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Abstract
As the world’s population is expected to increase, so is the global demand for food. Sustainable intensification via precision 
agriculture of existing farms can increase crop production. Agricultural spray drones have recently taken a physical role 
within precision agriculture, such as aerial application of fluids, solids, and biological control agents but have difficulties 
spraying in uncontrolled environments caused by wind shifting spray material away from intended target areas. This work 
proposes an efficient physics-based framework to provide drone operators with trajectory and spray nozzle configuration for 
optimal target crop-dusting to mitigate spray drifts while providing quantitative approximations of spray particle trajectory 
and ground concentration. The framework is coupled with a machine-learning algorithm (MLA) to aid users in their search for 
optimal results and includes two decoupled models that simulate wind and spray particle trajectories. In the model problem, 
a genetic algorithm (GA) is used to optimize the system where the optimal trajectory and spray nozzle configuration resulted 
in 64% of crop targets hit while only losing minimal spray material from spray drifts.
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1 Introduction

The world’s population is expected to be over 9 billion by 
2050, causing global food demand to increase by 35–56% 
percent to maintain current levels of world hunger [1]. 
Reaching this level of food production in a short period of 
time can prove challenging, especially with climate change 
and global conflicts negatively affecting crop yields [2–4]. 
Several emerging agricultural techniques combat these 
issues such as indoor vertical farms placed within close 
proximity of large metropolitan areas [5]. With their effec-
tive land use, vertical farms have the benefit of growing 
produce within a climate-controlled environment, enabling 
them to grow crops all year round [5]. However, most com-
mercial vertical farms are limited to growing leafy greens 
such as kale, arugula, and collard greens due to their eco-
nomic viability [5, 6]. Therefore, traditional outdoor fields 
are still best for growing other crops like corn, wheat, and 
potatoes as well as resources used for grazing livestock [6].

Farmland expansion and sustainable intensification of 
current farms can increase crop production not suitable for 
vertical farming. Although farmland area expansion can 
increase food production relatively quickly, it also leads 
to more greenhouse gases from the loss of land-based car-
bon by converting natural ecosystems to agricultural lands 
[7]. In addition, farmland expansion is the leading cause of 
deforestation which negatively impacts the natural ecosys-
tem’s biodiversity [7]. These environmental effects inhibit 
the expansion of arable land. As such, there is an apparent 
need to increase the yield of currently existing farmland to 
improve the sustainability of crop production to meet the 
world’s population growth.

Sustainable intensification includes the use of unmanned 
aerial vehicles (UAVs), also known as drones. Existing pre-
cision agriculture methods utilizing drones include remote 
aerial mapping through onboard cameras to track soil mois-
ture levels, weed detection, and seedling emergence [8]. 
Proposed inexpensive nitrite sensors that can be widely dis-
tributed within a field have the potential to provide high spa-
tial resolution data [9] which can be gathered by the use of 
drones scanning the sensor’s RFID tag as it flies by [10, 11].

Drones have recently taken a more physical role within 
precision agriculture, such as aerial application of fluids, 
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solids, and biological control agents [10]. Since 2015, when 
the Federal Aviation Administration approved the first crop-
dusting drone [12], there has been a rapid development in 
the agricultural drone market with the potential to reduce 
the amount of irrigation runoff and occupational exposure to 
harmful chemicals by eliminating the need to manually crop-
dust with backpack sprayers [13]. Research findings indi-
cate that integrating UAVs into farming practices resulted 
in a significant boost of over $400 per hectare in farmers’ 
revenue, concurrently streamlining the process of pesticide 
application by reducing time spent [14]. Among the more 
popular companies manufacturing these drones is DJI with 
their AGRAS series, capable of spraying 6 liters per second 
from each nozzle (Fig. 1). These drones also come equipped 
with onboard radar, lidar, and GPS for manual and autono-
mous operation [15] and have been used to create 3D digital 
models of agriculture fields [16].

The use of agricultural drone sprayers has been shown to 
require less than half the distance for the spray material to 
settle than the conventional mist blowers used in orchards 
[17]. However, crop-dusting drones may still have difficul-
ties spraying in uncontrolled environments. ‘Spray drift’ is 
a natural phenomenon in which wind shifts spray material 
away from intended target areas [18]. Generally, higher wind 
velocities cause more spray drift, hindering the precision of 
the drone’s aerial spray application. Even though an opera-
toris required to have a clear line of sight of their drone, 
they are typically a significant distance away. This makes 
it difficult to accurately judge where the spray material 
lands. Moreover, first-person observation of spray droplets 
provided by onboard cameras is only possible immediately 
after dispensing, and is nearly impossible to observe the dis-
tribution of spray material once it moves more than a foot 
from the onboard camera. Limited camera angles when the 
drone is far away and the hazard of contacting spray mate-
rial when the drone is close, paved the way for autonomous 

drone spray technologies that utilize GPS and camera data to 
stay on course for pesticide and fertilizer spraying [19, 20].

Due to the relative novelty of employing spray drones, 
there are limited studies of their performance comparing 
their efficacy to ground sprayers and conventional crop-
dusting aircraft [21–25]. The available literature on spray 
drone performance may even be contradictory due to 
significant variations in design parameters among the 
drones under investigation. Thus, this work proposes 
an efficient physics-based framework to provide drone 
operators with custom trajectory and spray nozzle 
configuration for optimal target crop-dusting while 
providing quantitative approximations of spray particle 
trajectory and ground concentration. While the drone is 
not autonomous, the generated trajectory will allow the 
operator to maneuver the drone to achieve optimal spray 
results. The framework is coupled with a machine-learning 
algorithm (MLA) to aid users in their search for optimal 
results.

