
Computational Mechanics
https://doi.org/10.1007/s00466-023-02421-9

ORIG INAL PAPER

A digital-twin and rapid optimization framework for optical design of
indoor farming systems

Emre Mengi1 · Carla J. Becker1 ·Mostafa Sedky1 · Shao-Yi Yu1 · Tarek I. Zohdi1

Received: 8 August 2023 / Accepted: 2 November 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
In the face of a changing climate and a rising number of “food deserts" in both rural and urban areas, there is a demand to
supply fresh produce year-round to communities at the end of the traditional agriculture supply chain. Vertical indoor farming
is a promising mode of next-generation agriculture that boasts reduced water and pesticide usage, improved yields, more
consistent quality, year-round cultivation, and cheaper transportation and harvesting costs. Indoor farms can rival industrial
greenhouses in size, but small-scale “pod farms" can be deployed to smaller communities and areas where large swaths of
land are either unavailable or too costly. These pods are often the size of shipping containers with their temperature, humidity,
and plant nutrient supply carefully controlled. Plants inside the pods are grown hydroponically with light supplied by panels
of LEDs and, thus, this mode of farming is fundamentally different from greenhouse farming. Many indoor farming pods
have recently become commercially available claiming high energy efficiency, but little analysis and optimization work has
been done to prove these claims. To drive innovation in the design of these physical systems, we have developed a digital-
twin and genomic optimization framework for the optical design of vertical indoor farming pods. We model a completely
enclosed indoor farming pod with plants in the three mutually-orthogonal planes and illuminated by LED “walls." We employ
ray-tracing methods and a genetic algorithm to determine the LED source tube area size, beam aperture spread, and power
requirements for maximal power absorption by the plants.

Keywords Indoor farming · Optimization · Agriculture · Modeling and simulation · Machine-learning

1 Introduction

1.1 Vertical indoor farming

Indoor farming is a promising mode of next-generation
agriculture, enabling year-round cultivation of produce, inde-
pendent of local climate conditions. Indoor farms can be built
in urban areas, making fresh, local produce available at lower
prices to consumers, thanks to reduced transportation and
irrigation costs. They also offer increased yields and reduced
pesticide usage as, with soil-free hydroponics and a highly
controlled growth environment, fewer plants are lost to pests
and disease. In the face of a changing climate and “food
deserts" prevalent in both urban and rural settings, indoor
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farming offers a sustainable solution to scarcity of fresh pro-
duce.

The concept of indoor farming has been explored for
millennia. The concept of shielding plants from vacillating
weather conditions by growing plants inside a greenhouse
was first implemented by agrarian communities in 30 CE
[1]. As time and technology progressed, full control over
ventilation, air flow, growth medium, and light exposure
became feasible. One of the first fully-fledged controlled
environment research facilities began operation at North Car-
olina State University in 1968 [2]. Recent developments in
the semiconductor industry have made it cost effective for
light-emitting diodes (LEDs), which can provide the specific
wavelengths of light for photosynthesis, to supplant broad-
spectrum sunlight. This has given rise to “plant factories” [3]
and indoor farming “pods” [4] (Fig. 1): warehouses and ship-
ping containers outfitted with LEDs, hydroponics, cameras
and advanced sensors which are nominally more efficient
than traditional farms and greenhouses.
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Fig. 1 A general schematic of an indoor container farming pod

Shade is not a concern for indoor farms as, with optimal
optical design, all plants can receive the requisite light for
photosynthesis. As such, many indoor farms will organize
hydroponically grown plants in either 1) vertically-stacked
shelves or 2) adjacent panels hanging from the ceiling [5].
This dense packing of plants facilitates more growth on less
land. To put this into perspective, a 30-story vertical indoor
farmwith a 5-acre base could produce a crop yield equivalent
to 2400 acres of a traditional farm [6].

