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 A B S T R A C T

The goal of this work is to develop a machine-learning enabled digital-twin to rapidly ascertain 
optimal programming to achieve desired tactical multi-drone swarmlike behavior. There are 
two main components of this work. The first main component is a framework comprised of 
a multibody dynamics model for multiple interacting agents, augmented with a machine-
learning paradigm that is based on the capability of agents to identify (a) desired targets, (b) 
obstacles and (c) fellow agents, as well as the resulting collective actions of the drone-swarm of 
agents. The objective is to construct a system with entirely autonomous behavior by optimizing 
the actuation parameter values that are embedded within the coupled multibody differential 
equations for drone-swarm dynamics. This is achieved by minimizing a cost-error function that 
represents the difference between the simulated overall group behavior and in-field behavior 
from observed ground truth synthetic data in the form of temporal snapshots corresponding 
to multiple camera frames. The second main component of the analysis is to deeply assess the 
structural performance of drone-swarm members, by studying chassis design, deployment and 
dynamic-structural performance. As an example, we investigate a tactical quadcopter drone 
under attack, specifically by subjecting it to series of launched explosions. A Discrete Element 
Method (DEM) is developed to rapidly design a quadcopter of any complex shape, attach motors 
and then to subject it to a hostile environment, in order to ascertain its performance. The 
method also allows one to describe structural damage to the quadcopter drone, its loss of 
functionality (thrust), etc. Furthermore, the use of DEM can also capture fragmentation of the 
quadcopter and can ascertain the resulting debris field. Numerical examples are provided to 
illustrate the two components of the overall model, the computational algorithm and its ease 
of implementation.

1. Introduction

Research on drones started in the early 1900s, and was initially oriented towards military applications. This research accelerated 
during World War II, in order to train antiaircraft gunners and to fly attack missions. However, with the exception of the V-2 
(Vergeltungswaffe/vengeance weapon) rocket system program in Germany, they were primarily miniature airplanes. It was not 
until the 1960s, with a variety of military conflicts and concern about losing pilots over hostile territory, that drone research started 
to grow rapidly. Over the last 20 years, interest in drones has grown dramatically and they have become an integral part of many 
societal, industrial and defense portfolios. Generally speaking, most drones that are deployed for long distance operations are fixed 
wing aircraft, while rotorcraft, such as quadcopters, are used for precise ‘‘stop and go’’ operations. We note that cruise missiles are 
not considered to be drones, since they are the munition payload, although recently many ‘‘kamikaze drones’’ have been deployed 
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Fig. 1. Natural (left) swarm behavior (starlings, Sturnus Vulgaris, free stock photo from Pixabay) and (right) synthetic drone-swarms. The objective is to construct 
desired collective behavior by manipulating individual characteristics.

in armed conflicts and the difference between the two is now debatable. Drones have varying degrees of autonomy, ranging from 
(a) complete remote control by humans to (b) autopilot assistance to (c) completely independent autonomy, which include features 
such as (1) GPS waypoint navigation (2) preprogrammed routes (3) preprogrammed delivery (4) automated take-off and landing 
(5) failsafe landing and (6) return to home. Furthermore, depending on their intended use, flight duration, altitude, range, etc., 
their power sources could be any of the following (1) fuel-power sources, which are suitable for high-altitudes and long range 
operations, for example for military operations, (2) battery-power sources, which are for quiet applications in complex environments, 
with limited flight times, which make them ideal for agricultural facilities, industrial facilities and cities, (3) hybrid electric-fuel 
power sources, which are suitable for dual use operations where fuel and battery powered operations are needed and (4) solar-
power sources, for extremely long duration and high-altitude operations that involve monitoring large areas. Under development 
are nuclear-powered and hydrogen fuel-cell powered systems, which have their own challenges, due to concerns over crash-safety.

Commercially, due to the steady increase in inexpensive drones and camera technology, there are a wide variety of non-military 
applications, such as world-wide anti-poaching and anti-whaling efforts. For example in oil and gas exploration, drones have been 
used for geophysical mapping, in particular geomagnetic surveys, where measurements of the Earth’s varying magnetic field strength 
are used to calculate the nature of the underlying magnetic rock structure, in order to locate mineral deposits. Because of the huge 
areas associated with oil and gas pipelines, monitoring activity can be enhanced and accelerated by deployment of drones. In the field 
of archaeology, drones are used to accelerate surveying to protect sites from looters. Another direct application is cargo transport, 
which has been promoted by Amazon, DHL, Google, etc. The use of drones in agriculture is also advantageous for crop dusting, 
crop health monitoring and precision agriculture. In summary, the variety of uses is constantly growing and is immense. Current 
drone research is wide-ranging, spanning:

• fundamentals: aerodynamics, structural analysis, propulsion, acoustics, thermal analysis, etc.
• simulation: machine-learning, artificial intelligence, digital-twins, cameras, LiDAR imaging, onboard computing, etc.
• controls: sensing, data acquisition, communications, autonomy, navigation, power-supply, etc.
• manufacturing: fabrication methods, 3D-Printing, cost-analysis, scale-up, etc. 
• societal and industrial applications: agricultural mapping, fire-fighting, defense, manufacturing, etc.
• education: pedagogy, training paradigms, literacy, access, outreach, etc.

We refer the reader to a wide cross-section of popular and technical literature on the subject [1–26].

1.1. Drone-swarms

Recently, due to the rise of AI and machine-learning, emphasis has now focussed on collaborative drone-swarm technologies. 
Accordingly, one main goal of this work is to develop a machine-learning enabled digital-twin to rapidly ascertain optimal 
programming for desired tactical multi-drone swarmlike behavior (Fig.  1). Swarm modeling has origins in the description of 
biological groups (flocks of birds, schools of fish, crowds of human beings, etc.), as. well as predators-prey relationships (Breder [27], 
1952). In this work, we focus on decentralized paradigms where there is no leader, making the overall system less vulnerable. Early 
approaches that rely on decentralized organization can be found in Beni [28], Brooks [29], Dudek et al. [30], Cao et al. [31], Liu and 
Passino [32] and Turpin et al. [33]. Usual models incorporate a tradeoff between long-range interaction and short-range repulsion 
between individuals, dependent on the relative distance between individuals. The most basic model is to treat each individual as 
a point mass (Zohdi [34]), which we adopt here, and to allow the overall multi-body system to dynamically move in response to 
its environment, based on Newtonian mechanics (Gazi and Passino [35], Bender and Fenton [36], Kennedy and Eberhart [37] and 
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Zohdi  [34], [38], [39], [40], [41]).1 For some creatures, the ‘‘visual field’’ of individuals may play a significant role, while if the 
agents are robots or drones, the communication can be electronic.2

1.2. Camera technologies

Many drones now carry a variety of multispectral and LiDAR (Light Detection And Ranging) type cameras, acoustical sensors 
and associated signal processing tools. In particular, LiDAR has become quite popular and typically uses light in the high-frequency 
ultraviolet, visible and near infrared spectrum (Ring [48], Cracknell and Hayes [49], Goyer and Watson [50], Medina et al. [51] 
and Trickey et al. [52]). It is classified as a ‘‘time-of-flight’’ type technology, utilizing a pulse of light and the time of travel 
to determine the relative distance of an object. Over the last 20 years, these devices have steadily improved and have become 
quite lightweight  [53–59]. There are a variety of time-of-flight technologies that have been developed, primarily for military 
reasons, of which Radar, Sonar and LiDAR are prime examples. The various types range from (1) conventional radar, (2) laser/radar 
altimeters, (3) ultrasound/sonar/seismograms, (4) radiometers and photometers-which measure emitted radiation, (5) hyperspectral 
cameras, where each pixel has a full spectrum and (6) geodetic-gravity detection, etc. For example, from satellites, the spatial 
resolution is on the order of pixel-sizes of 1-1000 meters using infrared wavelengths of 700-2100 nanometers. Hyperion-type 
cameras have even a broader range, 400–2500 nanometers with 200 bands (channels) and 100 nanometers per band. For example, 
thermographic/infrared cameras, form a heat-zone image (700nm−14000 nm), however, the focusing lens cannot be glass, and 
are typically made of germanium or sapphire. These devices are fragile and require coatings, making them expensive. There are 
two main thermographic camera types: (a) cameras using cooled infrared detectors, which need specialized semiconductors, and 
have a relatively high resolution and (b) cameras using uncooled detectors, sensors and thermo-electronic resistance, which have 
relatively lower resolution. Furthermore, the initial image is monochrome, and must be color-mapped. Additionally, there are 
a variety of ‘‘corrective’’ measures (post-processors), such as (1) radiometric enhancements, which improve the illumination for 
material properties, (2) topographic enhancements, which improve the reflectivity due to shade, sunniness, etc. and (3) atmospheric 
enhancements, which correct for atmospheric haze.3 LiDAR has advantages because (1) the systems are simple, since they do not 
have moving parts associated with a scanner, and can thus be made very compact and can be used in real time and (2) the systems 
do not require sophisticated post-processing units and are therefore inexpensive. We refer the reader to Zohdi [60] for more details. 
Considering the above, an implicit, advantageous, task of a drone swarm, regardless of the specific type of camera technology, is to 
get close enough to multiple desired locations in order to take high-quality pictures.

1.3. Objectives

A much needed component in this field of research is an easy to use tool to design systems of interacting agents that collectively 
collaborate to achieve a desired task. This motivates the goal of the present work, which is to develop a machine-learning enabled 
digital-twin to rapidly ascertain optimal programming to achieve desired tactical multi-drone swarmlike behavior. There are two 
main components of this work:

• Component 1 is a framework comprised of a multibody dynamics model for multiple interacting agents, augmented with a 
machine-learning paradigm that is based on the capability of agents to identify (a) desired targets, (b) obstacles and (c) fellow 
agents, as well as the resulting collective actions of the drone-swarm of agents. The objective is to construct a system with 
entirely autonomous behavior by optimizing the actuation parameter values that are embedded within the coupled multibody 
differential equations for drone-swarm dynamics. This is achieved by minimizing a cost-error function that represents the 
difference between the simulated overall group behavior and in-field behavior from observed ground truth synthetic data in 
the form of temporal snapshots corresponding to multiple camera frames.

• Component 2 consists of an analysis to deeply assess the structural performance of drone-swarm members, by studying the 
chassis design, deployment and dynamic-structural performance. As an example, we investigate tactical quadcopter drones 
under attack, specifically by being subjected to series of launched explosions. A Discrete Element Method (DEM) is developed 
to rapidly design a quadcopter of any complex shape, attach motors and then to subject it to a hostile environment, in order 
to ascertain its performance. The method also allows one to describe structural damage to the quadcopter drone, its loss of 
functionality (thrust), etc. Furthermore, the use of DEM can also capture fragmentation of the quadcopter and can ascertain 
the resulting debris field.

1 There are other modeling paradigms, for example mimicing ant colonies (Bonabeau et al. [42]), which exhibit foraging-type behavior and trail-laying-trail-
following mechanisms for finding food sources (see Kennedy and Eberhart [37] and Bonabeau et al. [42], Dorigo et al. [43], Bonabeau et al. [42], Bonabeau 
and Meyer [44] and Fiorelli et al. [45]).

2 However, in some systems, agents interact with a specific set of other agents, regardless of whether they are far away (Feder [46]). This appears to be the 
case for Starlings (Sturnus vulgaris). In Ballerini et al. [47], the authors concluded, that such birds communicate with a certain number of birds surrounding it 
and that the interactions are governed by topological distances and not metric distances.

3 There are also a wide range of satellites that utilize these technologies, such as Landsat, Nimbus (Weather), Radarsat, UARS (Civil, Research and Military), 
etc.
3 
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Fig. 2. Model problem (for example, a hostile drone incursion) consisting of targets (green) and obstacles (light blue) distributed randomly in a (±500,±500,±10)
meter domain and drone-swarm members (bright blue, distributed initially in a (±10,±10,±10) meter domain centered at (−800, 0, 200) meters). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

2. A general and flexible drone-swarm model

In order to generally characterize the interactions between drone-swarm agent members, we adopt and modify a flexible 
framework found in Zohdi [41]. Throughout the first part of the analysis, the objects are assumed to be small enough to be considered 
(idealized) as point-masses and that the effects of their rotation with respect to their mass center is considered unimportant to their 
overall motion. Boldface symbols imply vectors or tensors. A fixed Cartesian coordinate system will be used throughout this work. The 
unit vectors for such a system are given by the mutually orthogonal triad of unit vectors (𝒆1, 𝒆2, 𝒆3). We denote the position of a 
point (drone-swarm member agent) in space by the vector 𝒓. In fixed Cartesian coordinates we have 

𝒓 = 𝑟1𝒆1 + 𝑟2𝒆2 + 𝑟3𝒆3, (2.1)

and for the velocity we have 

𝒗 = 𝒓̇ = 𝑟̇1𝒆1 + 𝑟̇2𝒆2 + 𝑟̇3𝒆3, (2.2)

and acceleration we have 

𝒂 = 𝒓̈ = 𝑟̈1𝒆1 + 𝑟̈2𝒆2 + 𝑟̈3𝒆3. (2.3)

In the analysis to follow, we treat the drone-swarm members as point masses, i.e. we ignore their dimensions (Fig.  2). For each 
drone-swarm member (𝑁𝑠 in total) the equations of motion are 

𝑚𝑖𝒗̇𝑖 = 𝑚𝑖𝒓̈𝑖 = 𝜳 𝑡𝑜𝑡
𝑖 =  (𝜳𝑚𝑡

𝑖 ,𝜳𝑚𝑜
𝑖 ,𝜳𝑚𝑚

𝑖 ) (2.4)

where 𝜳 𝑡𝑜𝑡
𝑖  represents the total forces acting on a drone-swarm member 𝑖, 𝜳𝑚𝑡

𝑖  represents the interaction between drone-swarm 
member 𝑖 and targets to be reached, 𝜳𝑚𝑜

𝑖  represents the interaction between drone-swarm member 𝑖 and obstacles and 𝜳𝑚𝑚
𝑖  represents 

the interaction between drone-swarm member 𝑖 and other members. In order to illustrate the overall computational framework, we 
focus on a model problem having a sufficiently large parameter set which allows for complex dynamics. Later in the analysis, the 
parameters optimized to drive the system towards desired behavior via a machine-learning algorithm.