2  Model Problem

The following section explains the framework’s physics 
calculations for generating drone trajectories, particle 
trajectories, and wind gusts. The simulation includes two 
models:

• PARTICLE MODEL: Simulates the drone displacement 
and the spray droplet dynamics,

• WIND MODEL: Simulates the background transient 
wind flow field.

The wind model solves for the transient wind velocity 
field, which affects the particle model through the drag 

Fig. 1  A crop-dusting drone spraying a field for precision agriculture. 
Image by DJI-Agras from pixabay.com Fig. 2  A schematic of model problem (not to scale)
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force induced on the spray droplets. However, the particle 
model is assumed to not affect the wind model, meaning 
the air density within the wind model does not include 
the particulate matter ejected by the drone. The model 
problem assumes the following (Fig. 2):

• Wind velocity fields are known spatially and temporally 
throughout the simulated domain.

• Drone propellers and ejected particles do not affect the 
surrounding wind velocity.

• All sprayed droplets are modeled as particle spheres of 
equal size. Particle size stays constant throughout time.

• The terrain is entirely flat.

The crop-dusting simulation is executed as follows: 

1. INITIALIZE WIND: Set wind velocity at the 
boundaries and evolve the flow field over a user-
specified time period or until steady-state is reached. 
This is done once at the beginning of the simulation 
before the drone starts to move and spray particles.

2. SET DRONE AND TARGET LOCATIONS: Load 
drone positions and target areas (crop locations) in the 
domain. Assign the drone design parameters for crop 
dusting.

3. CALCULATE PARTICLE FORCES: Spray particles 
eject from the nozzle (i.e., the drone’s center position). 
Gravitational and drag forces from localized wind 
velocities drive the velocity of the spray particles for 
the next time step.

4. STEP TIME: Iterate the drone positions along a 
trajectory calculated by translational speed and angular 
velocity. Each spray particle will move with respect to 
the predetermined forces with an explicit time-stepping 
scheme.

5. PERTURB WIND: Boundary wind velocities are 
perturbed to simulate random ‘gusts’, causing the wind 
to be transient as the drone is moving and spraying 
material.

6. TEST: If a particle is within a voxel distance to a 
target, the target is considered hit and removed from the 
domain.

7. ITERATE: If unsprayed material remains, or if the 
maximum simulation time is not reached, loop to Step 3.

This model optimizes a drone’s flight path and nozzle 
design using a Genetic Algorithm (GA) by minimizing a 
cost function through a non-derivative search.

(1)Π = W1

Poutside

Ptotal

+W2

Tremaining

Ttotal
+W3

tactual

tmax

where Ptotal and Ttotal are the total number of spray particles 
and targets at the start of the simulation. tmax is the maxi-
mum amount of seconds each simulated run is allowed. 
After each completed simulated run of a drone spray, Eq. 1 
will determine how well the drone’s design parameters have 
performed by using the total number of particles that have 
drifted outside the domain Poutside , the number of targets 
remaining that were not hit by spray particles Tremaining and 
the amount of time it took in simulated seconds, tactual . The 
weights, W1 , W2 , and W3 , can be chosen by the drone operator 
to prioritize certain objectives.

2.1  Particle Model

2.1.1  Drone Flight Path

The drone’s initial direction is defined by the normal vector, 
nd(t = 0) at the start of the simulation. At each subsequent 
step, its movements are governed by rigid body kinematics 
using Forward-Euler integration to determine the spray 
nozzle’s position, rd , at timestep ( t + Δt ) by

A constant angular velocity, � , and a constant translational 
speed, Vd , are set in the initializing phase to control the 
drone’s velocity, vd , by

2.1.2  Particle Dynamics

The spray droplets are defined as spherical particles. The 
nozzle ejects each particle in a randomized direction within 
the bounds of a right circular cone-shaped region whose 
apex emanates from the drone’s center position. This cone-
shaped spray region will have a specified amplitude, A, with 
its normal vector, ng = (0, 0,−1) , being perpendicular to the 
ground. Specifically, the initial unit normal direction, ni , of 
each particle i in the system is given by

where nr is a random unit vector, and A is the spray region 
amplitude as shown in Fig. 3.

The ejection speed, Veject , is multiplied with ni to obtain 
the particle’s initial velocity from the drone.

(2)rd(t + Δt) ≈ rd(t) + Δtvd(t).

(3)vd,translational(t) = Vdnd,

(4)vd,rotational(t) = rd × �,

(5)vd(t) = vd,translational(t) + vd,rotational(t).

(6)ni =
Anr + ng

||Anr + ng|| ,
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The total velocity of the particle once it is ejected from 
the drone is vi,o + vd . The drone sprays a total amount of 
material mass, Mtot , for each simulated run. For each particle 
with radius, rp , the mass is calculated by

where �p is the density of the spray material. Therefore the 
total number of particles released by the drone is found by

The number of particles released per time step is calculated 
by

where the parameter, � , is the drop rate of particles in  m3/s, 
which will be optimized with a GA.