1.2 LEDs: light-emitting diodes

Different plants require different wavelengths of light for
optimal photosynthesis and optimal growth of features such
as stem length and leaf thickness [7]. LEDs are perfectly
suited to supply plantswith the specific, optimal combination
of colors of light they need, becauseLEDs emit a narrowband
ofwavelengths depending on the bandgap of their constituent
semiconductormaterial. Thus, indoor pod farmswith “walls"
of LED light strips reduce energy waste by maximizing the
amount of power absorbed by the plants and minimizing
the power lost to excess heat. Beams of light supplied by
LEDs can be collimated by addition of optical lenses, further
reducing energy lost to non-plant targets and reducing the
distance between the plants and LEDs. Additionally, expo-
nential development in the semiconductor industry over the
past three decades has made LEDs smaller, faster-actuating,
more efficient, and more durable than traditional incandes-
cent light sources, rendering LEDs economically viable for
indoor farming applications.

1.3 Hydroponics

Hydroponics is a method of growing plants in a nutrient rich
solution without the need for soil. Depending on the type of
crop, this method can be executed via drip irrigation, aero-
ponics, nutrient film technique, ebb and flow, aquaponics, or
deep-water culture. Although physically very different in the
method of delivery, most of these techniques share the same
fundamentals: a nutrient solution is pumped to the plants via
a specialized delivery system and then circulated back to a

reservoir where the nutrients are replenished. We refer the
reader to [8–12] for a comprehensive description of these
techniques. Hydroponic methods use, on average, 10% of
the water utilized in traditional farming [13] as nutrients are
delivered directly to the plant roots, minimizing water lost
to evaporation. This mode of growing plants can be easily
automated and, combined with the fact that the lack of soil
protects against pests, these systems make it easier to cater
to the unique physiological needs of the plants while elim-
inating the need for pesticides and other chemicals. These
systems, however, have high start-up costs [14] and thus
present a dire need for high operational efficiency to recoup
these costs.

1.4 Digital-twins and optimization

The practice of vertical indoor farming in shipping container
“pods,” enabled by LED light sources and hydroponic nutri-
ent sources, is still nascent and little work has been done to
quickly and efficiently model and optimize such systems. A
digital-twin of an indoor pod farm can be safely and cheaply
manipulated without jeopardizing the system or the plants’
well-being,making it an exceedingly quick, inexpensive, and
useful approach for identifying optimal operational parame-
ters.

The indoor farming pod is a complex system with a
multitude of physical phenomena including air flow, light
propagation, and energy transfer. Several digital-twin frame-
works have been developed to capture the physics of
light propagation in greenhouse, agrophotovoltaic, and food
decontamination applications using ray tracing techniques
[15–18] and to capture and optimize the physics of energy
flow [19–21] and air flow [22, 23]. Ray tracing techniques
decompose light into rays whose interactions with surfaces
are quickly geometrically traced, facilitating fast compu-
tation of a large number of interactions between rays and
surfaces and optimization of the surface shape for maximum
absorption/reflection.

Digital-twins have been scarcely employed in optimizing
agricultural systems [24–26], and they are even more rarely
implemented in indoor farming pods. Two such implemen-
tations were carried out by Randolph et al. [27] and Sambor
et al. [28] to optimize the energy consumption of an off-
grid indoor farming pod to determine optimal operation time
for each component of the system. These implementations,
however, do not allow for manipulation of the orientation
and/or shape of the system’s components for maximum oper-
ational efficiency. In [29], computational fluid dynamics
(CFD) methods were utilized to model the air flow inside an
indoor farming pod, but such methods have a prohibitively
high computational cost, especially when running various
configurations and performing optimization. Thus, an easily
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manipulated, computationally inexpensive model that accu-
rately captures the system’s physics is desired.

1.5 Objectives

Over the past few years, around the world, many indoor
farming companies have been proving that indoor farming is
a viable mode of next-generation farming, but the systems
remain energy-intensive and little analysis has been per-
formed to assess systemefficiency. Tooptimize these systems
and drive innovative solutions, this work develops a flexible
digital-twin for the optical design of sustainable, small-scale
indoor farming “pods,” containing vertically grown plants
with energy supplied by carefully controlled LEDs. Flow of
LED power is rapidly computed with a reduced order model
ofMaxwell’s equations based on high-frequency decomposi-
tion of the LED irradiance into multiple rays. These rays are
then propagated forward in time to track their reflections and
ultimate absorption.We simulate thousands of source-system
configurations, varying the emission characteristics of the
LED “walls" and optimizing for maximal power absorption
by the plant “targets."