2.1. Member-target interaction

Consider member-target interaction (Fig.  3) 

‖𝒓𝑖 − 𝑻𝑗‖ =
(

(𝑟𝑖1 − 𝑇𝑗1)2 + (𝑟𝑖2 − 𝑇𝑗2)2 + (𝑟𝑖3 − 𝑇𝑗3)2
)1∕2 def

= 𝑑𝑚𝑡𝑖𝑗 , (2.5)

where 𝑻𝑗 is the position vector to target 𝑗 and the direction to each target is 

𝒏𝑚𝑡𝑖→𝑗 =
𝑻𝑗 − 𝒓𝑖

‖𝒓𝑖 − 𝑻𝑗‖
. (2.6)

For each drone-swarm member (i), we compute a weighted direction to each target 

𝒏̂𝑚𝑡 = (𝑤 𝑒−𝑎1𝑑
𝑚𝑡
𝑖𝑗 −𝑤 𝑒−𝑎2𝑑

𝑚𝑡
𝑖𝑗 )𝒏𝑚𝑡 , (2.7)
𝑖→𝑗 𝑡1 𝑡2 𝑖→𝑗

4 
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Fig. 3. Components for computing the thrust direction: (1) member-target sensing, (2) member-obstacle sensing and (c) member-member sensing.

where the 𝑤𝑡𝑖s are weights reflecting the importance of the target, 𝑎𝑖 are decay parameters, which is summed (and normalized later 
in the analysis) to give an overall direction to move towards 

𝑵𝑚𝑡
𝑖 =

𝑁𝑡
∑

𝑗=1
𝒏̂𝑚𝑡𝑖→𝑗 . (2.8)

Remark. If the distance between a drone-swarm member and a target is greater that a cutoff radius 
‖𝒓𝑖 − 𝑻𝑗‖ > 𝑆𝑟𝑇 , (2.9)

then this target (𝑻𝑗) does not contribute to the direction calculation.

2.2. Member-obstacle interaction

Now consider member-obstacle interaction (Fig.  3) 

‖𝒓𝑖 −𝑶𝑗‖ =
(

(𝑟𝑖1 − 𝑂𝑗1)2 + (𝑟𝑖2 − 𝑂𝑗2)2 + (𝑟𝑖2 − 𝑂𝑗2)2
)1∕2 def

= 𝑑𝑚𝑜𝑖𝑗 , (2.10)

where 𝑶𝑗 is the position vector to obstacle 𝑗 and the direction to each obstacle is 

𝒏𝑚𝑜𝑖→𝑗 =
𝑶𝑗 − 𝒓𝑖

‖𝒓𝑖 −𝑶𝑗‖
. (2.11)

For each drone-swarm member (i), we compute a weighted direction to each obstacle 
𝒏̂𝑚𝑜𝑖→𝑗 = (𝑤𝑜1𝑒

−𝑏1𝑑𝑚𝑜𝑖𝑗 −𝑤𝑜2𝑒
−𝑏2𝑑𝑚𝑜𝑖𝑗 )𝒏𝑚𝑜𝑖→𝑗 , (2.12)

where the 𝑤𝑜𝑖s are weights reflecting the importance of the obstacle, 𝑏𝑖 are decay parameters, which is summed (and normalized 
later in the analysis) to give an overall direction to move towards 

𝑵𝑚𝑜
𝑖 =

𝑁𝑜
∑

𝑗=1
𝒏̂𝑚𝑜𝑖→𝑗 . (2.13)

Remark. If the distance between a drone-swarm member and an obstacle is greater that a cutoff radius 
‖𝒓𝑖 −𝑶𝑗‖ > 𝑆𝑟𝑂 , (2.14)

then this obstacle (𝑶𝑗) does not contribute to the direction calculation.

2.3. Member-member interaction

Now consider member(𝑖)-member(𝑗) interaction (Fig.  3) 

‖𝒓𝑖 − 𝒓𝑗‖ =
(

(𝑟𝑖1 − 𝑟𝑗1)2 + (𝑟𝑖2 − 𝑟𝑗2)2 + (𝑟𝑖3 − 𝑟𝑗3)2
)1∕2 def

= 𝑑𝑚𝑚𝑖𝑗 , (2.15)

and the direction to each drone-swarm member 
𝒏𝑚𝑚𝑖→𝑗 =

𝒓𝑗 − 𝒓𝑖
‖𝒓𝑖 − 𝒓𝑗‖

. (2.16)

For each drone-swarm member (i), we compute a weighted direction to each drone-swarm member 
𝒏̂𝑚𝑚𝑖→𝑗 = (𝑤𝑚1𝑒

−𝑐1𝑑𝑚𝑚𝑖𝑗 −𝑤𝑚2𝑒
−𝑐2𝑑𝑚𝑚𝑖𝑗 )𝒏𝑚𝑚𝑖→𝑗 , (2.17)

where the 𝑤𝑚𝑖s are weights reflecting the importance of the members, 𝑐𝑖 are decay parameters, which is summed (and normalized 
later in the analysis) to give an overall direction to move towards 

𝑵𝑚𝑚
𝑖 =

𝑁𝑚
∑

𝒏̂𝑚𝑚𝑖→𝑗 . (2.18)

𝑗=1

5 
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Remark. If the distance between a drone-swarm member and another drone-swarm member is greater that a cutoff radius 
‖𝒓𝑖 − 𝒓𝑗‖ > 𝑆𝑟𝑟, (2.19)

then this drone-swarm member (𝒓𝑗) does not contribute to the direction calculation.

2.4. Weighted observations, summation of interactions and normalization

We now aggregate the contributions by weighting their overall importance with weights for drone-swarm member/target 
interaction, 𝑊𝑚𝑡, drone-swarm member/obstacle interaction, 𝑊𝑚𝑜 and drone-swarm member/drone-swarm member interaction, 
𝑊𝑚𝑚

4: 
𝑵 𝑡𝑜𝑡

𝑖 = 𝑊𝑚𝑡𝑵𝑚𝑡
𝑖 +𝑊𝑚𝑜𝑵𝑚𝑜

𝑖 +𝑊𝑚𝑚𝑵𝑚𝑚
𝑖 , (2.20)

normalize the final result 

𝒏∗𝑖 =
𝑵 𝑡𝑜𝑡

𝑖

‖𝑵 𝑡𝑜𝑡
𝑖 ‖

, (2.21)

which provide the normal direction. The thrust forces are then constructed by multiplying the thrust force available by the drone 
propulsion system, 𝐹𝑖, by the overall normal direction 

𝜳 𝑡ℎ𝑟𝑢𝑠𝑡
𝑖 = 𝐹𝑖𝒏∗𝑖 − 𝑚𝑖𝒈, (2.22)

where we have highlighted that an extra gravity compensation thrust component must be added, yielding 
𝜳 𝑡𝑜𝑡

𝑖 =  (𝜳𝑚𝑡
𝑖 ,𝜳𝑚𝑜

𝑖 ,𝜳𝑚𝑚
𝑖 ) = 𝜳 𝑡ℎ𝑟𝑢𝑠𝑡

𝑖 − 𝑚𝑖𝒈 + 𝑚𝑖𝒈 = 𝐹𝑖𝒏∗𝑖 , (2.23)

which cancels gravitational forces out. In summary, the algorithm is as follows:

ALGORITHM

• STEP 1: MEMBER-TARGET INTERACTION:
• (a) COMPUTE THE NORM:||𝒓𝑖 − 𝑻𝑗 ||
• (b) COMPUTE THE WEIGHTED NORMAL: 𝒏𝑚𝑡𝑖→𝑗

• (c) SUM FOR MEMBER-TARGET INTERACTION: 𝑵𝑚𝑡
𝑖

• STEP 2: MEMBER-OBSTACLE INTERACTION:
• (a) COMPUTE THE NORM: ||𝒓𝑖 −𝑶𝑗 ||

• (b) COMPUTE THE WEIGHTED NORMAL: 𝒏𝑚𝑜𝑖→𝑗

• (c) SUM FOR MEMBER-OBSTACLE INTERACTION: 𝑵𝑚𝑜
𝑖

• STEP 3: MEMBER-MEMBER INTERACTION:
• (a) COMPUTE THE NORM: ||𝒓𝑖 − 𝒓𝑗 ||
• (b) COMPUTE THE WEIGHTED NORMAL: 𝒏𝑚𝑚𝑖→𝑗

• (c) SUM FOR MEMBER-MEMBER INTERACTION: 𝑵𝑚𝑚
𝑖

• STEP 4: COMPUTE SUMMATION OF INTERACTIONS: 𝑵 𝑡𝑜𝑡
𝑖

• STEP 5: COMPUTE COMPOSITE (WEIGHTED) DIRECTION: 𝒏∗𝑖
• STEP 6: COMPUTE THRUST:𝜳 𝑡ℎ𝑟𝑢𝑠𝑡

𝑖 = 𝐹𝑖𝒏∗𝑖 − 𝑚𝑖𝒈 (extra gravity compensation)

3. Drone-swarm actuation

To actuate the drone-swarm movement, we numerically integrate the equations of motion: 
𝑚𝑖𝒗̇𝑖 = 𝜳 𝑡𝑜𝑡

𝑖 (3.1)

yielding 

𝒗𝑖(𝑡 + 𝛥𝑡) = 𝒗𝑖(𝑡) +
𝛥𝑡
𝑚𝑖
𝜳 𝑡𝑜𝑡

𝑖 (𝑡) (3.2)

4 The parameters in the model will be optimized shortly.
6 
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Fig. 4. The propagation of a drone-swarm (for example, a hostile drone incursion). In this scenario, they sweep through the targets. The eight frames (left to 
right) show the motion (equally spaced over the simulation time 𝑇 = 35𝑠).

and 
𝒓𝑖(𝑡 + 𝛥𝑡) = 𝒓𝑖(𝑡) + 𝛥𝑡𝒗𝑖(𝑡). (3.3)

Note that if the maximum velocity is exceeded 
‖𝒗𝑖(𝑡 + 𝛥𝑡)‖ > 𝑣𝑖,𝑚𝑎𝑥, (3.4)

then we define the predicted velocity 𝒗𝑝𝑟𝑒𝑑𝑖 (𝑡 + 𝛥𝑡) = 𝒗𝑖(𝑡 + 𝛥𝑡) and the rescaled/corrected velocity 

𝒗𝑐𝑜𝑟𝑟𝑖 (𝑡 + 𝛥𝑡) = 𝑣𝑖,𝑚𝑎𝑥
𝒗𝑝𝑟𝑒𝑑𝑖 (𝑡 + 𝛥𝑡)

‖𝒗𝑝𝑟𝑒𝑑𝑖 (𝑡 + 𝛥𝑡)‖
, (3.5)

with 𝒗𝑖(𝑡 + 𝛥𝑡) = 𝒗𝑝𝑟𝑒𝑑𝑖 (𝑡 + 𝛥𝑡). We then determine if any targets have been reached by checking the distance between drone-swarm-
members and targets and comparing it to a sensing tolerance 

‖𝒓𝑖 − 𝑻𝑗‖ ≤ 𝑇 𝑜𝑙𝑟𝑇 (3.6)

For any 𝑻𝑗 , if any drone-swarm member has satisfied the criteria, the algorithm takes 𝑻𝑗 out of the system for the next time step 
so that no drone-swarm member wastes resources by attempting to reach 𝑻𝑗 . Similarly, if the drones come too close to the obstacles, 
‖𝒓𝑖 −𝑶𝑗‖ ≤ 𝑇 𝑜𝑙𝑟𝑂, then 𝒓𝑖 is immobilized. This stops the 𝑖𝑡ℎ drone-swarm member from contributing further to the process. Furthermore, if 
drones come too close to one another, ‖𝒓𝑖 − 𝒓𝑗‖ ≤ 𝑇 𝑜𝑙𝑟𝑟, then 𝒓𝑖 and 𝒓𝑗 are immobilized. The entire process is then repeated for the next 
time step. Fig.  4 illustrates the propagation of a drone-swarm, where they sweep through the targets. Eight frames (left to right) 
illustrate the motion (equally spaced over the simulation time 𝑇 = 35𝑠). This will be discussed in detail shortly.

4. Designing drone-swarm behavior

4.1. Multi-timeframe objective function and machine-learning

There are many parameters in the system, warranting the use of a Machine-Learning Algorithm. Here we follow Zohdi [41], [61–
71],[72], [73], [74] in order to optimize behavior by minimizing a cost function. For example, let us consider minimizing the 
following cost function over the event time period of interest, summing over all of the target states (mapped (inactive) or unmapped 
(active)) in each time frame and summing up the entire difference (with normalization) 

𝛱 𝑡𝑜𝑡𝑎𝑙(𝜦) =

∑𝑁𝑓
𝑓=1{

∑𝑁𝑡
𝑖=1 |𝑇

𝑎
𝑖 (𝑡𝑓 ) − 𝑇 𝑎∗

𝑖 (𝑡𝑓 )|}
∑𝑁𝑓

𝑓=1{
∑𝑁𝑡

𝑖=1 𝑇
𝑎,∗
𝑖 (𝑡𝑓 )}

(4.1)

where

• For the targets are:
• 𝑇 𝑎

𝑖 (𝑡 = 𝑡𝑓 ) = 1 if unmapped at time (active) at time 𝑡 = 𝑡𝑓
• 𝑇 𝑎(𝑡 = 𝑡 ) = 0 if mapped (inactive) at time 𝑡 = 𝑡
𝑖 𝑓 𝑓

7 
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• 𝑁𝑓  is the number of time frames,
• 𝑁𝑡 is the number of targets,
• 𝛺𝑓  is spatio-temporal frame capturing states of the targets (such as in Figs.  2 and 4),
• 𝜦 = {𝛬1, 𝛬2,… , 𝛬𝑁𝑑

} is a design vector of key system (𝑁𝑑 ) parameters.

