 ≤ 𝛬+
𝑖 = 20,

• 𝛬𝑖=11 = Fuselage shape: 𝛬−
𝑖 = 1 ≤ 𝛬𝑖 ≤ 𝛬+

𝑖 = 20,
• 𝛬𝑖=12 = Fuselage shape: 𝛬−

𝑖 = 1 ≤ 𝛬𝑖 ≤ 𝛬+
𝑖 = 20,

As an example, we consider a combination of two objects. This problem is quite nonconvex, due to the many possibilities of
combined objects that could produce similar thermo-flow fields. We considered a 12 parameter system design, however, imposing
that the nosecone shape parameters equal one another, and only taking half of the shape, with a test set ‘‘detected’’ object generated
by a random set between the search interval:

𝜦𝑑𝑒𝑡 = {0.412, 0.412, 0.528, 12.295, 12.295, 9.8960.594, 0.594, 0.450, 8.732, 8.732, 14.908}. (8.9)

We used 50 frames for the cost function and the following fluid–solid parameters:

• Initial temperature of 300◦,
• Fluid viscosity of 𝜇 = 0.1 Pa/s,
• Fluid density 𝜌𝑓 = 1.228 kg/m3,
• Solid density 𝜌𝑓 = 5000 kg/m3,
• Fluid heat capacity = 700 J/K,
• Solid heat capacity = 100 𝐽∕𝐾,
• Fluid thermal conductivity = 0.03 W/m K,
• Solid thermal conductivity = 10 W/m K,
• Inlet velocity = outlet velocity (parabolic profile) = 5 m/s,
• Optimization subweights: 𝑤𝜃 = 𝑤𝒗 = 𝑤𝑠 = 1.

For illustration purposes, heating term (𝜌𝑧) in the first law of thermodynamics was made proportional to the stress-power (𝝈 ∶ ∇𝑥𝒗,)

𝝈 ∶ ∇𝑥𝒗 + 𝜌𝑧 = (1 +𝐻)𝝈 ∶ ∇𝑥𝒗, (8.10)

where 𝐻 = 10×106. Fig. 10 illustrates the results for successive generations, allowing the MLA/GA to readapt every 20 generations.
Often, this action is more efficient than allowing the algorithm not to readapt, since it probes around the current optimum for better
local alternatives. The best after generation 100 was 𝛱100 = 2.455 × 10−9, which started (generation 1) at 𝛱1,𝑎𝑣𝑒=0.695, yielding a
reduction of 𝛱1,𝑎𝑣𝑒−𝛱100

𝛱1,𝑎𝑣𝑒 = 0.699−2.455×10−9
0.695 = 99.999%. The optimal design vector was:

𝜦𝑑𝑒𝑡 = {0.430, 0.430, 0.530, 10.085, 10.085, 10.048, 0.593, 0.593, 0.453, 7.461, 7.461, 15.162, } (8.11)

hich replicates the geometry (to within a voxel-tolerance size) that captures the flow-fields and thermal states quite accurately.
pecifically, the individual and total cost functions were:
12
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Fig. 10. Shown are the object to be detected, the voxel grid, the flow around the object (colors indicating the temperature) and the cost function for the
best performing gene (red) as a function of successive generations, as well as the average cost function of the entire population of genes (green). We allowed
the MLA/GA to readapt every 20 generations. The best after generation 100 was 𝛱100 = 2.455 × 10−9, which started (generation 1) at 𝛱1,𝑎𝑣𝑒=0.695, yielding a
reduction of 𝛱1,𝑎𝑣𝑒−𝛱1,100

𝛱𝑎𝑣𝑒 = 0.699−2.455×10−9

0.695
= 99.999%.

• 𝛱 (𝜃) = 6.975 × 10−11,
• 𝛱 (𝒗) = 7.297 × 10−9,
• 𝛱𝑣𝑜𝑥𝑒𝑙 = 0.0 (exact, to machine precision),
• 𝛱(𝛬1,…𝛬𝑁 ) = 𝜋(𝛬1 ,…𝛬𝑁 )

𝑤𝜃+𝑤𝒗+𝑤𝑠
= 2.455 × 10−9.

The entire 100 generation simulation, with 24 genes per evaluation (2400 total designs) took a few minutes on a laptop, making it
ideal as a design tool. We note that, for a given set of parameters, a complete simulation takes less than one second, thus thousands
of parameter sets can be evaluated in an hour, without even exploiting the inherent parallelism of the MLA/GA. The speed at which the
overall process can be completed makes it a suitable digital-twin of the system that can run in real-time or faster than the actual
physical system.