Our digital-twin consists of

• A model for the LED optics and tracking of power flow,
• A model for the absorption of the optical power by the
pod components, and

• A genomic optimization of LED configuration and emis-
sion characteristics.

Our digital-twin and optimization framework described in
this work can be quickly and easily run on a laptop, making it
more accessible than computationally-intensive alternatives.
This work is motivated by the possibility that indoor farm-
ing researchers and practitioners will tailor this simulation
paradigm for their specific system’s needs.

2 Indoor farmingmodel

2.1 Pod farm, plant, and LED geometries

We model an indoor pod farm as an enclosed rectangu-
lar box defined by “wall cutoff" values (xw1±, xw2±, xw3±)

which can be adjusted to simulate any pod size. Each wall
has an array of LEDs whose beam spread, power, and geo-
metric configuration (limited to a rectangle within the wall
plane) can be configured for optimal performance. We can
label the six walls by their inward surface normal in the
standard Euclidean basis (e1, e2, e3). Using Cartesian coor-
dinates (x1, x2, x3), we designate the center of the pod as the
origin. Plants racks can then exist in planes parallel to x1 = 0,

x2 = 0, and/or x3 = 0. Example plant rack configurations
are shown in Fig. 2.

Once rays are emitted from one of the six walls of the
pod, they are propagated forward in time. In each time step,
we check to see if the ray has hit a wall or a plant or will
simply continue propagating as in the previous time step.
Once a ray-surface interaction happens, we determine the
power absorbed by either thewall or plant, the residual power
in the ray, and reflection normal for the ray.

Plant targets are modeled as generalized ellipsoids. We
define the surface of plant i with
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∣
∣
∣
∣
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where (R1, R2, R3) are the generalized radii, (q1, q2, q3) are
the generalized exponents, and (x1i , x2i , x3i ) define the cen-
ter of the plant.

For ray j at location (x1 j , x2 j , x3 j ), if

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1 j ≤ xw1− or
x1 j ≥ xw1+ or
x2 j ≤ xw2− or
x2 j ≥ xw2+ or
x3 j ≤ xw3− or
x3 j ≥ xw3+,

(2.2)

then we say the ray has hit a wall. If for plant target i

Fi (x1 j , x2 j , x3 j ) ≤ 1, (2.3)

then we say that ray j has hit plant i .

2.2 Initializing rays

Ray positions, r(x1, x2, x3), are randomly initialized within
a rectangular area defined by the “source tube" values ST1−12

(defined in Table 1) on the surface one of the six walls. For
example, for the wall with surface normal +e1, rays will
emanate from the point

⎧

⎨

⎩

x1 = xw1+,

x2 ∈rand [−ST11, ST11],
x3 ∈rand [−ST12, ST12].

(2.4)

As there are six walls and two source tube values per wall,
there are a total of 12 source tube values.

Ray velocities, v, are initialized with magnitudes equal to
the speed of light and directions randomly determined from
a set of “aperture" values A1−18. As there are six walls and
three aperture values per wall, there are a total of 18 aperture
values. Once a direction of travel is determined from the
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Fig. 2 Example pod configurations for a rack: x1x2, number of targets: x1 : 9, x2 : 3, b rack: x1x3, number of targets: x1 : 6, x3 : 3, c rack: x1,
number of targets: x1 : 9, and d racks: x1x2, x1x3, x2x3, number of targets: x1 : 9, x2 : 3, x3 : 3. Plants are visualized as cubes for plot simplicity

Table 1 Design parameters
associated with each wall

Inward normal Aperture parameters Source tube parameters [m] Power parameters [W]

−e1 A1, A2, A3 ST9, ST10 P1

e1 A4, A5, A6 ST11, ST12 P2

−e2 A7, A8, A9 ST5, ST6 P3

e2 A10, A11, A12 ST7, ST8 P4

−e3 A13, A14, A15 ST3, ST4 P5

e3 A16, A17, A18 ST1, ST2 P6
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aperture values, the direction is normalized and then scaled
by the speed of light. That is, we first determine the un-
normalized components of the direction (a1, a2, a3):