The objective is to drive the system to the parameters generating the best case scenario, via cost function minimization. The design 
vector of system parameters is:

𝜦 = {𝛬1, 𝛬2,… , 𝛬𝑁} (4.2)
= {𝑊𝑚𝑡,𝑊𝑚𝑜,𝑊𝑚𝑚, 𝑤𝑡1, 𝑤𝑡2, 𝑤𝑜1, 𝑤𝑜2, 𝑤𝑚1, 𝑤𝑚2, 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2, 𝑆

𝑟𝑇 , 𝑆𝑟𝑂 , 𝑆𝑟𝑟}.

Cost functions associated with optimization of complex behavior are oftentimes nonconvex in design parameter space and often 
nonsmooth, as is the case for the system of interest. Their minimization is usually difficult with direct application of gradient 
methods. This motivates nonderivative search methods, for example those found in Machine Learning Algorithms (MLA’s). One 
of the most basic subset of MLA’s are so-called Genetic Algorithms (GA’s). Typically, one will use a GA first in order to isolate 
multiple local minima, and then use a gradient based algorithm in these locally convex regions or reset the GA to concentrate its 
search over these more constrained regions. GA’s are typically the simplest scheme to start the analysis, and one can, of course, 
use more sophisticated methods if warranted. For a review of GAs, see the pioneering work of John Holland ([75], [76]), as well 
as Goldberg [77], Davis [78], Onwubiko [79] and Goldberg and Deb [80]. Here we follow Zohdi [41], [61–71],[72], [73], [74] in 
order to minimize Eq.  (4.1), which we will refer to as the ‘‘cost/error function’’.

4.2. Algorithm

The machine-learning GA approach is extremely well-suited for nonconvex, nonsmooth, multicomponent, multistage systems 
(see Fig.  5) and, broadly speaking, involves the following essential concepts:

1. POPULATION GENERATION: Generate a parameter population of genetic strings: 𝜦𝑖.
2. PERFORMANCE EVALUATION: Compute performance of each genetic string: 𝛱(𝜦𝑖).
3. RANK STRINGS: Rank them 𝜦𝑖, 𝑖 = 1,… , 𝑆.
4. MATING PROCESS: Mate pairs/produce offspring.
5. GENE ELIMINATION: Eliminate poorly performing genetic strings.
6. POPULATION REGENERATION: Repeat process with updated gene pool and new random genetic strings.
7. SOLUTION POST-PROCESSING: Employ gradient-based methods afterwards in local ‘‘valleys’’, if smooth enough.

4.2.1. Algorithmic specifics
Following Zohdi [41], [61–71],[72], [73], [74] the algorithm is as follows:

• STEP  1:  Randomly generate a population of 𝑆 starting genetic strings, 𝜦𝑖, (i=1,2, 3, . . . , 𝑆): 

𝜦𝑖 def
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛬𝑖
1

𝛬𝑖
2

𝛬𝑖
3

...

𝛬𝑖
𝑁

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(4.3)

• STEP  2:  Compute fitness of each string 𝛱(𝜦𝑖), (i=1, . . . , 𝑆)
• STEP  3:  Rank genetic strings: 𝜦𝑖, (i=1, . . . , 𝑆)
• STEP  4:  Mate nearest pairs and produce two offspring, (i=1, . . . , 𝑆): 

𝝀𝑖
def
= 𝜱◦𝜦𝑖 + (𝟏 −𝜱)◦𝜦𝑖+1 def

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝜙1𝛬𝑖
1

𝜙2𝛬𝑖
2

𝜙3𝛬𝑖
3

...

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

+

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

(1 − 𝜙1)𝛬𝑖+1
1

(1 − 𝜙2)𝛬𝑖+1
2

(1 − 𝜙3)𝛬𝑖+1
3

...
𝑖+1

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

(4.4)
⎩

𝜙𝑁𝛬𝑖𝑁 ⎭ ⎩

(1 − 𝜙𝑁 )𝛬𝑁 ⎭
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Fig. 5. The basic action of a genetic algorithm: multifrontal search over a nonconvex and nonsmooth design space (Zohdi [41], [61–71],[72], [73], [74]).

and 

𝝀𝑖+1
def
= 𝜞◦𝜦𝑖 + (𝟏 − 𝜞 )◦𝜦𝑖+1 def

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛾1𝛬𝑖
1

𝛾2𝛬𝑖
2

𝛾3𝛬𝑖
3

...

𝛾𝑁𝛬𝑁

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

+

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1 − 𝛾1)𝛬𝑖+1
1

(1 − 𝛾2)𝛬𝑖+1
2

(1 − 𝛾3)𝛬𝑖+1
3

...

(1 − 𝛾𝑁 )𝛬𝑖+1
𝑁

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(4.5)

where for this operation, the 𝜙𝑖 and 𝛾𝑖 are random numbers, such that 0 ≤ 𝜙𝑖 ≤ 1, 0 ≤ 𝛾𝑖 ≤ 1, which are different for each 
component of each genetic string.

• STEP  5:  Keep only the top 𝐾 parents and their 𝐾 offspring.
• STEP  6:  Repeat STEPS 1–6 with top gene pool (𝐾 offspring and 𝐾 parents), plus 𝑀 new, randomly generated, strings.
• IMPORTANT OPTION:  Rescale and restart the search around best performing parameter set every few generations.

5. Numerical experiments

As a model problem, consider the following algorithm:

1. Initialize the locations of the targets: 𝑻𝑖 = (𝑇𝑥, 𝑇𝑦, 𝑇𝑧)𝑖, i=1, 2, . . .𝑁𝑇=targets.
2. Initialize the locations of the obstacles: 𝑶𝑖 = (𝑂𝑥, 𝑂𝑦, 𝑂𝑧)𝑖, i=1, 2, . . .𝑁𝑂=obstacles.
3. Initialize the locations of the drone-swarm-members: 𝒓𝑖 = (𝑟𝑥, 𝑟𝑦, 𝑟𝑧)𝑖, i=1, 2, . . .𝑁𝑠=drone-swarm members.
4. For each drone-swarm member (i), determine the distance and directed normal to each target, obstacle and other drone-swarm 
members.

5. For each drone-swarm member (i), determine interaction functions 𝑵𝑚𝑡
𝑖 , 𝑵𝑚𝑜

𝑖 , 𝑵𝑚𝑡
𝑖  and 𝒏∗𝑖 .

6. For each drone-swarm member (i), determine force acting upon it, 𝜳 𝑡𝑜𝑡
𝑖 = 𝐹𝑖𝒏∗𝑖 .

7. For each drone-swarm member (i), integrate the equations of motion (checking constraints) to produce 𝒗𝑖(𝑡+𝛥𝑡) and 𝒓𝑖(𝑡+𝛥𝑡).
8. Determine if any targets have been reached by checking the distance between drone-swarm members and targets

‖𝒓𝑖 − 𝑻𝑗‖ ≤ 𝑇 𝑜𝑙𝑟𝑇 . (5.1)

For any 𝑻𝑗 , if any drone-swarm member has satisfied the this criteria, then take 𝑻𝑗 out of the system for the next time step 
so that no drone-swarm member wastes resources by attempting to reach 𝑻𝑗 .

9. If ‖𝒓𝑖 −𝑶𝑗‖ ≤ 𝑇 𝑜𝑙𝑟𝑂, then 𝒓𝑖 is immobilized. Furthermore, if ‖𝒓𝑖 − 𝒓𝑗‖ ≤ 𝑇 𝑜𝑙𝑟𝑟, then 𝒓𝑖 and 𝒓𝑗 are immobilized.
10. The entire process is then repeated for the next time step.

5.1. Ground truth

To generate a ground truth response, a set of system design parameters (𝜦) were chosen at random within the design interval 
space. A simulation was run for the system with that design parameter setting and the response of the system was recorded. This 
was the ground truth response used in the cost function. As a preliminary example, we considered the following parameters:
9 
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Fig. 6. The sequences of the model problem (for example, a hostile drone incursion) show initially green (unreached) targets, which are eliminated when they 
are mapped. The light blue blocks indicate the obstacles and the bright blue objects are the drones. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

• Mass = 10 kg,
• 100 drone-swarm members,
• 200 targets,
• 200 obstacles,
• 𝑇 = 35 seconds,
• 𝛥𝑡 = 0.001 seconds,
• Initial drone-swarm velocity, 𝒗𝑖(𝑡 = 0) = 𝟎 m∕s,
• Domain to be reached consists of targets and obstacles distributed randomly in a (±500,±500,±10) meter domain, with 
drone-swarm members distributed initially in a (±10,±10,±10) meter domain centered at (−800, 0, 200) meters.

• Thrust force available by the drone propulsion system, 𝐹𝑖 = 106 Nt,
• Maximum velocity drone-swarm member 𝑣𝑚𝑎𝑥 = 100 m∕s.

The trial ‘‘design’’ vector of system parameter inputs

𝜦𝑡𝑟𝑖𝑎𝑙 def
= {𝛬1...𝛬𝑁} (5.2)

= {𝑊𝑚𝑡,𝑊𝑚𝑜,𝑊𝑚𝑚, 𝑤𝑡1, 𝑤𝑡2, 𝑤𝑜1, 𝑤𝑜2, 𝑤𝑚1, 𝑤𝑚2, 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2, 𝑆
𝑟𝑇 , 𝑆𝑟𝑂 , 𝑆𝑟𝑟}.

was given by a randomly generated vector

𝜦𝑡𝑟𝑖𝑎𝑙 def
= {0.336211, 0.032175, 0.239331, 0.580259, 0.441191, 0.063997, 0.389643, 1.644445, 0.553937,

0.007149, 0.565078, 0.592352, 0.634431, 0.930645, 0.258904, 8.207462, 6.525159, 8.556350},

in the following intervals:

• Overall weights: 0 ≤ 𝑊𝑚𝑡,𝑊𝑚𝑜,𝑊𝑚𝑚 ≤ 10,
• Target weights: 0 ≤ 𝑤𝑡1, 𝑤𝑡2 ≤ 1,
• Obstacle weights: 0 ≤ 𝑤𝑜1, 𝑤𝑜2 ≤ 1,
• Member weights: 0 ≤ 𝑤𝑚1, 𝑤𝑚2 ≤ 1,
• Decay coefficients: 0 ≤ 𝑎1, 𝑎2 ≤ 1, 0 ≤ 𝑏1, 𝑏2 ≤ 1, 0 ≤ 𝑐1, 𝑐2 ≤ 1 and
• The sensing distances: 0 ≤ 𝑆𝑟𝑇 ≤ 10, 0 ≤ 𝑆𝑟𝑂 ≤ 10, 0 ≤ 𝑆𝑟𝑟 ≤ 10.

We allowed a long enough time to reach the whole domain (35 s). The results are shown in Figs.  6 and 7.
The sequences of the model problem show initially green (unreached) targets, which are eliminated when they are mapped. The 

blue blocks indicate the obstacles. The algorithm is quite adept in picking up missed targets by successive sweeps. We note that as 
the targets get reached, they are dropped from the system, and the drone-swarm members naturally aggregate to the targets that 
are remaining. We also note that we did not put an upper or lower bound on the altitude that the drones could attain in this model 
problem, although that is relatively easy to enforce.
10 



T.I. Zohdi Computer Methods in Applied Mechanics and Engineering 442 (2025) 117999 
Fig. 7. The sequences of the model problem showing the mapped areas as they are registered.

Fig. 8.  Machine learning output (for example, a hostile drone incursion), generation after generation-the reduction of the cost function (𝛱) for the 18 parameter 
set is shown. On the right, the best performing gene (red) is shown as a function of successive generations, in addition to the average performance of the 
population of genes (green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5.2. Numerical examples

We applied the Machine Learning Algorithm and with 𝑇 = 35 seconds and 100 sampling frames. Fig.  8 illustrates the best 
performing gene (design parameter set) in red, as a function of successive generations, as well as the average performance of the 
population of genes in green. The design parameters were optimized over the following intervals previously mentioned. We used 
the following MLA settings:

• Population size per generation: 24,
• Number of parents to keep in each generation: 4,
• Number of children created in each generation: 4, 
• Number of completely new genes created in each generation: 12,
• Number of generations for readaptation around a new search interval:20,
• Number of generations: 200.

The algorithm was automatically reset every 20 generations. The entire 200 generation simulation, with 24 genes per evaluation 
(4800 total designs) took on the order of 4 min on a laptop, making it ideal as a design tool. Fig.  8 (average of all genes performance 
11 
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and top gene performance) and the resulting design vector:

𝜦𝑖=200 def
= {0.336352, 0.032175, 0.239331, 0.580263, 0.441188, 0.063997, 0.389643, 1.644446, 0.553946,

0.007149, 0.565087, 0.592353, 0.634552, 0.930888, 0.258904, 8.207454, 6.525155, 8.556332}

and 
𝛱 𝑖=200(𝜦) = 0.04221377. (5.3)

We note that the parameters that the method found vary only after the 5th decimal place with those of the optimal (trial) vector. We 
note that, for a given set of parameters, a complete simulation takes on the order of 0.1 s, thus over 36,000 parameter sets can be 
evaluated in an hour, without even exploiting the inherent parallelism of the MLA.