The airborne particles moving through space are only 
affected by drag, Fd , and gravitational forces, Fg . Therefore, 
the spray particles’ equation of motion is given by

where v̇i is the time rate of change of particle i’s velocity. 
Forward Euler integration of (11) respectively yields a 
particle’s velocity and position at time (t + Δt)) to be

(7)vi,0 = Vejectni.

(8)m =
4

3
�r3

p
�p,

(9)Np =

⌊
Mtot

m

⌋
.

(10)
Np,ejected

time step
=

3�Δt

4�r3
p

,

(11)mv̇i = Fd,i + Fg,i = Ftot
i
,

(12)vi(t + Δt) ≈ vi(t) +
Δt

m
Ftot
i
(t),

Note that if the particle’s height is less than 0 m (i.e., 
ri,z(t + Δt) < 0 ), then its height is set to 0 m and is no longer 
tracked in the simulation.

Gravitational forces are constant on each airborne particle 
and are given as Fg,i = mg , where g is the gravitational 
constant at Earth’s surface (0, 0,−9.81) m/s2. The drag force 
contribution to the motion of the particles is given as

where �a and va are the density and wind velocity of the 
surrounding air, respectively. Ax is the particle cross-
sectional area given by Ax = �r2

p
 , and Cd,i is the drag force 

coefficient which is a function of the Reynolds number, Re. 
The drag force coefficient is calculated using the following 
piece-wise continuous function from [26]:

2.2  Wind Model

The background transient wind flow is modeled as a viscous 
incompressible fluid and is numerically approximated using 
a finite difference scheme to solve the mass continuity and 
conservation of momentum equations. In this section, v only 
corresponds to the velocity field of the wind flow and � only 
to the air density, which should not be confused with the 
particle dynamics from the previous section. It is important 
to note that the wind is modeled separately from the particle 
dynamics. In this simulation, the wind velocity along the 
boundary is determined randomly, however, it could also 
be determined stochastically based on a historical range at 
the target farmland location. After solving for the initial 
velocity field prior to the drones’ movement, the background 
wind velocity field is now considered to be transient and 
would only affect the trajectory of the droplets for the next 
few user-determined timesteps (e.g. the next 5 timesteps). 
Afterward, a new set of boundary wind velocities would 
be provided to solve for a new background transient wind 
velocity field; thus, it would introduce uncertainty within the 
simulations. In the context of this work, only the direction 
of boundary wind will be pertabated while its’ magnitude 
will remain constant in order to capture the effects of random 
gusts. The details of the numerical implementation will be 
explained in Section 4.

(13)ri(t + Δt) ≈ ri(t) + Δtvi(t).

(14)Fd,i =
1

2
�aCd,iAx||va − vi||(va − vi),

(15)Cd,i =

⎧
⎪⎪⎨⎪⎪⎩

24

Re
, 0 < Re ≤ 1
24

Re0.646
, 1 < Re ≤ 400

0.5, 400 < Re ≤ 3 × 105

0.000366Re0.4275, 3 × 105 < Re ≤ 2 × 106

0.18, 2 × 106 < Re

.

Fig. 3  Geometric representation of the cone-shaped spray region
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2.2.1  Wind Flow Model

The background wind is modeled as a Newtonian viscous 
fluid. The Cauchy stress tensor for the fluid is defined as

where p is pressure (an unknown field variable instead 
of a function of density due to the assumption of the 
incompressibility), � is the kinematic viscosity coefficient, 
and D is the symmetric component of the spatial velocity 
gradient L = ∇v . Therefore, the governing equation 
for the wind model is the Navier–Stokes equation for 
incompressible Newtonian viscous fluid (see Appendix for 
further discussion on the incompressibility assumption and 
its restrictions on the simulation parameters), which states

where b is the body force and ∇⋅ is the divergence operator. 
It is important to note that the kinematic viscosity coefficient 
is a function of space. Therefore, the ∇ ⋅ (2�D) term cannot 
be reduced into the more common expression, �∇2v , where 
∇2 is the Laplacian operator. For convenience, the viscous 
component of the Cauchy stress tensor will be referred to 
as � = 2�D.

2.2.2  Numerical Discretization of Wind Field

Further assumptions are made when discretizing the 
governing equation in (17). Due to the limited height in 
the simulation, the effect of pressure gradient is neglected. 
Moreover, the wind flow is modeled without body forces 
( b = 0 ). With these two assumptions, the linear momentum 
balance equation from (17) can be simplified as

After expanding the material time derivative of the velocity 
field, the linear momentum balance becomes

After temporal discretization of the linear momentum 
balance using Forward Euler ( �v

�t
≈

vn+1−vn

Δt
 ), the velocity at 

the n + 1 timestep can be obtained by

The only terms remaining to be discretized are the 
velocity gradient and divergence of the viscous 
component of the stress tensor. Using finite difference 
methods for spatial discretization, the domain is 
discretized into uniform voxels with uniform lengths, h. 

(16)T = −pI + 2�D,

(17)∇ ⋅ v = 0,−∇p + ∇ ⋅ (2�D) + �b = �v̇,

(18)𝜌v̇ = ∇ ⋅ � .

(19)�
�v

�t
= −�(∇v)v + ∇ ⋅ � .

(20)vn+1 = vn + Δt

(
−(∇vn)vn +

1

�
(∇ ⋅ �

n)

)
.