⎧

⎨

⎩

a1 ∈rand [0, Ax1 ],
a2 ∈rand [0, Ax2 ],
a3 ∈rand [0, Ax3 ],

(2.5)

then normalize

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v̂1 = a1
||a|| ,

v̂2 = a2
||a|| ,

v̂3 = a3
||a|| ,

(2.6)

where ||a|| = √
a1 + a2 + a3. Finally, we scale by the speed

of the light, c, to obtain the components of the full initial
velocity vector:

⎧

⎨

⎩

v1 = cv̂1,
v2 = cv̂2,
v3 = cv̂3.

(2.7)

Initial ray position and velocity determination is visualized
in Fig. 3.

Ray power values are initialized as a fraction of the total
power, Pw, coming from the wall associated with the initial
ray position. If the total number of rays coming from the wall
is Nr , then the power in each ray emanating from wall w is

Pray = Pw

Nr
. (2.8)

As there are six walls and one total power value per wall,
there are a total of 6 wall power parameters P1−6. The source
tube, aperture, and wall power parameters comprise the 36
design parameters for optimization in this study.

2.3 Ray-tracingmethod

We followed a similar approach to that in Isied et al. [18] for
computing the trajectories of the reflected and the absorbed
rays. We assume the rays travel in a vacuum at the speed
of light (c ≈ 3 × 108 m/s) with refractive index ni = 1.
While individually adjustable, for ease of description, we
say the indices of refraction of each wall and of the plants
are all na . For later use determining howmuch power will be
reflected/absorbed by either the plants or the pod walls, we
define the ratio

n̂ = na
ni

. (2.9)

In the process of propagating all of the rays in the simu-
lation, if we determine that a ray has hit a plant surface, we
first calculate the reflection normal for the ray. If the surface
of the plant i is defined by Fi (x1, x2, x3), given in (2.1), then
the surface normal is given by

n = ∇Fi
||∇F || (2.10)

where, in terms of a standard Euclidean basis (e1, e2, e3),

∇Fi = ∂F

∂x1
e1 + ∂F

∂x2
e2 + ∂F

∂x3
e3, (2.11)

or more completely, by calculating the gradient of Eq.2.1,
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⎠

. (2.12)

If the ray hits the surface at angle θinc with respect to the
surface normal, then the reflected velocity vref is given by

vref = vinc − 2vinc,⊥ (2.13)

where vinc,⊥ is the component of the incident velocity vinc
perpendicular to the surface (and parallel to the surface nor-
mal), given by

vinc,⊥ = vinc · n = ||vinc|| cos θinc. (2.14)

If we determine that a ray has hit a wall, we simply flip
the sign of the component of the velocity parallel to the wall
surface normal e.g. if a ray hits the wall with inward surface
normal +e1, then

⎧

⎨

⎩

vref,1 = −vinc,1
vref,2 = vinc,2
vref,3 = vinc,3

. (2.15)

After calculating the reflection normal for the ray, wemust
calculate the power absorbed by the contact surface and the
residual power left in the ray. FollowingZohdi [17],we define
the ratio of the reflected power of the ray, Iref, to the incident
power, Iinc, as the total reflectance, IR:

IR = Iref
Iinc

. (2.16)

The total reflectance is a function of the angle of incidence
and the ratio of the refractive indices n̂, given in (2.9). We
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Fig. 3 a Aperture settings
determining initial ray direction
b Source tube parameters
determining ray initialization
area

Fig. 4 Ray initialization with 6 walls, aperture values A1−18 : 0.5 and source tube lengths ST1−4 : 0.5 and ST5−12 : 3. Ray color added for visual
clarity
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refer the reader to Zohdi [17] for the details of the derivation.
The expanded form of the reflectance is

IR(n̂, θ) = 1

2

(
n̂2 cos θ − (n̂2 − sin2 θ)1/2

n̂2 cos θ + (n̂2 − sin2 θ)1/2

)2

+1

2

(
cos θ − (n̂2 − sin2 θ)1/2

cos θ + (n̂2 − sin2 θ)1/2

)2

(2.17)

where 0 ≤ IR ≤ 1 for unpolarized electromagnetic radia-
tion and we have set θ = θinc and implicitly assumed that
the magnetic permeability of the plants, walls, and ambient
medium are all equal.