5.3. Cost-function enhancement

5.3.1. Energy penalties
Energy consumption can be an important consideration in drone-swarm system design. Accordingly, one can include energy 

penalties for excessive power usage, by integrating the power for drone to determine the total energy usage: 

𝐸𝑡𝑜𝑡
𝑖 = ∫

𝑇

0
|𝜳 𝑡ℎ𝑟𝑢𝑠𝑡

𝑖 ⋅ 𝒗𝑖| 𝑑𝑡 (5.4)

and comparing it to the available battery energy, 𝐸𝑏𝑎𝑡
𝑖 . If the energy expenditure is greater (overage) than the available battery 

power, we penalize the system performance metric in the following way:

• Penalty active: 

𝐸𝑡𝑜𝑡
𝑖 > 𝐸𝑏𝑎𝑡

𝑖 ⇒ 𝛱𝑒,𝑝𝑒𝑛
𝑖 =

(𝐸𝑡𝑜𝑡
𝑖 − 𝐸𝑏𝑎𝑡

𝑖 )

𝐸𝑏𝑎𝑡
𝑖

. (5.5)

• Penalty inactive: 
𝐸𝑡𝑜𝑡
𝑖 ≤ 𝐸𝑏𝑎𝑡

𝑖 ⇒ 𝛱𝑒,𝑝𝑒𝑛
𝑖 = 0. (5.6)

• Summation over agents: 

𝛱𝑒,𝑝𝑒𝑛,𝑡𝑜𝑡 =
𝑁
∑

𝑖=1
𝛱𝑒,𝑝𝑒𝑛

𝑖 . (5.7)

5.3.2. Acoustical penalties
We remark that additional detectable multiphysics quantities associated with the drone-swarm’s behavior is relatively straight-

forward, such as the acoustical emission, which could be important for stealth applications. This can be incorporated by computing 
the acoustical emission that is detected at the obstacles (receivers): 

𝐴𝑖 =
𝑁𝑂
∑

𝑗=1

𝐼𝑗
4𝜋‖𝑶𝑖 − 𝒓𝑗‖2

, (5.8)

where 𝐼𝑗 is the source from each drone-swarm member and 𝐴𝑖 is the acoustical signal picked up by each obstacle station, where 
sound intensity, denoted 𝐼 is measured in W∕m2 (see Fig.  9). We note that because of the (1∕𝑟) behavior associated with acoustical 
power, such data is much more sensitive than positional data, but could be added to the cost. Specifically, one could include an
acoustical penalty such as by first calculating 𝐴𝑖(𝑡) at each location and then calculating the overage penalty

• Penalty active: 

𝐴𝑡𝑜𝑡
𝑖 > 𝐴𝑚𝑎𝑥

𝑖 ⇒ 𝛷𝑖(𝑡) =
(𝐴𝑖 − 𝐴𝑚𝑎𝑥

𝑖 )
𝐴𝑚𝑎𝑥
𝑖

(5.9)

• Penalty inactive: 
𝐴𝑡𝑜𝑡
𝑖 ≤ 𝐴𝑚𝑎𝑥

𝑖 ⇒ 𝛷𝑖(𝑡) = 0 (5.10)

and 

𝛱𝑎,𝑝𝑒𝑛 = ∫

𝑇

0
𝛷𝑖(𝑡) 𝑑𝑡 (5.11)

• Summation over agents: 

𝛱𝑎,𝑝𝑒𝑛,𝑡𝑜𝑡 =
𝑁
∑

𝑖=1
𝛱𝑎,𝑝𝑒𝑛

𝑖 . (5.12)
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Fig. 9. The propagation of the drone-swarm (for example, a hostile drone incursion) with acoustical signals at the obstacles utilizing Eq.  (5.8). In this scenario, 
they sweep through the targets and the acoustics is picked up by the obstacles. The first eight frames (left to right) show the motion without acoustics. Second 
eight frames (left to right) show the motion with acoustics.

5.4. Penalized cost function

The total penalized cost function is therefore (building on Eq.  (4.1)) 

𝛱 𝑡𝑜𝑡𝑎𝑙(𝜦) = 𝑤𝑡

∑𝑁𝑓
𝑓=1{

∑𝑁𝑡
𝑖=1 |𝑇

𝑎
𝑖 (𝑡𝑓 ) − 𝑇 𝑎∗

𝑖 (𝑡𝑓 )|}
∑𝑁𝑓

𝑓=1{
∑𝑁𝑡

𝑖=1 𝑇
𝑎,∗
𝑖 (𝑡𝑓 )}

+𝑤𝑒𝛱
𝑒,𝑝𝑒𝑛,𝑡𝑜𝑡 +𝑤𝑎𝛱

𝑎,𝑝𝑒𝑛,𝑡𝑜𝑡 (5.13)

where 𝑤𝑡 is the weight for the target metric, 𝑤𝑒 is the weight for the energy penalty and 𝑤𝑎 is the weight for the acoustic penalty. 
If one wishes to have more detailed descriptions beyond a point mass model (for example, for a quadcopter), one must augment 
the balance of linear momentum (𝑮𝑐𝑚,𝑖) 

𝑮̇𝑐𝑚,𝑖 = 𝑚𝑖𝒓̈𝑐𝑚,𝑖 = 𝜳 𝑡𝑜𝑡
𝑖 , (5.14)

with a balance of angular momentum (𝑯𝑐𝑚,𝑖), which governs the rotation of the structure given by 

𝑯̇𝑐𝑚,𝑖 =
𝑑(𝑖 ⋅ 𝝎𝑖)

𝑑𝑡
=𝑴 𝑡𝑜𝑡

𝑐𝑚,𝑖, (5.15)

where 𝑴 𝑡𝑜𝑡
𝑐𝑚,𝑖 is the total external moment about the center of mass, 𝑖 is the mass moment of inertia and 𝝎𝑖 is the angular velocity. For 

detailed modeling of the dynamics and control of drones we refer the reader to Mueller and D’Andrea [81], [82], Mueller et al. [83], 
Hehn et al. [84], Houska et al. [85], Taglibue etc al [86] and Holda et al. [87] and Zohdi [88]. In many applications, the computed 
positions, velocities and accelerations of the members of a drone-swarm for example people or vehicles, must be translated into 
realizable movement. Furthermore, the communication latency and information exchange poses a significant technological hurdle. 
In practice, further sophistication, i.e. constraints on movement and communication, must be embedded into the computational 
13 
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Fig. 10. Left: A drone under attack. Right: A (skeletal) drone schematic with propellor thrusts. The entire body is governed by rigid body kinematics with two 
primary variables: the angular velocity of the body 𝝎 and the velocity of the mass center 𝒗𝑐 . The velocities and positions of all other points on the body can 
be determined by rigid body kinematics. Generally, two rotors spin one way, while two of them spin the other way so that the main body of the quadcopter 
does not rapidly spin as it flies (conservation of angular momentum.).

model for the application at hand. However, the fundamental computational philosophy and modeling strategy should remain 
relatively unchanged. One could reformulate the cost function to minimize energy usage, incorporating the range, performance and 
structure of a drone, and its dynamic performance in a complex environment, and potentially hostile environment. In particular, 
recent interest in drones has grown dramatically, driven primarily by military applications. Now, nearly every country in the world 
has tactical drones under development. Generally speaking, most military drones that are intended for long distance operations are 
fixed wing aircraft, while for precise ‘‘stop and go’’ operations in complex, potentially hostile, environments they are performed 
with quadcopters. Accordingly, as an example, in the upcoming analysis, we focus on the performance of quadcopter drones, which 
comprises the second component of the overall analysis.

6. Structural design and performance of drones

To assess the performance of quadcopter drones, we develop a method for rapid structural design, deployment and dynamic 
performance evaluation of tactical quadcopter drones under attack, specifically by being subjected to series of launched explosions. 
A Discrete Element Method (DEM) is developed to rapidly design a quadcopter of any complex shape, attach motors and then to 
subject it to a hostile environment, in order to ascertain its deployed performance in the field. The method also allows one to 
potentially describe damage to the quadcopter drone, its loss of functionality (thrust), etc. Furthermore, the use of DEM can also 
allow for fragmentation of the quadcopter and can also ascertain the resulting debris field (Zohdi [88]) (see Fig.  10).

6.1. Generation of a drone chasis

To generate the quadcopter body, we insert particles within an envelope/grid intersection (Fig.  11). For example, a convenient, 
easy to parametrize envelope is given by sweeping through a rectangular parallelepiped of (±𝑅1,±𝑅2,±𝑅3) and checking the 
intersection of the hull envelope equation, for example given by a generalized ellipsoidal equation (Zohdi [88]) 

|𝑥1 − 𝑥1𝑜|
𝑝1

𝑅1
+

|𝑥2 − 𝑥2𝑜|
𝑝1

𝑅2
+

|𝑥3 − 𝑥3𝑜|
𝑝3

𝑅3
≤ 1, (6.1)

where (𝑥1, 𝑥2, 𝑥3) are the coordinates of the DEM particles, (𝑥1, 𝑥2, 𝑥3) are the coordinates of center of the chassis, (𝑅1, 𝑅2, 𝑅3) are 
the generalized radii and (𝑝1, 𝑝2, 𝑝3) are exponents of the generalized ellipsoid, with a box of discrete element ‘‘subbox’’ positions 
(Fig.  11). Where there is an intersection, a particle is placed in the subbox. The particles are initially rigidly bonded together, but 
may become dislodged due to external forces (discussed later in the presentation). For exponent values of (𝑝1, 𝑝2, 𝑝3) equal to two, 
we generate a familiar ellipsoid, for values less than one we generate involute (nonconvex shapes, Fig.  11), and for exponent values 
of (𝑝1, 𝑝2, 𝑝3) greater than two, we generate a box-like shapes (see Fig.  12).

6.2. Group dynamics of a rigidly bound collection of drone particles/elements

In order to make the analysis general, we consider rigid clusters of DEM particles. Later we will tailor the cluster to specific drone 
designs. We consider the DEM cluster to be already formed, with particles rigidly bonded together. Later, we will allow particles 
to become dislodged from the cluster. Consider a collection of rigidly-bonded particles, 𝑖 = 1, 2,… , 𝑁𝑐 , in a cluster. The individual 
particle dynamics are described by (which leads to a coupled system) 

𝑚𝑖𝒓̈𝑖 = 𝑚𝑖𝒗̇𝑖 = 𝜳 𝑡𝑜𝑡
𝑖

⏟⏟⏟
total forces

= 𝜳 𝑖𝑛𝑡
𝑖

⏟⏟⏟
internal

+ 𝜳 𝑒𝑥𝑡
𝑖

⏟⏟⏟
external

,
(6.2)

where 𝑚𝑖 is the mass of the 𝑖𝑡ℎ particle, 𝒓𝑖 is the position vector, 𝒗𝑖 is the particle velocity, 𝜳 𝑒𝑥𝑡
𝑖  is an external force field and 𝜳 𝑖𝑛𝑡

𝑖
is the sum of the internal (equal in magnitude and opposite in direction) forces acting on the 𝑖𝑡ℎ particle, due to other particles 
14 
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Fig. 11. Generating a drone chasis with discrete elements (based on Zohdi [88]). This achieved by sweeping through a rectangular parallelepiped of 
(±𝑅1 ,±𝑅2 ,±𝑅3) and checking the intersection of the hull envelope equation above with a box of discrete element position subboxes (left). Where there is 
an intersection, and particle is placed in the subbox (middle). A generalized ellipsoidal equation (Eq.  (6.1)) is used where for exponent values of (𝑝1 , 𝑝2 , 𝑝3) equal 
to two, we generate a familiar ellipsoid, for values less than one we generate involute (nonconvex shapes), and for exponent values of (𝑝1 , 𝑝2 , 𝑝3) greater than 
two, we generate a box-like shapes (right).

Fig. 12. Various chasis envelopes: (a) (𝑝1 , 𝑝2 , 𝑝3) = (0.4, 0.4, 0.4), (b) (𝑝1 , 𝑝2 , 𝑝3) = (0.5, 0.5, 0.5), (c) (𝑝1 , 𝑝2 , 𝑝3) = (0.7, 0.7, 0.7), (d) (𝑝1 , 𝑝2 , 𝑝3) = (1.0, 1.0, 1.0) with 
‘‘lightweighting’’ holes punched out for weight reduction. Additional lightweighting of the structure is extremely easy to analyze by simply deleting discrete 
elements within the Discrete Element Method framework.
15 
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Fig. 13. For (𝑝1 , 𝑝2 , 𝑝3) = (0.5, 0.5, 0.5). A DEM generated drone frame. Left: A zoom on the locations of the DEM particles. The particles are bound by the 
mathematical dynamics-constraints to move collectively as a rigid body (group translation and rotation), unless a particle is dislodged by excessive force. If 
dislodged, the fragment moves according to its own dynamics.

in the system (‘‘internal’’ particle-to-particle bonding forces, contact forces etc. When we consider a collection of particles that are 
bound together as a rigid body, because internal forces between particles within in the system are opposite in direction and equal in 
magnitude, the specific character of the internal particle-to-particle bonding forces is not relevant to the overall system dynamics, 

𝑁𝑐
∑

𝑖=1

(

𝜳 𝑒𝑥𝑡
𝑖 + 𝜳 𝑖𝑛𝑡

𝑖
)

=
𝑁𝑐
∑

𝑖=1
𝜳 𝑒𝑥𝑡

𝑖 +
𝑁𝑐
∑

𝑖=1
𝜳 𝑖𝑛𝑡

𝑖

⏟⏟⏟
=𝟎

=
𝑁𝑐
∑

𝑖=1
𝜳 𝑒𝑥𝑡

𝑖
def
= 𝜳𝐸𝑋𝑇 , (6.3)

where 𝜳𝐸𝑋𝑇  is the overall external force acting on the cluster and 𝑁𝑐 are the number of particles in the DEM cluster. The position 
vector of the center of mass of the system is given by 

𝒓𝑐𝑚
def
=

∑𝑁𝑐
𝑖=1 𝑚𝑖𝒓𝑖

∑𝑁𝑐
𝑖=1 𝑚𝑖

= 1


𝑁𝑐
∑

𝑖=1
𝑚𝑖𝒓𝑖, (6.4)

where  is the total system mass. A decomposition of the position vector for particle 𝑖, of the form 𝒓𝑖 = 𝒓𝑐𝑚 + 𝒓𝑐𝑚→𝑖, allows the 
linear momentum of the system of particles (𝑮) to be written as 