Each voxel has its own time dependent velocity vector 
v(i, j, k) = (vx(i, j, k), vy(i, j, k), vz(i, j, k)) and kinematic 
viscosity �(i, j, k) , where the indices i , j , and k indicate the 
voxel position. The kinematic viscosity and velocity vector 
are assumed to be constant within each voxel. Recall the 
components of the velocity gradient are

Using �vx
�x

 at the voxel location (i, j, k) as an example, it would 
be approximated as

using the velocities from its neighbor voxels along the 
x-axis. Recall the components of the viscous stress tensor as

The components of the divergence of the viscous component 
of the stress tensor become

As seen in (24), the derivative of the flux and the cross-
derivative of the flux will need to be discretized accordingly. 
Using �

�x

(
�

�vx

�x

)
 at the voxel location (i, j, k) as the example 

for the derivative of the flux, it would be approximated as

where

and

(21)∇vn =

⎡⎢⎢⎢⎣

�vx

�x

�vx

�y

�vx

�z
�vy

�x

�vy

�y

�vy

�z
�vz

�x

�vz

�y

�vz

�z

⎤⎥⎥⎥⎦
.

(22)
�vx

�x
≈

vx(i + h, j, k) − vx(i − h, j, k)

2h

(23)

� =

⎡⎢⎢⎢⎢⎣

2�
�vx

�x
�

�
�vx

�y
+

�vy

�x

�
�

�
�vz

�x
+

�vx

�z

�

�

�
�vx

�y
+

�vy

�x

�
2�

�vy

�y
�

�
�vy

�z
+

�vz

�y

�

�

�
�vz

�x
+

�vx

�z

�
�

�
�vy

�z
+

�vz

�y

�
2�

�vz

�z

⎤⎥⎥⎥⎥⎦
.

(24)

∇ ⋅ � =

⎡⎢⎢⎢⎢⎣

2
�

�x

�
�

�vx

�x

�
+

�

�y

�
�

�
�vx

�y
+

�vy

�x

��
+

�

�z

�
�

�
�vz

�x
+

�vx

�z

��

�

�x

�
�

�
�vx

�y
+

�vy

�x

��
+ 2

�

�y

�
�

�vy

�y

�
+

�

�z

�
�

�
�vy

�z
+

�vz

�y

��

�

�x

�
�

�
�vz

�x
+

�vx

�z

��
+

�

�y

�
�

�
�vy

�z
+

�vz

�y

��
+ 2

�

�z

�
�

�vz

�z

�

⎤⎥⎥⎥⎥⎦

(25)

�

�x

(
�
�vx

�x

)
≈

1

h

((
�
�vx

�x

)||||(i+ h

2
,j,k)

−

(
�
�vx

�x

)||||(i− h

2
,j,k)

)

= �(i +
h

2
, j, k)

vx(i + h, j, k) − vx(i, j, k)

h2

− �(i −
h

2
, j, k)

vx(i, j, k) − vx(i − h, j, k)

h2
,

(26)�(i +
h

2
, j, k) ≈

1

2
(�(i + h, j, k) + �(i, j, k))
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Lastly, using �
�y

(
�

�vx

�x

)
 at the voxel location (i, j, k) as the 

example for the cross derivative of the flux, it would be 
approximated as

(27)�(i −
h

2
, j, k) ≈

1

2
(�(i, j, k) + �(i − h, j, k)).

(28)

�

�y

(
�
�vx

�x

)
≈

�

�y

(
�(i, j, k)

vx(i + h, j, k) − vx(i − h, j, k)

2h

)

=
1

4h2

[
�(i, j + h, k)

(
vx(i + h, j + h, k)

− vx(i − h, j + h, k)
)

− �(i, j − h, k)
(
vx(i + h, j − h, k)

− vx(i − h, j − h, k)
)]
.

Other derivatives follow this format, consistent with finite 
difference practices [27].

Figures 4, 5, and 6 pictorially demonstrate the formu-
las outlined above. A grey square demonstrates the active 
voxel where the formula is calculated. The active voxel is 
positioned at the spacial indices (i, j, k) and each voxel has 
a length of h. A solid circle represents an evaluated veloc-
ity term, likewise, an ‘X’ represents an evaluated � term. A 
hollow diamond represents a computed �vx

�x
 term with respect 

to the vertically adjacent voxels.
Following Zohdi [28], the equations for wind flow are 

solved using a matrix-free voxel approach. A voxel, derived 
from ‘volumetric pixel’, is used to describe a piece of dis-
cretized space that carries the material properties at its nodal 
location. Storing all voxel properties in arrays and advanc-
ing through each voxel successively to solve an equation 
of interest allows scaling the number of voxels within the 
domain without occupying too much computer memory as 
it requires no matrices to be formed, such as in finite ele-
ment methods. Specifically, voxel velocity values v were suc-
cessively solved using the Gauss-Seidel method where the 
spatial derivatives within the velocity gradient ∇v in Eq. 19 
are calculated using its latest updated values from adjacent 
voxels (Fig. 7).

2.3  Model Performance Optimization

Optimizing simulation run-time performance is imperative 
for real-time digital twin and GA capabilities. Poor 
simulation performance is caused by having to calculate 
drag forces on each spray particle at every timestep. Instead, 
drag force calculations for these simulations were updated 
periodically every couple of timesteps. A spatial hashing 
algorithm helps to rapidly determine each airborne particle’s 
current voxel it is in and the drag force imposed on each 
particle depends on their voxel’s wind velocity. Although 
periodic drag force updates cut down on computational time, 

Fig. 4  Discrete gradient �vx
�x

Fig. 5  Discrete derivative of the flux �
�x

(
�

�vx

dx

)

Fig. 6  Discrete cross derivative flux �
�y

(
�

�vx

dx

)

Fig. 7  Successively updating each voxel’s properties by Gauss–Seidel 
method which depends on the most updated values of the surrounding 
voxels
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model accuracy diminishes if the algorithm takes too long to 
update because particles may traverse through several voxels 
without having their respective drag forces acting upon those 
particles. Thus, one must be mindful of determining the 
frequency of updating the physics which depends on the 
spray particle speed and voxel size.