9. Summary and extensions

In summary, this work developed a combined voxel-based machine-learning framework for the rapid identification of unknown
objects by their thermo-fluid flow field signature. Specifically, a machine-learning framework was developed that rapidly simulates
and adapts object geometries in order to match the thermo-flow field signature generated by an unknown object, across a time series
of voxel-frames. In order to achieve this, a thermo-fluid model is developed, based on the Navier–Stokes equations and the first law
of thermodynamics, using a voxel rendering of the system, which was efficiently solved with a voxel-tailored, temporally-adaptive,
13
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iterative solution scheme. This voxel-framework was then combined with a genomic-based machine-learning algorithm to develop
a digital-twin of the system that can run in real-time or faster than the actual physical system.

As discussed earlier in the work, in the last 20 years, there has been a dramatic evolution incorporating (a) multispectral cameras,
ased on technologies that extend the classical visible wavelength paradigms (380–720 nm), to thermographic/infrared regimes
1000–14000 nm) to create an image and (b) 3D (time-of-flight) cameras, using LIDAR, radio-based imaging and tomography. They
ave fundamentally changed the ability to extract information from complex events that would have been unthinkable until recently.
n particular, the ability to extract thermo-fluid flow data in three dimensions, utilizing real-time tomographically-based imaging, has
ow brought forth many possibilities. In particular, tomography, which uses multidirectional penetrating waves and the splicing of
ections with tomographic reconstruction, has become a critical component for 3D data extraction. Several commercial products now
xist that enable the instantaneous measurement within a 3D volume of all three velocity components, in addition to thermal fields.
his immediately allows for voxelization of a 3D space, which yields an image comprised of voxels, each containing velocity and
hermal field data. In order to solve PDE’s posed over such domains, extremely fast methods can then be used to construct the various
erivatives needed in a differential operator, circumventing meshing, mapping, volume integration and stiffness matrix generation
needed for example in Finite Element Methods), as well as matrix-based solution methods, since the voxel structure allows for
ncredibly efficient matrix-free iterative solvers. In short, voxel-based camera data is ideally-suited to voxel-based computation.
ltimately, for ultrafast split-second decision making, for example to react to the object, the use of such a paradigms may need

he inclusion of simplified reduced-order models that can be trained on the data generated by more complex models, such as the
ne introduced in the body of this work, such as Artificial Neural Networks (ANN). ANN have received huge attention in the
cientific community over the last decade and are based on layered input–output type frameworks that are essentially adaptive
onlinear regressions of the form  = (𝑰 ,𝒘), where  is a desired output and  is the ANN comprised of (1) synapses, which

multiply inputs (𝐼𝑖, 𝑖 = 1, 2,… ,𝑀) by weights (𝑤𝑖, 𝑖 = 1, 2,… , 𝑁) that represent the input relevance to the desired output, (2)
neurons, which aggregate outputs from all incoming synapses and apply activation functions to process the data and (3) training,
which calibrates the weights to match a desired overall output. Blending of these various paradigms (complex models, simplified
reduced-order models and neural nets) is the subject of current work of the author (Zohdi [68]), using genetic-based methods for
auto-calibration of the ANN weights.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work has been partially supported by the UC Berkeley College of Engineering, USA and Sandia National Labs, USA.

Appendix

A.1. Fluid flow model

For a hydrostatic fluid the stress can be written as

𝝈 = −𝑃𝑜𝟏, (A.1)

where 𝑃𝑜 = 𝑡𝑟𝝈
3 is the hydrostatic pressure. In other words, there are no shear stresses in a fluid at rest. In the dynamic case, the

pressure, denoted the ‘‘thermodynamic pressure’’, is related to the temperature and the fluid density by an equation of state

(𝑃 , 𝜌, 𝜃) = 0. (A.2)

For a fluid in motion

𝝈 = −𝑃 𝟏 + 𝝉𝑣𝑠 (A.3)

where 𝝉𝑣𝑠 is a so-called viscous stress tensor, needed in a balance of linear momentum3:

∇𝑥 ⋅ 𝝈 + 𝒇 = 𝜌𝑑𝒗
𝑑𝑡
, (A.4)