𝑁𝑐
∑

𝑖=1
𝑚𝑖𝒓̇𝑖

⏟⏟⏟
𝑮𝑖

=
𝑁𝑐
∑

𝑖=1
𝑚𝑖(𝒓̇𝑐𝑚 + 𝒓̇𝑐𝑚→𝑖) =

𝑁𝑐
∑

𝑖=1
𝑚𝑖𝒓̇𝑐𝑚 = 𝒓̇𝑐𝑚

𝑁𝑐
∑

𝑖=1
𝑚𝑖 = 𝒓̇𝑐𝑚

def
= 𝑮𝑐𝑚, (6.5)

since ∑𝑁𝑐
𝑖=1 𝑚𝑖𝒓̇𝑐𝑚→𝑖 = 𝟎. Furthermore, 𝑮̇𝑐𝑚 = 𝒓̈𝑐𝑚, thus 

𝑮̇𝑐𝑚 = 𝒓̈𝑐𝑚 =
𝑁𝑐
∑

𝑖=1
𝝍𝑒𝑥𝑡

𝑖
def
= 𝜳𝐸𝑋𝑇 . (6.6)

The angular momentum relative to the center of mass can be written as (utilizing 𝒓̇𝑖 = 𝒗𝑖 = 𝒗𝑐𝑚 + 𝒗𝑐𝑚→𝑖)
𝑁𝑐
∑

𝑖=1
𝑯𝑐𝑚→𝑖 =

𝑁𝑐
∑

𝑖=1
(𝒓𝑐𝑚→𝑖 × 𝑚𝑖𝒗𝑐𝑚→𝑖) =

𝑁𝑐
∑

𝑖=1
(𝒓𝑐𝑚→𝑖 × 𝑚𝑖(𝒗𝑖 − 𝒗𝑐𝑚)) (6.7)

=
𝑁𝑐
∑

𝑖=1
(𝑚𝑖𝒓𝑐𝑚→𝑖 × 𝒗𝑖) −

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑁𝑐
∑

𝑖=1
𝑚𝑖𝒓𝑐𝑚→𝑖

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
=0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

× 𝒗𝑐𝑚 = 𝑯𝑐𝑚, (6.8)

for a rigid body. Since 𝒗𝑐𝑚→𝑖 = 𝝎 × 𝒓𝑐𝑚→𝑖

𝑯𝑐𝑚 =
𝑁𝑐
∑

𝑖=1
𝑯𝑐𝑚→𝑖 =

𝑁𝑐
∑

𝑖=1
𝑚𝑖(𝒓𝑐𝑚→𝑖 × 𝒗𝑐𝑚→𝑖) =

𝑁𝑐
∑

𝑖=1
𝑚𝑖(𝒓𝑐𝑚→𝑖 × (𝝎 × 𝒓𝑐𝑚→𝑖)). (6.9)

Decomposing the relative position vector into its components 
𝒓 = 𝒓 − 𝒓 = 𝑥̂ 𝒆 + 𝑥̂ 𝒆 + 𝑥̂ 𝒆 , (6.10)
𝑐𝑚→𝑖 𝑖 𝑐𝑚 𝑖1 1 𝑖2 2 𝑖3 3
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where 𝑥̂𝑖1, 𝑥̂𝑖2 and 𝑥̂𝑖3 are the coordinates of the mass points measured relative to the center of mass, and expanding the angular 
momentum expression, yields 

𝐻1 = 𝜔1

𝑁𝑐
∑

𝑖=1
(𝑥̂2𝑖2 + 𝑥̂2𝑖3)𝑚𝑖 − 𝜔2

𝑁𝑐
∑

𝑖=1
𝑥̂𝑖1𝑥̂𝑖2 𝑚𝑖 − 𝜔3

𝑁𝑐
∑

𝑖=1
𝑥̂𝑖1𝑥̂𝑖3 𝑚𝑖 (6.11)

and 

𝐻2 = −𝜔1

𝑁𝑐
∑

𝑖=1
𝑥̂𝑖1𝑥̂𝑖2 𝑚𝑖 + 𝜔2

𝑁𝑐
∑

𝑖=1
(𝑥̂2𝑖1 + 𝑥̂2𝑖3)𝑚𝑖 − 𝜔3

𝑁𝑐
∑

𝑖=1
𝑥̂𝑖2𝑥̂𝑖3 𝑚𝑖 (6.12)

and 

𝐻3 = −𝜔1

𝑁𝑐
∑

𝑖=1
𝑥̂𝑖1𝑥̂𝑖3 𝑚𝑖 − 𝜔2

𝑁𝑐
∑

𝑖=1
𝑥̂𝑖2𝑥̂𝑖3 𝑚𝑖 + 𝜔3

𝑁𝑐
∑

𝑖=1
(𝑥̂2𝑖1 + 𝑥̂2𝑖2)𝑚𝑖, (6.13)

which can be concisely written as 

𝑯𝑐𝑚 =  ⋅ 𝝎, (6.14)

where we define the moments of inertia with respect to the center of mass 

11 =
𝑁𝑐
∑

𝑖=1
(𝑥̂2𝑖2 + 𝑥̂2𝑖3)𝑚𝑖, 22 =

𝑁𝑐
∑

𝑖=1
(𝑥̂2𝑖1 + 𝑥̂2𝑖3)𝑚𝑖, 33 =

𝑁𝑐
∑

𝑖=1
(𝑥̂2𝑖1 + 𝑥̂2𝑖2)𝑚𝑖, (6.15)

12 = 21 = −
𝑁𝑐
∑

𝑖=1
𝑥̂𝑖1𝑥̂𝑖2 𝑚𝑖, 23 = 32 = −

𝑁𝑐
∑

𝑖=1
𝑥̂𝑖2𝑥̂𝑖3 𝑚𝑖, 13 = 31 = −

𝑁𝑐
∑

𝑖=1
𝑥̂𝑖1𝑥̂𝑖3 𝑚𝑖, (6.16)

or explicitly 

 =

⎡

⎢

⎢

⎢

⎣

11 12 13

21 22 23

31 32 33

⎤

⎥

⎥

⎥

⎦

. (6.17)

The particles’ own inertia contribution about their respective mass-centers to the overall moment of inertia of the agglomerated 
body can be described by the Huygens-Steiner (generalized ‘‘parallel axis’’ theorem) formula (𝑝, 𝑠 = 1, 2, 3) 

̄𝑝𝑠 =
𝑁𝑐
∑

𝑖=1

(

̄𝑖
𝑝𝑠 + 𝑚𝑖(‖𝒓𝑖 − 𝒓𝑐𝑚‖2𝛿𝑝𝑠 − 𝑥̂𝑖𝑝𝑥̂𝑖𝑠)

)

. (6.18)

For a spherical particle, ̄𝑖
𝑝𝑝 = 2

5𝑚𝑖𝑅2
𝑖 , and for 𝑝 ≠ 𝑠, ̄𝑖

𝑝𝑠 = 0 (no products of inertia), 𝑅𝑖 being the particle radius.5 Finally, for the 
derivative of the angular momentum, utilizing 𝒓̈𝑖 = 𝒂𝑖 = 𝒂𝑐𝑚 + 𝒂𝑐𝑚→𝑖, we obtain

𝑯̇ 𝑟𝑒𝑙
𝑐𝑚 =

𝑁𝑐
∑

𝑖=1
(𝒓𝑐𝑚→𝑖 × 𝑚𝑖𝒂𝑐𝑚→𝑖) =

𝑁𝑐
∑

𝑖=1
(𝒓𝑐𝑚→𝑖 × 𝑚𝑖(𝒂𝑖 − 𝒂𝑐𝑚)) (6.19)

=
𝑁𝑐
∑

𝑖=1
(𝑚𝑖𝒓𝑐𝑚→𝑖 × 𝒂𝑖) −(

𝑁𝑐
∑

𝑖=1
𝑚𝑖𝒓𝑐𝑚→𝑖)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
=0

×𝒂𝑐𝑚 = 𝑯̇𝑐𝑚, (6.20)

and consequently 

𝑯̇𝑐𝑚 =
𝑑( ⋅ 𝝎)

𝑑𝑡
=

𝑁𝑐
∑

𝑖=1
𝒓𝑐𝑚→𝑖 × 𝝍𝑒𝑥𝑡

𝑖
def
= 𝑴𝐸𝑋𝑇

𝑐𝑚 , (6.21)

where 𝑴𝐸𝑋𝑇
𝑐𝑚  is the total external moment about the center of mass.

6.3. Numerical methods for the dynamics of a DEM cluster

We now treat the dynamics of a cluster numerically. We first focus on the translational motion of the center of mass, and then 
turn to the rotational contribution.

5 If the particles are sufficiently small, each particle’s own moment inertia (about its own center) is insignificant, leading to ̄ =
∑𝑁𝑐 𝑚 (‖𝒓 −𝒓 ‖

2𝛿 − 𝑥̂ 𝑥̂ ).
𝑝𝑠 𝑖=1 𝑖 𝑖 𝑐𝑚 𝑝𝑠 𝑖𝑝 𝑖𝑠
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6.3.1. DEM particle cluster translational contribution
The translational component of the center of mass can be written as 

𝒓̈𝑐𝑚 = 𝒗̇𝑐𝑚 = 𝜳𝐸𝑋𝑇 . (6.22)

A trapezoidal time-stepping rule is used, whereby at some intermediate moment in time 𝑡 ≤ 𝑡 + 𝜙𝛥𝑡 ≤ 𝑡 + 𝛥𝑡 (0 ≤ 𝜙 ≤ 1)

𝒗̇𝑐𝑚(𝑡 + 𝜙𝛥𝑡) ≈
𝒗𝑐𝑚(𝑡 + 𝛥𝑡) − 𝒗𝑐𝑚(𝑡)

𝛥𝑡
(6.23)

= 1
(𝑡 + 𝜙𝛥𝑡)

𝜳𝐸𝑋𝑇 (𝑡 + 𝜙𝛥𝑡) (6.24)

≈ 1
(𝑡 + 𝜙𝛥𝑡)

(

𝜙𝜳𝐸𝑋𝑇 (𝑡 + 𝛥𝑡) + (1 − 𝜙)𝜳𝐸𝑋𝑇 (𝑡)
)

, (6.25)

where (𝑡 + 𝜙𝛥𝑡) ≈ 𝜙(𝑡 + 𝛥𝑡) + (1 − 𝜙)(𝑡), leading to 

𝒗𝑐𝑚(𝑡 + 𝛥𝑡) = 𝒗𝑐𝑚(𝑡) +
𝛥𝑡

(𝑡 + 𝜙𝛥𝑡)
(

𝜙𝜳𝐸𝑋𝑇 (𝑡 + 𝛥𝑡) + (1 − 𝜙)𝜳𝐸𝑋𝑇 (𝑡)
)

. (6.26)

For the position, we have 

𝒓̇𝑐𝑚(𝑡 + 𝜙𝛥𝑡) ≈
𝒓𝑐𝑚(𝑡 + 𝛥𝑡) − 𝒓𝑐𝑚(𝑡)

𝛥𝑡
≈ 𝒗𝑐𝑚(𝑡 + 𝜙𝛥𝑡) ≈

(

𝜙𝒗𝑐𝑚(𝑡 + 𝛥𝑡) + (1 − 𝜙)𝒗𝑐𝑚(𝑡)
)

, (6.27)

leading to 
𝒓𝑐𝑚(𝑡 + 𝛥𝑡) = 𝒓𝑐𝑚(𝑡) + 𝛥𝑡

(

𝜙𝒗𝑐𝑚(𝑡 + 𝛥𝑡) + (1 − 𝜙)𝒗𝑐𝑚(𝑡)
)

. (6.28)

6.3.2. DEM particle cluster rotational contribution
The quadcopter’s angular velocity and rotation are determined in a similar manner by integrating the equations for an angular 

momentum balance 

𝑯̇𝑐𝑚 =
𝑑( ⋅ 𝝎)

𝑑𝑡
=𝑴𝐸𝑋𝑇

𝑐𝑚 , (6.29)

where  is the mass moment of the quadcopter, 𝝎 is the angular velocity and 𝑴𝐸𝑋𝑇
𝑐𝑚  is the sum of all moment contributions external 

to the quadcopter, around its center of mass. We remark that there are essentially two possible approaches to compute the rotational 
dynamics; either (1) an inertially-fixed frame or (2) a body-fixed frame. For the discrete element approach, it is advantageous to use 
a inertially-fixed frame.6 The procedure is, within a time step, to decompose an increment of motion into a rigid body translation 
and rotation about the center of mass. The rotation is determined by solving for the angular velocity and the subsequent incremental 
rotation of the body around the axis of rotation, which is aligned with the angular velocity vector direction. This leads to a coupled 
set of nonlinear equations which are solved iteratively.

In a fixed frame of reference the angular momentum can be written as 

𝑯̇𝑐𝑚 =
𝑑( ⋅ 𝝎)

𝑑𝑡
=𝑴𝐸𝑋𝑇

𝑐𝑚 . (6.30)

 is implicitly dependent on 𝝎(𝑡), leading to a coupled system of nonlinear ODE’s. These will be solved iteratively. Eq.  (6.30) is 
discretized by a trapezoidal scheme 

𝑑( ⋅ 𝝎)
𝑑𝑡

|𝑡+𝜙𝛥𝑡 =
( ⋅ 𝝎)|𝑡+𝛥𝑡 − ( ⋅ 𝝎)|𝑡

𝛥𝑡
. (6.31)

thus leading to 
( ⋅ 𝝎)|𝑡+𝛥𝑡 = ( ⋅ 𝝎)|𝑡 + 𝛥𝑡𝑴𝐸𝑋𝑇

𝑐𝑚 (𝑡 + 𝜙𝛥𝑡). (6.32)

Solving for 𝝎(𝑡 + 𝛥𝑡) yields 

𝝎(𝑡 + 𝛥𝑡) =
(

(𝑡 + 𝛥𝑡)
)−1

⋅
(

( ⋅ 𝝎)|𝑡 + 𝛥𝑡𝑴𝐸𝑋𝑇
𝑐𝑚 (𝑡 + 𝜙𝛥𝑡)

)

, (6.33)

where 
𝑴𝐸𝑋𝑇

𝑐𝑚 (𝑡 + 𝜙𝛥𝑡) ≈ 𝜙𝑴𝐸𝑋𝑇
𝑐𝑚 (𝑡 + 𝛥𝑡) + (1 − 𝜙)𝑴𝐸𝑋𝑇

𝑐𝑚 (𝑡) (6.34)

which yields an implicit nonlinear equation, of the form 𝝎(𝑡 + 𝛥𝑡) =  (𝝎(𝑡 + 𝛥𝑡)), since (𝑡 + 𝛥𝑡), due to the body’s rotation. An 
iterative, implicit, solution scheme may be written as follows for 𝐾 = 1, 2... 