The power absorbed by the surface, Pabs, and the power
retained by the ray, Pref, are computed as:

{

Pabs = (1 − IR)Pinc
Pref = IRPinc

(2.18)

where Pinc is the incident power. Ray power values are
updated in each time step until the power in the ray falls
below some threshold. At that point, the ray is considered
fully absorbed and deactivated.

2.4 Time-stepping scheme

The power propagation scheme outlined in the previous sec-
tion is achieved through an explicit time-stepping scheme
with a time step size defined by

�t =
(

�x1 + �x2 + �x3
3c

)

ξ (2.19)

where (�x1,�x2,�x3) are the voxel sizes per axis, c is the
speed of light, and ξ is a tunable parameter for refining the
step size.Voxel sizes and ξ are constants defined at the start of
the simulation. With higher values of ξ , the simulation runs
faster and with lower values of ξ the collisions are modeled
more accurately. In this study,weuse ξ = 2 to accurately cap-
ture the ray interactions without significantly slowing down
the simulation. A convergence study could be conducted by
including ξ in the set of design parameters for more refine-
ment, but this is beyond the scope of this study.

The time-stepping algorithm for all rays j = 1, . . . , Nr

starting at time t = 0 and terminating at t = T can be
summarized as follows:

1. Initialize ray velocities v j (t = 0) and positions r j (t =
0).

2. Increment all ray positions:

r j (t + �t) = r j (t) + �tv j (t). (2.20)

3. Check for ray-surface collisions. If a ray has collidedwith
a surface:

(a) Calculate the surface normal,
(b) Calculate the new ray velocity values after reflection,
(c) Update power absorbed by the surface if it is a plant,
(d) Update the new ray power after reflection.

4. Increment the time forward by �t . If t < T , then go to
step 2.

3 Machine-learning, optimization, and
automatic design

3.1 Design parameters

The indoor farming system design consists of the following
36 design parameters:

�i ≡ {�i
1, . . . , �

i
N }

≡ {A1, . . . , A18, ST1, . . . , ST12, P1, . . . , P6} (3.1)

where A1−18 are the aperture parameters (3 per wall) are
used to determine the initial light direction, ST1−12 are the
source tube values (2 per wall) that dictate the wall area in
which the ray will be randomly initialized, and P1−6 are the
total power values (1 per wall). Table 1 outlines which design
parameters belong to each wall, where each wall is identified
by its inward normal in the standard Euclidean basis.

3.2 Design fitness

The 36 design parameters define a design spacewhichwe can
explore and evaluatewith a cost function.Different parameter
sets will result in different indoor farming system perfor-
mance with lower values of the cost function corresponding
to stronger designfitness. The definition of designfitnessmay
differ between applications and the cost function can be tai-
lored to each application. In this study, we seek to maximize
the power absorbed by the plants inside the indoor farming
pod. Accordingly, we construct the cost function

� = 1 −
∑Np

i=1 Pi
∑6

w=1 Pw

(3.2)

where Np is the total number of plants and the sum over Pw

values represents the total initial power emitted by all 6walls.
Our genomic optimization scheme will attempt to minimize
�, which ultimately maximizes the power absorbed by the
targets. Note that the ratio of power absorbed over power
irradiated in the cost function is non-dimensional and nor-
malized.
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3.3 Machine-learning optimization scheme: genetic
algorithm

The indoor farming digital-twin presented in this work was
optimized using a genetic algorithm (GA) to find the design
parameter set that minimizes the cost function in (3.2). A
genetic algorithm is a sampling-based optimization scheme
for solving black-box objectives. Genetic algorithms are
inspired by the process of natural selection wherein the
fittest members of a population survive to breed offspring,
potentially with even stronger characteristics. The genetic
algorithm parameters and design parameter search bounds
used in this work are included in Table 3. The genetic algo-
rithm framework is shown in Fig. 6 and can be summarized
as follows:

1. Generate S genetic strings, where the design parame-
ters comprising each string are randomly selected from a
range defined by search bounds. That is, produce a pop-
ulation

� = {�(1),�(2), . . . ,�(S)} (3.3)

where

�(i) =

⎛
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.
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for i = 1, . . . ,S. (3.4)

2. Compute the fitness of each string by evaluating the cost
function from the proposed indoor farming configuration
i.e. �(�(i)) for i = 1, . . . ,S.