3 An inviscid or ’’perfect’’ fluid is one where 𝝉𝑣𝑠 is taken to be zero, even when motion is present.
14
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where 𝒗 is the fluid velocity at point 𝒙 and 𝒇 are the body forces. Thus, for a compressible fluid in motion:
𝑡𝑟𝝈
3

= −𝑃 + 𝑡𝑟𝝉𝑣𝑠
3

. (A.5)

In general, for a fluid we have

𝝉𝑣𝑠 = (𝑫) and 𝑫
def
= 1

2
(∇𝑥𝒗 + (∇𝑥𝒗)𝑇 ), (A.6)

where 𝒗 is the velocity and 𝑫 is the symmetric part of the velocity gradient. For a Newtonian fluid, where a linear relation exists
between the viscous stresses 𝝉𝑣𝑠 and 𝑫

𝝉𝑣𝑠 = (𝑫) = 𝑪 ∶ 𝑫 (A.7)

where 𝑪 is a symmetric positive definite (fourth-order) viscosity tensor. For an isotropic (standard) Newtonian fluid we have

𝝈 = −𝑃 𝟏 + 𝜆𝑡𝑟𝑫𝟏 + 2𝜇𝑫 = −𝑃 𝟏 + 3𝜅 𝑡𝑟𝑫
3

𝟏 + 2𝜇𝑫′, (A.8)

where 𝜅 is called the bulk viscosity, 𝜆 is a viscosity constant, 𝜇 the shear viscosity and 𝑫′ = 𝑫 − 𝑡𝑟𝑫
3 𝟏. Explicitly, with an (𝑥1, 𝑥2, 𝑥3)

Cartesian triad
⎧
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⎪
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⎭

⏟⏞⏞⏟⏞⏞⏟
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⎪
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⎢

⎢

⎣

𝑐1 𝑐2 𝑐2 0 0 0

𝑐2 𝑐1 𝑐2 0 0 0

𝑐2 𝑐2 𝑐1 0 0 0

0 0 0 𝜇 0 0

0 0 0 0 𝜇 0

0 0 0 0 0 𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐷11

𝐷22

𝐷33

2𝐷12

2𝐷23

2𝐷31

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

⏟⏞⏞⏞⏟⏞⏞⏞⏟
def
= {𝑫}

, (A.9)

here 𝑐1 = 𝜅+ 4
3𝜇 and 𝑐2 = 𝜅− 2

3𝜇, where 𝐷𝑖𝑗 =
1
2

(

𝜕𝑣𝑖
𝜕𝑥𝑗

+ 𝜕𝑣𝑗
𝜕𝑥𝑖

)

. The so-called ‘‘Stokes’ condition’’ attempts to force the thermodynamic
ressure to collapse to the classical definition of mechanical pressure, i.e.

𝑡𝑟𝝈
3

= −𝑃 + 3𝜅 𝑡𝑟𝑫
3

= −𝑃 , (A.10)

leading to the conclusion that 𝜅 = 0 or 𝜆 = − 2
3𝜇. Thus, a Newtonian fluid obeying the Stokes’ condition has the following constitutive

law:

𝝈 = −𝑃𝟏 − 2
3
𝜇𝑡𝑟𝑫𝟏 + 2𝜇𝑫 = −𝑃 𝟏 + 2𝜇𝑫′. (A.11)

Note that

𝐽̇ = 𝑑
𝑑𝑡
𝑑𝑒𝑡𝑭 = (𝑑𝑒𝑡𝑭 )𝑡𝑟(𝑭̇ ⋅ 𝑭 −1) = 𝐽𝑡𝑟𝑳 = 𝐽∇𝑥 ⋅ 𝒗, (A.12)

where 𝑳 = ∇𝑥𝒗 is the velocity gradient. Note that ∇𝑥 ⋅ 𝒗 = 𝑡𝑟𝑳 = 𝑡𝑟𝑫. Therefore, if the fluid is incompressible, 𝐽̇ = 0, then
∇𝑥 ⋅ 𝒗 = 𝑡𝑟𝑳 = 𝑡𝑟𝑫 = 0. Therefore,

𝝈 = −𝑃 𝟏 + 2𝜇𝑫. (A.13)

A conservation of mass dictates
𝑑
𝑑𝑡

(𝜌𝑜) =
𝑑
𝑑𝑡

(𝜌𝐽 ) = 𝐽
𝑑𝜌
𝑑𝑡

+ 𝜌𝑑𝐽
𝑑𝑡

= 0, (A.14)

which leads to
𝑑𝜌
𝑑𝑡

+
𝜌
𝐽
𝑑𝐽
𝑑𝑡

= 0. (A.15)