3  Machine Learning for Optimized 
Parameter Search

The model problem in this work involves many design 
parameters and a nonconvex cost function, making it 
difficult to use gradient-based optimization schemes. Thus, 
we elect to use a genetic algorithm for optimization.

For the model in this work, the design parameters the 
GA optimizes are 

1. Λ1,Λ2,Λ3 =  t h e  i n i t i a l  d r o n e  p o s i t i o n , 
rd(0) = (rd,x(0), rd,y(0), rd,z(0)),

2. Λ4 = the particle eject speed, Veject,
3. Λ5 = the total mass of spray material, Mtot,
4. Λ6 = the nozzle spray amplitude, A,
5. Λ7,Λ8,Λ9 =  t h e  i n i t i a l  d r o n e  d i r e c t i o n , 

nd(0) = (nd,x(0), nd,y(0), nd,z(0)),
6. Λ10 = the translational speed of the drone, Vd,
7. Λ11 = the drop rate of spray particles, �,
8. Λ12,Λ13,Λ14 = the angular velocity of the drone, 

� = (�x,�y,�z).

Explicitly, the design string is:

Genetic algorithms can determine multiple local minima for 
the cost function, Π(�) . The user can then choose from the 
GA results which optimal drone trajectory to use to achieve 
desired spray results (Fig. 8).

The algorithm was adapted from Zohdi [28, 29] to mini-
mize the cost function presented in Eq. 1. The algorithm 
for optimizing the system parameters for the drone dynam-
ics and sprayer nozzle follows: 

1. POPULATION GENERATION:   Randomly generate 
a population of S genetic strings, �i , ( i = 1, 2, 3,… , S):

  �
idef={Λ1,Λ2,… ,Λ14}

i.
2. PERFORMANCE EVALUATION:   Compute fitness 

of each string, Π(�i) , ( i = 1,… , S):

(29)� = {Λ1,… ,Λ14}

(30)
= {rd,x(0), rd,y(0), rd,z(0),Veject,Mtot,A, nd,x(0),
nd,y(0), nd,z(0),Vd, �,�x,�y,�z}.

  Π(�i)
def
=W1

Poutside

Ptotal

+W2

Tremaining

Ttotal
+W3

tactual

tmax
.

3. RANK: Rank each string based on their cost output 
Π , where Rank 1 is the best-performing design string 
that produced the lowest cost and Rank S is the worst 
performing string:

  Π(�1) ≤ Π(�2) ≤ ... ≤ Π(�S).
4. MATE: Mate nearest pairs of design strings and produce 

two offspring:
  Λi

def
=Φ(1)Λi + (1 − Φ(1))Λi+1 and 

Λi+1 = Φ(2)Λi + (1 − Φ(2))Λi+1 where 0 ≤ Φ ≤ 1 are dis-
tinct for each design parameter within the design string.

5. GENE ELIMINATION: Eliminate poorly performing 
genetic strings, keep top parents, and generate offspring.

6. POPULATION REGENERATION: Repeat the 
process with the parent, offspring, and new random 
genetic strings.

7. RESTART : Restart the search around the best-
performing parameter if the same parents are carried 
over every 10 generations.

Fig. 8  The GA optimization process for the model problem. S design 
strings ( �i for i = 1,… , S ) are randomly generated, evaluated, 
ranked, mated, eliminated, and regenerated throughout a set number 
of generations
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4  Numerical Example

A 30 m × 30 m × 30 m domain discretized into 21 voxels 
per axis was initialized. 300 targets were randomly placed 
within a circular region on the ground, and wind speeds 
were initialized along the boundaries. The initial conditions, 
(vx(t = 0 s), vy(t = 0 s), vz(t = 0 s)) , for each of the six 
boundaries of the domain were:

• (3.0, 0.0, 0.0) m/s for the east-facing boundary,
• (2.0, 0.0, 0.0) m/s for the west-facing boundary,
• (0.0, −1.0, 0.0) m/s for the north-facing boundary,
• (0.0, −1.5, 0.0) m/s for the south-facing boundary,
• (0.0, 0.0, 1.0) m/s for the top-facing boundary and
• (0.0, 0.0, 0.0) m/s for the bottom-facing (ground) boundary.

The wind velocity field within the domain evolves until it 
reaches a steady state, then the crop-dusting drone with the 
design parameters given by the GA was initialized. When 
the simulation starts, the drone will move based on its angu-
lar velocity and translational speed while spraying material 
droplets whose trajectory is affected by the wind velocity. 
For every few time steps, the inflow wind velocity direction 
from the west-facing boundary was perturbed by changing 
its direction within a cone region with a specified amplitude, 
similar to randomizing the direction of ejected particles as 
shown in Eq. 6. This is to allow for randomness in wind and 
to not allow a steady flow form in the domain. This is to bet-
ter simulate what may occur in an uncontrolled environment 

such as an open field. As the drone traverses, if it attempts to 
go below a height of 2 m, its z position, rd,z , will be reset to 
2 m. If the drone travels outside the bounds of the domain, 
the simulation will stop and return a large cost value, penal-
izing such designs. The simulation parameters are shown 
in Table 1.