𝝎𝐾+1(𝑡 + 𝛥𝑡) =
(


𝐾
(𝑡 + 𝛥𝑡)

)−1
⋅
(

( ⋅ 𝝎)|𝑡 + 𝛥𝑡𝑴𝐸𝑋𝑇 ,𝐾
𝑐𝑚 (𝑡 + 𝜙𝛥𝑡)

)

, (6.35)

6 For a body-fixed formulation, see Powell and Zohdi [89].
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where 𝐾
(𝑡 + 𝛥𝑡) can be re-computed from the previous formulas.7 After the update for 𝝎𝐾+1(𝑡 + 𝛥𝑡) has been computed (utilizing 

the 𝐾
(𝑡 + 𝛥𝑡) from the previous iteration), the rotation of the body about the center of mass can be determined.

Remark-Propellor thrust: A propeller’s thrust is directly proportional to its speed of rotation. This relationship is nonlinear, with 
airspeed, propellor design etc. controlling the overall thrust produced. In the analysis at hand, we simply assign a thrust to each 
motor. In the case of a hovering action, each carrying 1/4th the gravitation load. Two of the motors spin with rotation vectors 
pointing upwards and two pointing downwards, although the thrust is upwards for all 4 are by having the propellors flipped on 
two downward spinning propellors. For more details see [90].

6.3.3. Iterative superposition scheme-including loss of dislodged particles
The total velocity of any particle can be decomposed into the velocity of the center of mass of the entire object and the rotation 

of the particle relative to the center of mass: 

𝒗𝑖 = 𝒗𝑐𝑚 + (𝒗𝑖 − 𝒗𝑐𝑚) = 𝒗𝑐𝑚 + 𝒗𝑐𝑚→𝑖 = 𝒗𝑐𝑚 + 𝝎 × (𝒓𝑐𝑚 − 𝒓𝑖) = 𝒗𝑐𝑚 + 𝝎 × 𝒓𝑐𝑚→𝑖 (6.36)

Explicitly, the overall motion for the bonded particles is computed by 𝒓𝑖 = 𝒓𝑐𝑚 + 𝝎 × (𝒓𝑖 − 𝒓𝑐𝑚), sequentially by computing:

• Velocity: 𝑪1 = 𝜙𝒗𝑐𝑚(𝑡 + 𝛥𝑡) + (1 − 𝜙)𝒗𝑐𝑚(𝑡),
• Angular velocity: 𝑪2 = 𝜙𝝎(𝑡 + 𝛥𝑡) + (1 − 𝜙)𝝎(𝑡),
• Center of mass position: 𝑪3 = 𝜙𝒓𝑐𝑚(𝑡 + 𝛥𝑡) + (1 − 𝜙)𝒓𝑐𝑚(𝑡),
• Particle positions: 𝒓𝑖(𝑡 + 𝛥𝑡) = 𝒓𝑖 + 𝛥𝑡(𝑪1 + 𝑪5),
• 𝑪4 = 𝜙𝒓𝑖(𝑡 + 𝛥𝑡) + (1 − 𝜙)𝒓𝑖(𝑡) − 𝑪3 and 𝑪5 = 𝑪2 × 𝑪4.

Remark-Option for Dislodged Particles: Although it is outside of the scope of the present work, to incorporate the possibility for 
particles to break off, a unilateral fragmentation threshold must be met for a particle to be deemed ‘‘dislodged’’, which subsequently 
moves according to its own dynamics. We refer the reader to Zohdi [91], [92], [93], [94], [95], [96] for details. This is discussed 
further in the summary and conclusions.

6.4. Algorithmic procedure

The overall procedure is as follows, at time 𝑡:

1. Generate the quadcopter body by inserting particles within the envelope/grid interaction (Fig.  11): 
|𝑥1 − 𝑥1𝑜|

𝑝1

𝑅1
+

|𝑥2 − 𝑥2𝑜|
𝑝1

𝑅2
+

|𝑥3 − 𝑥3𝑜|
𝑝3

𝑅3
≤ 1. (6.37)

Also place extra masses in the locations for the motors.
2. Set initial conditions, if 𝑡 = 0.
3. Compute the thrust of the motors (orthogonal to the quadcopter body).
4. Compute the new position of the center of mass.
5. Compute (iteratively) the positions of the particles in the body 𝒓𝐾𝑖 (𝑡 + 𝛥𝑡), 𝐾 = 1, 2,….: 

‖𝒓𝐾+1
𝑖 (𝑡 + 𝛥𝑡) − 𝒓𝐾𝑖 (𝑡 + 𝛥𝑡)‖ ≤ 𝑇𝑂𝐿‖𝒓𝐾+1

𝑖 (𝑡 + 𝛥𝑡)‖. (6.38)

This requires computation of the position of the center of mass, the rotation of the body, and the calculation of the positions 
of the particles within the iterations:
[a] Compute/update: 𝒗𝐾+1

𝑐𝑚 (𝑡 + 𝛥𝑡) = 𝒗𝑐𝑚(𝑡) +
𝛥𝑡

(𝑡+𝜙𝛥𝑡)

(

𝜙𝜳𝐾+1,𝐸𝑋𝑇 (𝑡 + 𝛥𝑡) + (1 − 𝜙)𝜳𝐸𝑋𝑇 (𝑡)
)

.
(b) Compute/update: 𝒓𝐾+1

𝑐𝑚 (𝑡 + 𝛥𝑡) = 𝒓𝑐𝑚(𝑡) + 𝛥𝑡
(

𝜙𝒗𝑐𝑚(𝑡 + 𝛥𝑡) + (1 − 𝜙)𝒗𝑐𝑚(𝑡)
)

.
(c) Compute/update: 𝑴𝐸𝑋𝑇

𝑐𝑚 (𝑡 + 𝜙𝛥𝑡) ≈ 𝜙𝑴𝐸𝑋𝑇
𝑐𝑚 (𝑡 + 𝛥𝑡) + (1 − 𝜙)𝑴𝐸𝑋𝑇

𝑐𝑚 (𝑡),

(d) Compute/update: 𝝎𝐾+1(𝑡 + 𝛥𝑡) =
(


𝐾
(𝑡 + 𝛥𝑡)

)−1
⋅
(

( ⋅ 𝝎)|𝑡 + 𝛥𝑡𝑴𝐸𝑋𝑇 ,𝐾
𝑐𝑚 (𝑡 + 𝜙𝛥𝑡)

)

,
(e) Compute/update: 𝒗𝑖 = 𝒗𝑐𝑚 + 𝝎 × 𝒓𝑐𝑚→𝑖
(f) Compute/update: 𝒓𝑖(𝑡 + 𝛥𝑡) = 𝒓𝑖 + 𝛥𝑡(𝑪1 + 𝑪5),
(g) Repeat steps (a)–(f) until Eq.  (6.38) is satisfied.

6. Increment time forward and repeat the procedure.

6.5. Numerical examples

As an example, consider an antiaircraft system that explodes pressure waves at a hovering drone. We consider an initially 
hovering drone, with the thrust from the propellors always acting perpendicular to the drone, being hit repeatedly with a set of 

7 One may view the overall process as a fixed-point calculation of the form 𝝎𝐾+1(𝑡 + 𝛥𝑡) =  (𝝎𝐾 (𝑡 + 𝛥𝑡)).
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Fig. 14. Destabilization of a quadcopter by repeated explosive blasts. See zoom in Figs.  15 and 16.

pulses, where the maximum intensity slightly off center (see Figs.  14–16) with a decay that is scaled by the distance from the 
targeting centerline, according to: 

𝑃 (𝒙) = 𝑃𝑜𝑒
−𝑎𝑑(𝒙) (6.39)

where 𝑃 (𝒙) is the pressure at 𝒙, 𝑃𝑜 is the pressure the center, 𝑑(𝒙) is the distance from the center to 𝒙 and 𝑎 is a decay coefficient. 
The following simulation parameters were chosen:

• Generation grid for DEM: 100 × 100 × 100, yielding 11179 intersecting sites and hence 11179 particles,
• Total time duration: 𝑇 = 35 seconds,
• Time step size: 𝛥𝑡 = 0.00005 seconds,
• Starting position of center of mass: 𝒓𝑐𝑚(𝑡 = 0) = 𝟎 (horizontal, Fig.  13),
• Time stepping parameter: 𝜙 = 0.5 (midpoint rule),
• Drone shape exponents: (𝑝1, 𝑝2, 𝑝3) = (0.5, 0.5, 0.5) (Fig.  13),
• Size of drone: (𝑅1, 𝑅2, 𝑅3) = (0.25, 0.25, 0.05),
• Mass of the drone chassis: 𝑀 = 1 kg,
• Starting angular velocity: 𝝎(𝑡 = 0) = 𝟎 rad/sec,
• Motor masses: 𝑀𝑚 = 0.25 kg each,
• Thrust force per motor:4.55 𝑁 (this allows for perfect hovering (propellor thrust balancing gravity) if there is no external 
impulse),

• Density of the chassis material: 𝜌 = 1000 kg∕𝑚3,
• Blast frequency: one every second.
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Fig. 15. Destabilization of a quadcopter by repeated explosive pulses, with a zoom closeup (previously shown in Fig.  14).

As seen in Figs.  14–16, the repeated impulses are strong enough to overturn the drone, and to destabilize it, as well as to separate of 
the motors. Importantly, although we have not discussed the evolution of damage, these approaches are important for ascertaining 
whether a particle will become dislodged by checking a unilateral integrity bonding criteria between particles:

• Remains bonded/intact: ‖𝑭 (𝒙)‖ ≤ 𝐹 ∗ ⇒ 𝛾̇(𝒙) = 0.
• Debonding evolution: ‖𝑭 (𝒙)‖ ≥ 𝐹 ∗ ⇒ 𝛾̇(𝒙) = 𝛼(1 − ‖𝑭‖

𝐹 ∗ ),

where 𝛼 is a rate parameter and 𝛾 is a integrity parameter, where initially 𝛾(𝒙, 𝑡 = 1) = 1; i.e. no damage/full integrity. When 
𝛾 ≤ 𝑇𝑂𝐿 then the particle is allowed to debond and mass is lost. We define 𝛾 as the integrity and 1 − 𝛾 as damage. If the 
part of the body separates then it is released with the position and velocity of the body at that point. The contact mechanics 
of dislodged particles with other dislodged material, the remainder of the drone hull, etc., is outside the scope of the present work. 
Temporally-adaptive iterative methods maybe needed for more complex particle interaction. We refer the reader to methods found 
in Zohdi [91], [92], [93], [94], [95], [96] that address general systems of this type. As an example, consider a debonding relation 
that is dependent on the intensity of the external blast force applied:

• Remains bonded/intact: ‖𝑭 𝑒𝑥𝑡(𝒙)‖ ≤ 𝐹 ∗ ⇒ 𝛾̇(𝒙) = 0,
• Evolutionary debonding: ‖𝑭 𝑒𝑥𝑡(𝒙)‖ ≥ 𝐹 ∗ ⇒ 𝛾̇(𝒙) = 𝛼(1 − ‖𝑭 𝑒𝑥𝑡

‖

𝐹 ∗ )

The results of this assumption are shown in Figs.  17 and 18. When 𝛾(𝒙) ≤ 𝑇𝑂𝐿, then the fragment is released.
In the previous example, we did not compute the interaction of fragments with the chasis or other fragments. Furthermore, 

regardless of whether the particles surrounding a particle were dislodged, if a particle does not meet the dislodging criteria, it 
still moves with the main (remaining) rigid body and does not separate from the main body. In other words, the topology of the 
surrounding fragmentation, for example separating an entire rotor arm, has not been taken into account. In this simple example, the 
fragmentation is particle by particle. Clearly, the interaction of clusters of fragments, with a full contact analysis, is a logical extension 
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Fig. 16. Destabilization of a quadcopter by repeated explosive pulses, with a larger zoom closeup with loss of motors (previously shown in Figs.  14 and 15). 
The blue color coding indicated that the motors have shut off and are non-functioning. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

of the analysis presented. This would require a direct numerical simulation-type formulation for dynamics of a multi-particulate 
system (𝑖 = 1, 2...𝑁 bonded and fragmented particles) 

𝑚𝑖𝒓̈𝑖 = 𝜳 𝑡𝑜𝑡
𝑖 (𝒓1, 𝒓2,… , 𝒓𝑁𝑝

, contact forces, bonding forces) (6.40)

where 𝒓𝑖 is the position vector of the 𝑖𝑡ℎ particle, 𝜳 𝑡𝑜𝑡
𝑖  represents all forces acting on particle 𝑖, with contact detection and contact 

force computation. The simulation of related flowing particulate systems has been extensively investigated for the last decade by 
Zohdi [97]–[96], employing numerical schemes based on high-performance iterative solvers, sorting-binning for fast inter-particle 
calculations, Verlet lists, domain decomposition, parallel processing and temporally-adaptive methods, described further in the 
Appendices. These types of formulations can easily describe the interaction of multiple fragments from breakup/disintegration and 
blasts where the application of continuum approaches would be virtually impossible. The dynamics of fragments of clusters that 
evolve and interact with the quadcopter and other fragments is complex. Studies on cluster-to-cluster interaction can be found in 
Zohdi [91], [92], [93], [94], [95], [96]. There is an extremely close area to this field, namely the study of ‘‘granular’’ or ‘‘particulate’’ 
media, for example see Duran  [98], Pöschel and Schwager [99], Onate et al. [100], [101], Rojek et al. [102], Carbonell et al. [103], 
Labra and Onate [104] and Zohdi [94]. In summary, with such a formulation, one can explore aspects such as (1) trade-offs 
between mass, structural stabilization, vulnerability-from the attacker’s point of view, (2) inverse problems for prescribed target 
destabilization-from the defender’s point of view and (3) subsequent trajectory analysis, to name a few.
Remark-Incorporation of reduced-order models: While the simulator we have presented is quite fast, even faster reactions are 
needed in some critical situations, utilizing reduced order models for example using Artificial Neural Nets (ANN). In the realm of 
model reduction, two possible extensions come to mind:

• Reducing the complexity of the model-based method to an ANN by training on new synthetic outcomes for which there is no 
experimental data
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Fig. 17. Destabilization, fragmentation and disintegration of a quadcopter by repeated explosive pulses, with resulting debris formation. See zoom in Fig.  18.