Using Eq. (A.12), Eq. (A.14) becomes
𝑑𝜌
𝑑𝑡

+ 𝜌∇𝑥 ⋅ 𝒗 = 0. (A.16)

Now write the total temporal (‘‘material’’) derivative in convective form:
𝑑𝜌
𝑑𝑡

=
𝜕𝜌
𝜕𝑡

+ (∇𝑥𝜌) ⋅
𝑑𝒙
𝑑𝑡

=
𝜕𝜌
𝜕𝑡

+ ∇𝑥𝜌 ⋅ 𝒗. (A.17)

Thus, Eq. (A.16) becomes
𝜕𝜌

+ ∇ 𝜌 ⋅ 𝒗 + 𝜌∇ ⋅ 𝒗 =
𝜕𝜌

+ ∇ ⋅ (𝜌𝒗) = 0. (A.18)
15
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Thus, writing the total time derivatives appearing previously as
𝑑𝒗
𝑑𝑡

= 𝜕𝒗
𝜕𝑡

|𝒙 + (∇𝑥𝒗)|𝑡 ⋅
𝑑𝒙
𝑑𝑡
, (A.19)

the coupled governing equations are (momentarily ignoring thermal effects)

𝜕𝜌
𝜕𝑡

= −∇𝑥𝜌 ⋅ 𝒗 − 𝜌∇𝑥 ⋅ 𝒗,

𝜌( 𝜕𝒗
𝜕𝑡

+ (∇𝑥𝒗) ⋅ 𝒗) = ∇𝑥 ⋅ 𝝈 + 𝒇 ,

𝝈 = −𝑃 𝟏 + 𝜆𝑡𝑟𝑫𝟏 + 2𝜇𝑫 = −𝑃 𝟏 + 3𝜅 𝑡𝑟𝑫3 𝟏 + 2𝜇𝑫′,

(A.20)

where, for example, 𝑃 is given by an Equation of State. Collectively, we refer to these equations as the ‘Navier–Stokes’ equations.
There are a total of three variables: 𝜌, 𝒗, and 𝑃 . It is customary to specify 𝒗 and 𝑃 on the boundary, and to determine 𝜌 on the
oundary through the Equation of State.

emark 6. In the example provided, we shall consider incompressible fluids. However, for completeness, we briefly illustrate a
imple equation of state for fluid compressibility. There are a variety of possible Equations of State that connect the density to the
ressure, such as a Boussinesq-like relation, which is adequate to describe dense gases and fluids, derived from4

𝜌 ≈ 𝜌𝑜(𝑃𝑜) +
𝜕𝜌
𝜕𝑃

𝛥𝑃 , (A.21)

where 𝜌𝑜 and 𝑃𝑜 are reference values and 𝛥𝑃 = 𝑃 − 𝑃𝑜. We define the bulk (compressibility) modulus by 𝜁 def
= 𝜌 𝜕𝑃𝜕𝜌 , yielding

𝜌 ≈ 𝜌𝑜

(

1 + 1
𝜁
𝛥𝑃

)

⇒ 𝑃 ≈ 𝑃𝑜 + 𝜁
(

𝜌
𝜌𝑜

− 1
)

. (A.22)

For a constant density case, 𝜌 = 𝜌𝑜, the Boussinesq-like relation asserts, 𝑃 = 𝑃𝑜.

A.2. Thermophysics model

The interconversions of mechanical, thermal and chemical energy in a system are governed by the first law of thermodynamics.
It states that the time rate of change of the total energy,  + , is equal to the work rate,  and the net heat supplied,  +,

𝑑
𝑑𝑡

( + ) =  + + . (A.23)

Here the kinetic energy of a subvolume of material contained in 𝛺, denoted 𝜔, is 
def
= ∫𝜔