The GA ran for 400 generations, each containing a 
population of 50 design strings. For each generation, the 
top 10 parent design strings are kept and mated to make ten 
additional offspring design strings while the lower ranked 
strings are eliminated. If the same parent strings are carried 
over for ten successive generations, the parameter search 
will restart around the best-performing design. This process 
involves only keeping the best design and eliminating all the 
other 49 design strings and replacing them with randomly 
generated strings. After the GA run, the best-performing 
design’s particle and flight trajectories and the resulting 
ground concentration of spray material are saved.

5  Results

Figure 9 shows the reduction of the best-performing design 
string’s and population’s average cost over 400 generations. 
Compared to the initial population average cost, the best 
design cost was reduced by 65% by the end of the GA run. 
While the overall curve for the best design cost is monotonic, 
the jaggedness between generations pertains to the random 
gusts introduced to the simulation at each run. The average 

Table 1  Crop-dusting simulation and GA parameters

Symbol Type Units Value Description

Ldomain Scalar m 30 Domain length, width and height
DT Scalar m 22 Diameter of circular region where targets are placed
Ttotal Scalar None 300 Number of targets in the simulation
tmax Scalar s 60 Maximum simulation time
rp Scalar mm 0.5 Radius of each spray particle
�p Scalar kg/m3 1000 Density of spray material
Vd Scalar m/s [0,3] Search bounds for drone’s translational speed
r−
d,xy

 , r+
d,xy

Scalar m [− 15,15] Search bounds for drone’s x and y starting position
r−
d,z

 , r+
d,z

Scalar m [2,30] Search bounds for drone’s z starting position
�−
xyz

 , �+
xyz

Vector rad/s [− 5,5] Search bounds for angular velocity
n−
d,xyz

 , n+
d,xyz

Vector None [− 1,1] Search bounds for drone’s direction
A− , A+ Scalar None [0.1, 1.0] Search bounds for spray nozzle’s amplitude
V−
eject

 , V+

eject
Scalar m/s [1,7] Search bounds for material ejection speed

�− , �+ Scalar m3/s [1e−4, 2e−3] Search bounds for material drop rate
M−

tot
 , M+

tot
Scalar kg 2 Search bounds for total amount of material sprayed

W
1

Scalar None 15 Cost function weight associated with material leaving the domain
W

2
Scalar None 80 Cost function weight associated with remaining targets

W
3

Scalar None 5 Cost function weight associated with simulation time
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population costs spiked at generations 129 and 229, where the 
GA had to restart around the best-performing design due to the 
parent strings being the same for the prior ten generations. For 
the first restarting at generation 129, there was little difference 
in the best design’s performance, still maintaining a cost of 
38.9. However, for the second restarting event at generation 
229, it helped reduce the cost significantly from 38.2 to 33.8, 
which it maintained at that cost until the 400th generation.

After 400 generations, the GA produced the design param-
eters shown in Table 2, resulting in a crop-dusting drone per-
forming a circular trajectory above the targeted areas while 
releasing 4.7 kg of material. Snapshots of the drone spraying 
over time are shown in Fig. 10. The design string resulted in 
192 out of 300 targets hit by the material resulting in a 64% 
hit rate. The optimal trajectory, shown in Fig. 11a, maintains a 
low altitude averaging 2.6 m with a maximum height of 3.4 m 
and a minimum height set by the flight bounds of 2 m. This tra-
jectory reduces the chance of spray drifts occurring by having 
the ejected particle speed of 3.52 m/s be the dominant force 
over the surrounding wind causing only 0.03 kg of material 
blown out of domain bounds.

It is also beneficial for a crop-dusting drone operator to 
know the concentration distribution of material on the ground 
to ensure proper application. The framework provides post-
process results of a simulated run such as Fig. 11b, which 
show the amount of material in kg/m2 on the ground. From 
the optimal design string shown in Table 2, the spray pat-
tern on the ground follows the circular trajectory. Most of the 
covered area consists of an average amount of 0.035 kg/m2 
except for 10  m2 worth of space which contained more than 
0.055 kg/m2. Figure 11a shows the starting and ending posi-
tions are relatively close to one another which caused the area 
in between to be sprayed twice, resulting in higher levels of 
material concentration.

6  Discussion

Precision agriculture involves collecting spatial and 
temporal data throughout a growing season and using this 
data to match the inputs to site-specific conditions. As 
farms are beginning to use a variety of embedded sensors 
and mapping technologies to monitor the status of their soil 
and crops, managing site-specific issues requires techniques 
for efficient use of resources. The framework described 
can provide guidance and training to a crop-dusting drone 
operator tasked with spraying fertilizer, water, or other soil 
amendments in areas of interest. This framework provides 
an optimal trajectory and nozzle configuration of a crop-
dusting drone to minimize the amount of material lost due 
to spray drifts from given wind drag synced with weather 
data. Extensions to this framework can be made by using 
3D models of agriculture fields for the domain, furthering 
its use a digital twin, enabling the user of optimal drone 
configuration in real-time in the physical environment 
[30–34]. Even though the ground concentration of sprayed 
material does not play a factor in the GA’s search for an 
optimal design, one may want to extend the cost function 
to include a desired range of concentrations to avoid high 
variation. In addition, this work is limited by small droplet 
particles not having interaction with one another. For 
distributing solid granular particles that can collide with 
one another, one can implement the work found in [35]. 
This modification can further help reduce environmental 
pollution, such as groundwater contamination and 
greenhouse gases [36] as plants recover only 30–50% of 
nitrogen in fertilizers [37], making the rest a potential source 
of agriculture runoff.