• Directly producing model-free ANN from the incremental data, thus completely circumventing any model from the very 
beginning.

In theory, an ANN reduced order model could accelerate simulations even further. However, huge amounts of data for training 
sets would be needed to compensate for the fact that no physics is built into the Neural Nets. The hybrid use of digital-twins, 
genetic-based machine-learning and Artificial Neural Networks is currently under investigation by the author. We refer the reader 
to Appendix 3 for more details.

7. Summary and the role of evolving technology

In summary, the goal of this work was to develop a rapid machine-learning enabled digital-twin to ascertain optimal programming 
for desired tactical multi-drone swarmlike behavior. There were main two components of this analysis. The first component was 
a framework comprised of a multibody dynamics model for multiple interacting agents, augmented with a machine-learning 
framework to allow drone-swarm agents to identify (a) desired targets, (b) obstacles and (c) fellow agents, as well to determine the 
resulting optimal actions the agents should undertake. The objective was to construct a system with entirely autonomous interaction 
and actuation parameter values that are embedded in the coupled multibody differential equations of motion for the drone-swarm 
agents. This was achieved by minimizing a cost/error function that represented the difference between the simulated overall group 
behavior and in-field observed behavior from synthetic data in the form of temporal snapshots that would correspond to multiple 
camera frames. In the second main component of the analysis, in order more deeply assess the design of a drone-swarm member, 
we developed a method for rapid chassis design, deployment and dynamic performance. As an example, we studied the response 
of tactical quadcopter drones under attack, specifically by being subjected to series of launched explosions. A Discrete Element 
Method (DEM) was developed to rapidly design a quadcopter of virtually any complex shape, attach motors and then to subject it 
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Fig. 18. Zoom on destabilization, fragmentation and disintegration (previously shown in Fig.  17) of a quadcopter by repeated explosive pulses. Orange indicates 
full structural integrity, while blue indicates high structural damage. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

to a hostile environment, in order to ascertain its performance in the field. The method also allowed for the characterization of loss 
of functionality (thrust), progressive damage and fragmentation of the quadcopter drone.

Typically, such drones have a variety of sensors on board, ranging from 6 DOF 3-axis gyroscopes, a variety of accelerometers, 
Inertial Measurement Units (IMU’s), barometers and GPS receivers. They also have a number of actuators, such as digital electronic 
speed controllers that are connected to engine, motors, servomotors and propellors. There are numerous emerging technologies 
that have been enabled by drones, driven primarily by defense systems. As a result, there are consequential geopolitical issues 
associated with quasi-commericial drones, in particular related to defense and security issues. While small-scale commercial drones 
were initially considered of little concern, recent wars, such as the Ukraine conflict have starkly altered that view. In particular, 
First-Person Viewer (FPV) drones, which stream a video to a ground-based controller, have become centrally important. Furthermore, 
when retrofitted to carry explosives, they become a lethal weapon. There are roughly ten key components common to most tactical 
drones: (1) Lightweight airframes, (2) Brushless DC motors, (3) Power transmission, (4) Flight controls, (5) Batteries and power 
supply, (6) Cameras, (7) Sensors, (8) Navigation, (9) Onboard computing, processing and memory and (10) Wireless communication. 
Additionally, there are highly specialized materials involved, such as sintered permanent neodymium (NdFeB) for brushless DC 
motors and lithium polymers (LiPo) for lightweight batteries are critical components. In particular, over the last 30 years, battery 
technology utilize gel polymers and solid-state electrolytes to deliver extremely high energy per unit of weight that have led to 
approximately a 300% increase in energy density and nearly a 100% reduction in cost of lithium-ion batteries. As of 2025, companies 
based in China dominate the commercial drone market, with overall estimates of nearly 85% market share (see popular press 
articles [105–125]), producing drones that are easy to use, simple to maintain and relatively inexpensive, backed by a skilled 
workforce who is able to supply and innovate products at unmatched rapid speeds. However, over that last two years, there has 
been huge worldwide investments, in particular by the US, Taiwan, Europe in drone technologies, in parallel with the rise of AI 
and machine-learning. The research emphasis is now focussing on collaborative multi-drone swarm technologies. In this regard, 
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Fig. 19. A zoom on the LiDAR scanning of drone-swarm members as they move through a complex environment.

as mentioned earlier in the present work, advances in camera technologies have become critical for drone-swarm technologies 
propagate.

The role of evolving camera technology for complex drone manipulation cannot be overstated. In particular, cameras that incor-
porate (a) multispectral imaging that extend the classical visible wavelength paradigms (380–720 nm), to thermographic/infrared 
regimes (1000–14000 nm) to create an image and (b) 3D (time-of-flight) cameras, using LiDAR, radio-based imaging and tomography 
are critical. It is now possible to rapidly extract, frame-by-frame, 3D voxel fields of dynamic thermo-fluidic events utilizing real-time 
tomographically-based imaging. For example, in Fig.  19 LiDAR rays are shown being emitted from each drone, scanning each object 
in a multidirectional manner. We refer the interested reader to Elsinga et al. [126–151]–Tariq [152] for details on the wide-range 
of topics discussed above. This is particularly critical due to the increase of heat-seeking weaponry, unidentified flying objects, 
drones, high-altitude remote sensing, satellite constellations, etc., in an increasingly crowded airspace. Furthermore, methods such 
as tomographic-PIV has evolved over the last 20 years to extend PIV to measuring 3D vector fields, using MART (Multiplicative 
Algebraic Reconstruction Technique), which was introduced by Herman and Lent [127] that creates a digital voxel representation 
of the volume, where the intensity values correlate to the values represented by the particles at those locations. We refer the 
interested reader to Elsinga et al. [126–151]–Tariq [152] and Aguirre-Pablo, et al. [130] who demonstrated the viability of using 
four low-cost smartphone cameras to perform Tomographic PIV using colored shadows to imprint two or three different time-steps 
on the same image. The use of voxels (Foley et al. [153]), is widespread in the visualization and analysis of medical and scientific 
data (Chmielewski et al. [154]) and in the video-gaming industry. Accordingly, in Zohdi [67], a machine-learning framework was 
developed that rapidly simulates and adapts object geometries in order to match the thermo-flow field signature generated by an 
unknown object, across a time series of voxel-frames. In order to achieve this, a thermo-fluid model was developed, based on rapid-
solution of coupled multiphysical flows involving the Navier–Stokes equations and the first law of thermodynamics, using a voxel 
rendering of the domain environment. This voxel-framework was then combined with a genomic-based machine-learning algorithm 
to develop a digital-twin (digital-replica) of the system that can run in real-time or faster than the actual physical system. The 
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adaptation of these methods for drone-based data acquisition and, conversely, drone identification, is currently under investigation 
by the author.
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Appendix A. Temporal discretization

Consider a particle’s equation of motion given by 
𝑚𝒗̇ = 𝜳 , (A.1)

where 𝜳  is the force provided from interactions with other particles the external environment. Expanding the velocity in a Taylor 
series about 𝑡 + 𝜙𝛥𝑡 we obtain (0 ≤ 𝜙 ≤ 1) 

𝒗(𝑡 + 𝛥𝑡) = 𝒗(𝑡 + 𝜙𝛥𝑡) + 𝑑𝒗
𝑑𝑡

|𝑡+𝜙𝛥𝑡(1 − 𝜙)𝛥𝑡 + 1
2
𝑑2𝒗
𝑑𝑡2

|𝑡+𝜙𝛥𝑡(1 − 𝜙)2(𝛥𝑡)2 + (𝛥𝑡)3 (A.2)

and 
𝒗(𝑡) = 𝒗(𝑡 + 𝜙𝛥𝑡) − 𝑑𝒗

𝑑𝑡
|𝑡+𝜙𝛥𝑡𝜙𝛥𝑡 +

1
2
𝑑2𝒗
𝑑𝑡2

|𝑡+𝜙𝛥𝑡𝜙
2(𝛥𝑡)2 + (𝛥𝑡)3. (A.3)

Subtracting the two expressions yields 
𝑑𝒗
𝑑𝑡

|𝑡+𝜙𝛥𝑡 =
𝒗(𝑡 + 𝛥𝑡) − 𝒗(𝑡)

𝛥𝑡
+ ̂(𝛥𝑡), (A.4)

where ̂(𝛥𝑡) = (𝛥𝑡)2 when 𝜙 = 1
2 . Inserting this into the equation of motion yields 

𝒗(𝑡 + 𝛥𝑡) = 𝒗(𝑡) + 𝛥𝑡
𝑚
𝜳 (𝑡 + 𝜙𝛥𝑡) + ̂(𝛥𝑡)2. (A.5)

Note that adding a weighted sum of Eqs. (A.2) and (A.3) yields 
𝒗(𝑡 + 𝜙𝛥𝑡) = 𝜙𝒗(𝑡 + 𝛥𝑡) + (1 − 𝜙)𝒗(𝑡) + (𝛥𝑡)2, (A.6)

which will be useful shortly. Now expanding the position of the center of mass in a Taylor series about 𝑡 + 𝜙𝛥𝑡 we obtain 

𝒓(𝑡 + 𝛥𝑡) = 𝒓(𝑡 + 𝜙𝛥𝑡) + 𝑑𝒓
𝑑𝑡

|𝑡+𝜙𝛥𝑡(1 − 𝜙)𝛥𝑡 + 1
2
𝑑2𝒓
𝑑𝑡2

|𝑡+𝜙𝛥𝑡(1 − 𝜙)2(𝛥𝑡)2 + (𝛥𝑡)3 (A.7)

and 
𝒓(𝑡) = 𝒓(𝑡 + 𝜙𝛥𝑡) − 𝑑𝒓

𝑑𝑡
|𝑡+𝜙𝛥𝑡𝜙𝛥𝑡 +

1
2
𝑑2𝒓
𝑑𝑡2

|𝑡+𝜙𝛥𝑡𝜙
2(𝛥𝑡)2 + (𝛥𝑡)3. (A.8)

Subtracting the two expressions yields 
𝒓(𝑡 + 𝛥𝑡) − 𝒓(𝑡)

𝛥𝑡
= 𝒗(𝑡 + 𝜙𝛥𝑡) + ̂(𝛥𝑡). (A.9)

Inserting Eq.  (A.6) yields 
𝒓(𝑡 + 𝛥𝑡) = 𝒓(𝑡) + (𝜙𝒗(𝑡 + 𝛥𝑡) + (1 − 𝜙)𝒗(𝑡))𝛥𝑡 + ̂(𝛥𝑡)2 (A.10)

and thus using Eq.  (A.5) yields 

𝒓(𝑡 + 𝛥𝑡) = 𝒓(𝑡) + 𝒗(𝑡)𝛥𝑡 + 𝜙(𝛥𝑡)2

𝑚
𝜳 (𝑡 + 𝜙𝛥𝑡) + ̂(𝛥𝑡)2. (A.11)

The term 𝜳 (𝑡 + 𝜙𝛥𝑡) can be approximated by 
𝜳 (𝑡 + 𝜙𝛥𝑡) ≈ 𝜙𝜳 (𝒓(𝑡 + 𝛥𝑡)) + (1 − 𝜙)𝜳 (𝒓(𝑡)), (A.12)

yielding 

𝒓(𝑡 + 𝛥𝑡) = 𝒓(𝑡) + 𝒗(𝑡)𝛥𝑡 + 𝜙(𝛥𝑡)2

𝑚
(𝜙𝜳 (𝒓(𝑡 + 𝛥𝑡)) + (1 − 𝜙)𝜳 (𝒓(𝑡))) + ̂(𝛥𝑡)2. (A.13)

We note that

• When 𝜙 = 1, then this is the (implicit) Backward Euler scheme, which is very stable (very dissipative) and (𝛥𝑡)2 locally in 
time,

• When 𝜙 = 0, then this is the (explicit) Forward Euler scheme, which is conditionally stable and (𝛥𝑡)2 locally in time,
• When 𝜙 = 0.5, then this is the (implicit) ‘‘Midpoint’’ scheme, which is stable and ̂(𝛥𝑡)2 = (𝛥𝑡)3 locally in time.
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Appendix B. Temporally adaptive iterative schemes

For illustration purposes, after time discretization of the acceleration term in the equations of motion 𝑚𝒓̈ = 𝜳  using a 𝜙-method 

𝒓𝐿+1 = 𝒓𝐿 + 𝒗𝐿𝛥𝑡 + 𝜙(𝛥𝑡)2

𝑚
(

𝜙𝜳 (𝒓𝐿+1) + (1 − 𝜙)𝜳 (𝒓𝐿)
)