1
2𝜌𝒗 ⋅ 𝒗 𝑑𝜔, the rate of work or power of

xternal forces acting on 𝜔 is given by 
def
= ∫𝜔 𝜌𝒃 ⋅ 𝒗 𝑑𝜔 + ∫𝜕𝜔 𝝈 ⋅ 𝒏 ⋅ 𝒗 𝑑𝑎, 𝒃 being the body forces, the heat flow into the volume by

onduction is 
def
= − ∫𝜕𝜔 𝒒 ⋅𝒏 𝑑𝑎 = − ∫𝜔 ∇𝑥 ⋅ 𝒒 𝑑𝜔, 𝒒 being the heat flux, the heat generated due to sources, such as chemical reactions,

s 
def
= ∫𝜔 𝜌𝑧 𝑑𝜔, 𝑧 are sources, and the stored energy is 

def
= ∫𝜔 𝜌𝑤𝑑𝜔, 𝑤 being the stored energy. If we make the assumption that

he mass in the system is constant, one has,

current mass = ∫𝜔
𝜌 𝑑𝜔 = ∫𝜔0

𝜌𝐽 𝑑𝜔0 ≈ ∫𝜔0
𝜌0 𝑑𝜔0 = original mass, (A.24)

which implies 𝜌𝐽 = 𝜌0 ⇒ 𝜌̇𝐽 + 𝜌𝐽̇ = 0. Using this and the energy balance leads to

𝑑
𝑑𝑡 ∫𝜔

1
2
𝜌𝒗 ⋅ 𝒗 𝑑𝜔 = ∫𝜔0

𝑑
𝑑𝑡

1
2
(𝜌𝐽𝒗 ⋅ 𝒗) 𝑑𝜔0

= ∫𝜔0
( 𝑑
𝑑𝑡
𝜌0)

1
2
𝒗 ⋅ 𝒗 𝑑𝜔0 + ∫𝜔

𝜌 𝑑
𝑑𝑡

1
2
(𝒗 ⋅ 𝒗) 𝑑𝜔

= ∫𝜔
𝜌𝒗 ⋅ 𝒗̇ 𝑑𝜔. (A.25)

We also have
𝑑
𝑑𝑡 ∫𝜔

𝜌𝑤𝑑𝜔 = 𝑑
𝑑𝑡 ∫𝜔0

𝜌𝐽𝑤𝑑𝜔0 = ∫𝜔0

𝑑
𝑑𝑡

(𝜌0)𝑤𝑑𝜔0 + ∫𝜔
𝜌𝑤̇ 𝑑𝜔. (A.26)

By using the divergence theorem, we obtain

∫𝜕𝜔
𝝈 ⋅ 𝒏 ⋅ 𝒗 𝑑𝑎 = ∫𝜔

∇𝑥 ⋅ (𝝈 ⋅ 𝒗) 𝑑𝜔 = ∫𝜔
(∇𝑥 ⋅ 𝝈) ⋅ 𝒗 𝑑𝜔 + ∫𝜔

𝝈 ∶ ∇𝑥𝒗 𝑑𝜔. (A.27)

4 We have ignored thermal effects in this representation.
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Combining the results, and enforcing balance of momentum, leads to

∫𝜔

(

𝜌𝑤̇ + 𝒗 ⋅ (𝜌𝒗̇ − ∇𝑥 ⋅ 𝝈 − 𝜌𝒃) − 𝝈 ∶ ∇𝑥𝒗 + ∇𝑥 ⋅ 𝒒 − 𝜌𝑧
)

𝑑𝜔 =

∫𝜔

(

𝜌𝑤̇ − 𝝈 ∶ ∇𝑥𝒗 + ∇𝑥 ⋅ 𝒒 − 𝜌𝑧
)

𝑑𝜔 = 0.
(A.28)

Since the volume 𝜔 is arbitrary, the integrand must hold locally and we have

𝜌𝑤̇ − 𝝈 ∶ ∇𝑥𝒗 + ∇𝑥 ⋅ 𝒒 − 𝜌𝑧 = 0. (A.29)

A typical approximation in fluid mechanics is 𝑤 ≈ 𝜌𝐶𝜃, where 𝐶 is the heat capacity and 𝜃 is the temperature in Kelvin. As in the
Navier–Stokes equations, breaking the thermal rate term into a fixed part and a convective part yields

𝜌𝑤̇ = 𝜌𝐶( 𝜕𝜃
𝜕𝑡

+ ∇𝑥𝜃 ⋅ 𝒗) = 𝝈 ∶ ∇𝑥𝒗 − ∇𝑥 ⋅ 𝒒 + 𝜌𝑧. (A.30)

Remark 7. For the remainder of the work, we will assume that the fluid is incompressible, homogeneous and that its properties are
thermally-insensitive.
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