Fig. 9  Costs of best design string (red) and the average cost of the 
population (green) throughout 400 generations. The GA restarts at 
generations 129 and 229 because the same parent strings {�1

,… ,�
P} 

survived for ten consecutive generations. These events caused the 
average population performance to rise significantly but helped find 
a more optimal result by generation 237, reducing the cost function 
by an additional 4.4%. The cost function stayed consistent for the 
remaining generations

Table 2  Optimized parameters { Λ
1
,… ,Λ

14
 } generated by the GA after 400 generations with a population of 50 design strings per generation

Λ
1

Λ
2

Λ
3

Λ
4

Λ
5

Λ
6

Λ
7

Λ
8

Λ
9

Λ
10

Λ
11

Λ
12

Λ
13

Λ
14

�

− 4.24 − 4.33 2.99 3.52 4.70 0.71 0.70 − 0.35 − 0.62 1.89 1.54e−3 0.28 − 0.24 − 2.32 33.8
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7  Conclusion

The objective of this work was to develop a framework 
capable of training crop-dusting drone operators on how 
to spray specific sites within a farm field for the purposes 
of precision agriculture. The framework uses multiphysics 
particle dynamics of rigid body motion and fluid dynam-
ics to calculate spray droplet trajectory to mitigate spray 

drifts from occurring in various wind conditions. A genetic 
algorithm was used to ascertain the optimal trajectory of 
the crop-dusting drone as well as the spray rate and ampli-
tude for the nozzle. A model problem was shown of a drone 
spraying a patch of targets in which the optimal design string 
generated a drone trajectory and nozzle configuration result-
ing in 64% of the targets hit while only losing 0.6% of the 
total spray mass lost from spray drifts. This framework also 

Fig. 10  From left to right and 
top to bottom are simulation 
frames of the crop-dusting 
drone with optimized param-
eters provided by the GA at t = 
1, 2, 3, 4, and 5 s, respectively. 
The figure on the right-most 
bottom is the frame at final t = 
60 s, showing where particles 
have landed within the domain. 
64% of the targets were hit 
with only a loss of 0.6% of the 
total spray mass leaving the 
domain due to spray drifts. The 
blue streaks across the domain 
represent the streamlines of air 
in that frame
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provides further analysis of spray material ground concen-
tration to give more detailed insight into where the spray 
material landed within the area. The current simulation of 
a single design runs in the order of seconds on a standard 
laptop. As the sprayed area increases, it is expected that the 
simulation time will scale linearly, as the model will run the 
crop-dusting simulation in cubic partitions of the domain.

One can expand this work by automating drone control 
input through Model Predictive Control (MPC) algorithms 
resulting in little to no input from a manned operator 

[38]. MPC can automate the specific inputs needed for 
a drone’s yaw, pitch, roll, and thrust to keep it within the 
optimized trajectory provided by this framework all while 
handling physical and safety constraints. Furthermore, one 
can include more crop-dusting drones spraying simulta-
neously, thus creating an agent-based model of a drone 
swarm. Such collaboration of multiple drones can further 
reduce the time and energy required to spray the areas of 
interest. Such frameworks for multi-agent collaboration 
can be seen in the works of Goodrich et al. [11] and Zohdi 
[39].

Appendix: Wind Model Incompressibility 
Assumption

A fluid can only be incompressible if it can only undergo 
volume-preserving (or isochoric) motions, which implies 
the determinant of the deformation gradient should 
always be unity ( J = det(F) = 1 ). Thus, a fluid can only 
undergo isochoric motions if and only if its velocity field 
is divergence-free ( ∇ ⋅ v = 0 ). Observe that

where L is the (spatial) velocity gradient. Assuming that 
there exists an initial undeformed reference state such that 
J = 1 , the sufficient condition can be verified as if ∇ ⋅ v = 0 , 
then J̇ = 0 implies that J = 1 for all time. Similarly, the 
necessary condition can be verified as J̇ = 0 implies that 
∇ ⋅ v = 0 for every admissible motion ( J ≠ 0).

In general, incompressible flow is a strong assumption 
to make as it would suggest that there would be no 
density fluctuation with the fluid. The absence of density 
perturbation can be shown using the mass continuity 
equation along with the Reynolds Transport Theorem 
as any arbitrary subregion or control volume is also a 
function of time. Under the assumption that there exists 
a referential/Lagrangian configuration and a current/
Eulerian configuration such that the infinitesimal volume 
element from both configurations is related by dv = JdV  , 
the Reynolds Transport Theorem can be derived by 
first pulling back to the Langrangian configuration to 
apply the time differentiation and afterward pushing 
forward back to the Eulerian configuration. Utilizing 
this approach and for any scalar-field variable � , the 
Reynolds Transport Theorem states

(31)
J̇ =

d

dt
detF =

(
d

dF
detF

)
⋅

dF

dt
= Jtr

(
ḞF−1

)