3. Rank the genetic strings such that the best string has the
lowest cost.

4. Pairwise mate the top P genetic strings with randomized
weights φ1 and φ2 to obtain K offspring i.e. parents p and
p + 1 will produce offspring k and k + 1 according to

{

�(k) = φ1�
(p) + (1 − φ1)�

(p+1)

�(k+1) = φ2�
(p) + (1 − φ2)�

(p+1) (3.5)

where φ1, φ2 ∈rand [0, 1].
5. Retain the top performing P parent strings and their

K children and generate S-P-K new random genetic
strings, maintaining the size of the population.

Fig. 5 Beam decomposition for a geometric ray-tracing model

6. Every 10 generations, allow the population to “re-adapt"
by updating the search bounds to be a range about the
values of the best string thus far.

7. Repeat steps 2-6 with until G generations have been
reached.

4 Results and discussion

We simulated a completely enclosed indoor farm with
LED light sources on all six walls using the previously
described digital-twin framework and optimization scheme.
The dimensions of the simulated farming pod were 6×1×1
m. We allowed racks of plants to exist in the x1x2, x1x3 and
x2x3 planes with generalized radii R1 = R2 = R3 = 0.1375
m and generalized exponents q1 = q2 = q3 = 6, effec-
tively simulating the plants as bevelled cubes with volume
0.1375m3. For the racks in planes x1x2 and x1x3 there were
18 × 6 = 108 plants each and for the rack in plane x2x3
there were 6 × 6 = 36 plants, meaning the pod farm con-
tained 252 plants in total. In each time step, we tracked the
power absorbed by each plant, the fraction of rays interacting
with a plant, and the total number of ray-surface interactions.
Figure8 shows the relative power absorption of different
plants with red corresponding to the highest power absorp-
tion and blue corresponding to the lowest power absorption.
While adjustable, we set the indices of refraction for the 6
walls to (nw1− = 10.0, nw1+ = 4.0, nw2− = 1.5, nw2+ =
3.0, nw3− = 9.0, nw3+ = 2.0) and the index of refraction
of the ambient container medium to ni = 1. In all simula-
tion figures in this work, a unique ray color denotes a distinct
wavelength, butwavelengthwas not accounted for by the ray-
tracing method used. Each wallw = 1, . . . , 6 was initialized
with power Pw ∈rand 1− 10 MW and with ray density 2000
rays per source tube area. The indoor farming system param-
eters and the genetic algorithm parameters for optimization
used in this study are included in Tables 2 and 3 respectively.

When simulating with equal index of refraction among
all walls and plants, we found that the best design reduced
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Fig. 6 The genetic algorithm
framework used in this study

Table 2 Indoor farming system
parameters

Symbol Units Value Description

Nr none 2000 Number of rays per wall

activeRacks none x1x3, x1x2, x2x3 Active rack axes/planes

Np,±1, Np,±2, Np,±3 none [9, 3, 3] Number of plants per axis

�x1,�x2,�x3 none 0.05 Voxel size

c m/s 3 × 108 Speed of light

R1, R2, R3 m 2.75�x Generalized radii

q1, q2, q3 none 6 Generalized exponents

Table 3 Genetic algorithm
parameters

Symbol Units Value Description

P none 4 Surviving parent strings for breeding

K none 4 Number of offspring per generation

S none 24 Designs per generation

G none 150 Total generations

A1−18 none [0, 1] Aperture parameters

ST1−4 m [0, 0.5] Source tube search bounds

ST5−12 m [0, 3] Source tube search bounds

P1−6 MW [1, 10] Total wall power search bounds

the source tube areas to more closely overlap with the plant
racks, increasing the ray density per source tube area and
increasing the number of rays directly incident on the plants.
With a larger number of rays directly incident on the plants,
the number of reflections a ray makes is reduced, thereby
decreasing the energy waste from reflections with each sur-
face.

Optimal results are visualized in Figs. 7 and 8 and were
produced using the design parameters in Table 4. Comparing
Fig. 4 (no optimization) with Fig. 7, we can see that the opti-
mization algorithm favors a smaller source tube area on all
six walls to maximize overlap with the plant rack locations.
The relatively small optimal source tube areas depicted in
Fig. 8 can be attributed to not specifying a power absorption
limit for the closest plant targets. The evolution of the best

design cost and average design cost across the population
over 150 generations with 24 design strings per population is
included in Fig. 9. Every 10 generations, we allowed the pop-
ulation to re-adapt by redefining the search bounds for each
design parameter to be a range about the parameter values of
the best string seen thus far.

These results serve to demonstrate a framework for the
modeling and optimization of an indoor farming pod. This
framework can be modified to better capture all aspects of
the system by extending the design parameters and model-
ing other physical phenomena such as water absorption, air
flow, multi-wavelength energy tracking, and setting power
absorption caps for different plant types.
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Fig. 7 Detailed views of optimized indoor farming system design. Ray color added for visual clarity. a Isometric view of optimized indoor farming
design. b Side view of optimized indoor farming design. c Top view of optimized indoor farming design. d Front view of optimized indoor farming
design.

5 Summary andmodel extensions

Indoor farming is a promising mode of next-generation agri-
culture offering numerous benefits such as year-round crop
cultivation, reduced transportation costs, and enablement of
urban farms. However, these systems still face challenges
related to energy consumption, and there has been limited
quantitative analysis of their overall efficiency. To fill this gap
and promote innovative design, we introduce a cost-effective
digital-twin to analyze the optical properties of an indoor
farming pod using a ray-tracing model. We utilize a genomic
optimization scheme to identify the most optimal LED geo-
metric configurations and emission characteristics toward
maximizing energy absorbed by the constituent plants. The
proposed digital-twin and optimization framework serves

as a foundational framework that takes a physics-driven
approach to optimize energy flow and paves theway formore
sustainable indoor farming practices.

To adapt the framework to other indoor farming config-
urations, we can adjust design objectives via cost function
design and incorporate constraints via parameter search
bounds. The framework could also be extended to include
models for water usage or crop-specific reactions to dif-
ferent chemical/pesticides, thereby enhancing the accuracy
of the digital-twin. Extending the framework to include
wavelength-specific power flow could further improve pre-
dictions of energy efficiency and crop yield by providing each
plant with its ideal lighting conditions. Such refined models
can serve as a valuable tools for testing and estimating how a
particular design would perform in the real world, enabling
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Fig. 8 Optimal indoor farming system light pulse snapshots. Ray color added for visual clarity. Colorbar added to show differential power absorption
by plants. Red corresponds to higher power absorption and blue to lower power absorption
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Table 4 Optimal indoor farming design parameters corresponding to
�best = 0.153. aperture values are unitless. Source tube values in
meters. Power values in megawatts

A1 A2 A3 A4 A5 A6

0.567 0.108 0.174 0.636 0.216 0.195
A7 A8 A9 A10 A11 A12

0.515 0.252 0.421 0.740 0.416 0.578
A13 A14 A15 A16 A17 A18

0.586 0.394 0.198 0.597 0.690 0.199

ST1 ST2 ST3 ST4 ST5 ST6

1.909 0.207 1.692 0.295 0.326 0.328
ST7 ST8 ST9 ST10 ST11 ST12

0.914 0.334 0.120 0.283 0.215 0.360

P1 P2 P3 P4 P5 P6

5.66 5.68 7.22 6.29 3.28 4.03

Fig. 9 Cost function evolution over 150 generations. The plot shows
the cost of the best performing design (red) and the average cost of the
entire population (green) as a function of successive generations. The
GA was allowed to re-adapt every 10 generations. The lowest cost in
generation 1was�

g=1
best ≈ 0.2826 andwas reduced to�

g=150
best ≈ 0.1531

by generation 150. This is a reduction of ∼ 45.82%

farmers to make informed decisions and effectively optimize
their own indoor farming setups.
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