= JtrL = J∇ ⋅ v,

Fig. 11  Post-processed results from the proposed framework with 
optimized parameters given by the GA shown in Table  2. Top The 
framework provided a circular trajectory for optimal spraying of tar-
gets while minimizing the amount of spray material carried away by 
spray drifts. The trajectory follows a counterclockwise circular pat-
tern 3 m above the ground. Bottom Resulting ground concentration of 
spray material on the ground. The pattern resembles the drone’s cir-
cular trajectory. Most sprayed areas have an average amount of 0.035 
kg/m2 (green) with 10  m2 of space with more than 0.055 kg/m2 (red) 
due to that area being sprayed twice
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Applying the Reynolds Transport Theorem (32) to the mass 
continuity equation yields

After arriving at the local form of (33)

it can be easily observed that if the velocity field is 
divergence-free ( ∇ ⋅ v = 0 ), then the material time derivative 
of the density field is zero ( �̇� = 0 ), suggesting that the 
density of the air would remain constant. This is a very 
critical assumption to make as the physics of atmospheric 
flow is a complex subject. For example, the effective air 
density can be easily affected by the moisture of the air or 
other dusting particles. In addition, there could also be a 
Boussinesq-like Equation of State relationship that connects 
the fluid’s density to its pressure, which would be unphysical 
under the incompressibility assumption where the density 
field is constant. For the incompressibility assumption to 
hold in this framework, certain restrictions will need to be 
enforced. First, the physical height of the simulation domain 
is restricted to only 30 ms from ground level, which should 
be far below the planetary boundary layers and thus be able 
to neglect any effects of stratified flow. Second, the velocity 
field of the wind will be significantly restricted in the 
simulation such that the maximum speed will be under 3 m/s 
for all time. This second restriction will ensure that the max 
Mach number, which is generally defined as the ratio of the 
flow velocity over the speed of sound in the medium, within 
the simulation domain is small (For a max speed of 3 m/s 
and using the standard speed of sounds of 343 m/s at 20 
degrees Celsius, the maximum Mach number is the 
simulation is approximately 0.01). These two restrictions 
would ensure the wind in the simulation behaves similarly 
to other wind engineering applications, such as single-
turbine simulations [40], that assume the wind is 

(32)

d

dt ∫R

𝜙dv =
d

dt ∫R0

𝜙JdV

= ∫
R0

(
�̇�J + 𝜙J̇

)
dV

= ∫
R0

(
�̇�J + 𝜙J∇ ⋅ v

)
dV

= ∫
R0

(
�̇� + 𝜙∇ ⋅ v

)
JdV

= ∫
R

(
�̇� + 𝜙∇ ⋅ v

)
dv.

(33)

d

dt
m =

d

dt ∫R

𝜌dv

= ∫
R

�̇� + 𝜌∇ ⋅ vdv

= 0.

(34)�̇� + 𝜌∇ ⋅ v = 0,

incompressible. In fact, the height of the simulation domain 
is selected to roughly match the hub height of a Vestas V27 
(31.5 m) [41]. As a general rule of thumb, most engineering 
applications assume a fluid flow to be incompressible when 
the Mach number is less than 0.3, however, it is also 
important to note that low Mach number does not imply 
incompressible flow. The general argument for the low Mach 
number approximation is presented for a steady elastic fluid, 
where the Cauchy stress tensor is defined as T = −pI , where 
the pressure p = p̂(𝜌) is defined as a function of the fluid 
density � . The speed of sound � is defined as a scalar 
function 𝜅2(𝜌) =

dp̂

d𝜌
 . For this steady elastic fluid, the local 

mass continuity (34) equation can be rewritten as

where the ��
�t

 vanishes due to the assumption of steady flow. 
This allows the material time derivative of the density field 
to be rewritten as

Under the assumption that the body force is neglectable, the 
local balance of linear momentum states

Equation (37) can be rewritten using chain rule as

Now taking the dot product with respect to the velocity on 
both for (38) and using (36) yields

Now, the left-hand side of (39) can be rewritten as

where ��v�� = √
v ⋅ v is the standard Euclidean norm of the 

velocity or the wind speed. Recalling the definition of the 
Mach number, which is defined as M =

||v||
�

 , (39) can now 
be rewritten as

When Mach number M tends to zero, the left-hand side 
of (41) approaches zero, which suggests that the density 

(35)

�̇� + 𝜌∇ ⋅ v =
𝜕𝜌

𝜕t
+ (∇𝜌) ⋅ v + 𝜌∇ ⋅ v

=
𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌v)

= ∇ ⋅ (𝜌v) = 0,

(36)�̇� = −𝜌∇ ⋅ v = −∇ ⋅ (𝜌v) + (∇𝜌) ⋅ v = (∇𝜌) ⋅ v.

(37)𝜌v̇ = ∇ ⋅ T = −∇p.

(38)𝜌v̇ = −
𝜕p

𝜕𝜌
(∇𝜌) = −𝜅2(∇𝜌).

(39)𝜌v̇ ⋅ v = −𝜅2(∇𝜌) ⋅ v = −𝜅2�̇�.

(40)𝜌v̇ ⋅ v =
1

2
𝜌 ̇v ⋅ v =

1

2
𝜌

̇||v||2 = 𝜌(||v||) ̇||v||,

(41)−M2

̇||v||
||v|| =

�̇�

𝜌
.
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fluctuation would be very small. Therefore, �̇� = 0 would be 
a safe assumption to make.
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