, (B.1)

one arrives at the following abstract form, for the entire system of particles, 
(𝒓𝐿+1) =  . (B.2)

It is convenient to write 
(𝒓𝐿+1) −  = (𝒓𝐿+1) − 𝒓𝐿+1 + = 𝟎, (B.3)

where  is a remainder term that does not depend on the solution, i.e.  ≠ (𝒓𝐿+1). A straightforward iterative scheme can be 
written as 

𝒓𝐿+1,𝐾 = (𝒓𝐿+1,𝐾−1) +, (B.4)

where 𝐾 = 1, 2, 3,… is the index of iteration within time step 𝐿+1. The convergence of such a scheme is dependent on the behavior 
of . Namely, a sufficient condition for convergence is that  is a contraction mapping for all 𝒓𝐿+1,𝐾 , 𝐾 = 1, 2, 3... In order to 
investigate this further, we define the iteration error as 𝜖𝐿+1,𝐾 def

= 𝒓𝐿+1,𝐾 − 𝒓𝐿+1. A necessary restriction for convergence is iterative 
self consistency, i.e. the ‘‘exact’’ (discretized) solution must be represented by the scheme 

(𝒓𝐿+1) + = 𝒓𝐿+1. (B.5)

Enforcing this restriction, a sufficient condition for convergence is the existence of a contraction mapping
𝜖𝐿+1,𝐾 = ‖𝒓𝐿+1,𝐾 − 𝒓𝐿+1‖ = ‖(𝒓𝐿+1,𝐾−1) − (𝒓𝐿+1)‖ (B.6)

≤ 𝜂𝐿+1,𝐾‖𝒓𝐿+1,𝐾−1 − 𝒓𝐿+1‖, (B.7)

where, if 0 ≤ 𝜂𝐿+1,𝐾 < 1 for each iteration 𝐾, then 𝜖𝐿+1,𝐾 → 𝟎 for any arbitrary starting value 𝒓𝐿+1,𝐾=0, as 𝐾 → ∞. This type of 
contraction condition is sufficient, but not necessary, for convergence. Inserting this into 𝑚𝒓̈ = 𝜳 (𝒓) leads to 

𝒓𝐿+1,𝐾 = 𝒓𝐿 + 𝒗𝐿𝛥𝑡 + 𝜙(𝛥𝑡)2

𝑚
(

(1 − 𝜙)𝜳 (𝒓𝐿)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟


+
𝜙(𝛥𝑡)2

𝑚
(

𝜙𝜳 (𝒓𝐿+1,𝐾−1)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(𝒓𝐿+1,𝐾−1)

, (B.8)

whose convergence is restricted by 𝜂 ∝ (𝜙𝛥𝑡)2
𝑚 . Therefore, we see that the contraction constant of  is (1) directly dependent on the 

strength of the interaction forces, (2) inversely proportional to 𝑚 and (3) directly proportional to 𝜙𝛥𝑡. Therefore, if convergence 
is slow within a time step, the time step size, which is adjustable, can be reduced by an appropriate amount to increase the rate 
of convergence. Thus, decreasing the time step size improves the convergence, however, we want to simultaneously maximize the 
time-step sizes to decrease overall computing time, while still meeting an error tolerance on the numerical solution’s accuracy. In 
order to achieve this goal, we follow an approach found in Zohdi [97]–[96] originally developed for continuum thermo-chemical 
multifield problems in which (1) one approximates 

𝜂𝐿+1,𝐾 ≈ 𝑆(𝛥𝑡)𝑝 (B.9)

(𝑆 is a constant) and (2) one assumes that the error within an iteration to behave according to 
(𝑆(𝛥𝑡)𝑝)𝐾𝜖𝐿+1,0 = 𝜖𝐿+1,𝐾 , (B.10)

𝐾 = 1, 2,…, where 𝜖𝐿+1,0 is the initial norm of the iterative error and 𝑆 is intrinsic to the system.8 Our goal is to meet an error 
tolerance in exactly a preset number of iterations. To this end, one writes 

(𝑆(𝛥𝑡tol)𝑝)𝐾𝑑 𝜖𝐿+1,0 = 𝑇𝑂𝐿, (B.11)

where 𝑇𝑂𝐿 is a tolerance and where 𝐾𝑑 is the number of desired iterations.9 If the error tolerance is not met in the desired number of 
iterations, the contraction constant 𝜂𝐿+1,𝐾 is too large. Accordingly, one can solve for a new smaller step size, under the assumption 
that 𝑆 is constant, 

𝛥𝑡tol = 𝛥𝑡

⎛

⎜

⎜

⎜

⎝

( 𝑇𝑂𝐿
𝜖𝐿+1,0

)
1

𝑝𝐾𝑑

( 𝜖
𝐿+1,𝐾

𝜖𝐿+1,0
)

1
𝑝𝐾

⎞

⎟

⎟

⎟

⎠

. (B.12)

8 For the class of problems under consideration, due to the quadratic dependency on 𝛥𝑡, 𝑝 ≈ 2.
9 Typically, 𝐾  is chosen to be between five to ten iterations.
𝑑
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The assumption that 𝑆 is constant is not critical, since the time steps are to be recursively refined and unrefined throughout the 
simulation. Clearly, the expression in Eq.  (B.12) can also be used for time step enlargement, if convergence is met in less than 𝐾𝑑
iterations.10 An implementation of the procedure is as follows: 

(1) GLOBAL FIXED − POINT ITERATION ∶ (SET i = 1 AND K = 0) ∶
(2) IF i > Np THEN GO TO (4)
(3) IF i ≤ Np THEN ∶

(𝑎) COMPUTE POSITION ∶𝒓𝐿+1,𝐾𝑖
(𝑏) GO TO (2) FOR NEXT PARTICLE (i = i + 1)

(4) ERROR MEASURE ∶

(𝑎)𝜖𝐾
def
=

∑𝑁𝑝
𝑖=1 ‖𝒓

𝐿+1,𝐾
𝑖 − 𝒓𝐿+1,𝐾−1

𝑖 ‖

∑𝑁𝑝
𝑖=1 ‖𝒓

𝐿+1,𝐾
𝑖 − 𝒓𝐿𝑖 ‖

(normalized)

(𝑏)𝑍𝐾
def
=

𝜖𝐾
𝑇𝑂𝐿𝑟

(𝑐)𝛷𝐾
def
=

⎛

⎜

⎜

⎜

⎝

( 𝑇𝑂𝐿
𝜖0

)
1

𝑝𝐾𝑑

( 𝜖𝐾𝜖0
)

1
𝑝𝐾

⎞

⎟

⎟

⎟

⎠

(5)IF TOLERANCE MET (𝑍𝐾 ≤ 1) AND 𝐾 < 𝐾𝑑 THEN ∶
(𝑎) INCREMENT TIME ∶ 𝑡 = 𝑡 + 𝛥𝑡
(𝑏) CONSTRUCT NEW TIME STEP ∶𝛥𝑡 = 𝛷𝐾𝛥𝑡,
(𝑐) SELECT MINIMUM ∶𝛥𝑡 = 𝑀𝐼𝑁(𝛥𝑡𝑙𝑖𝑚, 𝛥𝑡) AND GO TO (1)

(6)IF TOLERANCE NOT MET (𝑍𝐾 > 1) AND 𝐾 = 𝐾𝑑 THEN ∶
(𝑎) CONSTRUCT NEW TIME STEP ∶𝛥𝑡 = 𝛷𝐾𝛥𝑡
(𝑏) RESTART AT TIME = t AND GO TO (1)

(B.13)

Generally speaking, the iterative error, which is a function of the time step size, is temporally variable and can become stronger, 
weaker, or possibly oscillatory, is extremely difficult to ascertain a-priori as a function of the time step size. Therefore, to circumvent 
this problem, the adaptive strategy presented in this section was developed to provide accurate solutions by iteratively adjusting the 
time steps. Specifically, a sufficient condition for the convergence of the presented fixed-point scheme was that the spectral radius 
or contraction constant of the coupled operator, which depends on the time step size, must be less than unity. This observation was 
used to adaptively maximize the time step sizes, while simultaneously controlling the coupled operator’s spectral radius, in order to 
deliver solutions below an error tolerance within a prespecified number of desired iterations. This recursive staggering error control 
can allow for substantial reduction of computational effort by the adaptive use of large time steps. Furthermore, such a recursive 
process has a reduced sensitivity, relative to an explicit staggering approach, to the order in which the individual equations are 
solved, since it is self-correcting.
Remark-Iterative Solutions: With regard to the solution process, a recursive iterative scheme of the Jacobi-type, where the updates 
are made only after one complete system iteration, was illustrated in the derivations only for algebraic simplicity. The Jacobi method 
is easier to address theoretically, while the Gauss–Seidel type method, which involves immediately using the most current values, 
when they become available, is usually used at the implementation level. As is well-known, under relatively general conditions, if the 
Jacobi method converges, the Gauss–Seidel method converges at a faster rate, while if the Jacobi method diverges, the Gauss–Seidel 
method diverges at a faster rate (for example, see Ames [155] or Axelsson [156]). It is important to realize that the Jacobi method 
is perfectly parallelizable. In other words, the calculation for each particle are uncoupled, with the updates only coming afterwards. 
Gauss–Seidel, since it requires the most current updates, couples the particle calculations immediately. However, these methods can 
be combined to create hybrid approaches, whereby the entire particulate flow is partitioned into groups and within each group a 
Gauss–Seidel method is applied. In other words, for a group, the positions of any particles from outside are initially frozen, as far as 
calculations involving members of the group are concerned. After each isolated group’s solution (particle positions) has converged, 
computed in parallel, then all positions are updated, i.e. the most current positions become available to all members of the swarm, 
and the isolated group calculations are repeated. Classical solution methods require (𝑁3) operations, whereas iterative schemes, 
such as the one presented, typically require order 𝑁𝑞 , where 1 ≤ 𝑞 ≤ 2. For details see Axelsson [156]. Also, such solvers are highly 
advantageous since solutions to previous time steps can be used as the first guess to accelerate the solution procedure.

Appendix C. Incorporation of reduced-order models

Artificial Neural Networks (ANN) have received huge attention in the scientific community over the last decade and are based 
on layered input–output type frameworks that are essentially adaptive nonlinear regressions of the form  = (𝑰 ,𝒘), where  is a 

10 Time-step size adaptivity is important, since the system’s dynamics can dramatically change over the course of time, possibly requiring quite different time 
step sizes to control the iterative error. However, to maintain the accuracy of the time-stepping scheme, one must respect an upper bound dictated by the 
discretization error, i.e., 𝛥𝑡 ≤ 𝛥𝑡𝑙𝑖𝑚.
28 



T.I. Zohdi Computer Methods in Applied Mechanics and Engineering 442 (2025) 117999 
Fig. 20. Top: An ANN comprised of (1) Five layers (one input layer and four hidden layers) (2) 35 activation neurons (3+5+7+9+11) and (3) 223 weighted 
synapses. The color-coding represents the value of the weights. Bottom: Various neuron activation functions: (1) Linear (2) Sigmoid and (3) Double Sigmoid.

desired output and  is the ANN. This is discussed next and follows a framework developed in Zohdi [157]. Specifically, ANN are 
based on layered input–output type frameworks that are essentially adaptive nonlinear regressions of the form 

 = (𝐼1, 𝐼2,… , 𝐼𝑀 , 𝑤1, 𝑤2,… , 𝑤𝑁 ), (C.1)

where  is a desired output and  is the ANN comprised of:

• Synapses, which multiply inputs (𝐼𝑖, 𝑖 = 1, 2,… ,𝑀) by weights (𝑤𝑖, 𝑖 = 1, 2,… , 𝑁) that represent the input relevance to the 
desired output,

• Neurons, which aggregate outputs from all incoming synapses and apply activation functions to process the data and
• Training, which calibrates the weights to match a desired overall output.
For example, Fig.  20 illustrates a detailed ANN comprised of (1) Five layers (one input layer and four hidden layers) (2) 35 

activation neurons (3+5+7+9+11) and (3) 223 weighted synapses. The primary issue with ANNs is the calibration or ‘‘training’’ of the 
synapse weights.

The key components of an ANN can be summarized as follows (which is centered around training):

• STEP 1: Guess a set of trial weights, given by the vector 𝒘𝑖=1, for the synapses and insert into the ANN (detailed construction 
shown shortly) 

(𝑰 ,𝒘𝑖) = 𝑖, (C.2)

which produces an overall trial output.
• STEP 2: Compute the error: 

 𝑖 def
= ‖𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑖

‖, (C.3)

where 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 is the desired output, which could come from experimental/field data or results from a complex computational 
model of a system, where a reduced complexity ANN may be useful to represent the system.

• STEP 3: The minimization of the error by adjusting the weights: 
𝒘𝑖+1 = 𝒘𝑖 + 𝛥𝒘𝑖+1 (C.4)

• STEP 4: Repeat Steps 1–3 until the best set of weights are found to minimize the error.
The determination of the synapse weights can be cast as a nonconvex optimization problem, whereby the cost/error function 
represents the normed difference between observed data and the output of the ANN for a selected set of weights. The objective 
is to select a set of weight which minimizes the cost/error. One family of methods that are extremely well-suited for this process are 
genetic-based machine-learning algorithms. There are a variety of approaches to minimize the error, for example by utilizing the 
genetic-based machine-learning algorithm (MLA) introduced earlier, which is well-suited for nonconvex optimization. This proceeds 
by minimizing 𝛱 , by varying the design parameters, 𝜦𝑖 def

= {𝛬𝑖 , 𝛬𝑖 , 𝛬𝑖 ,… , 𝛬𝑖 }, where the search is conducted within the constrained 
1 2 3 𝑁
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ranges of 𝛬(−)
1 ≤ 𝛬1 ≤ 𝛬(+)

1 , 𝛬(−)
2 ≤ 𝛬2 ≤ 𝛬(+)

2 , 𝛬(−)
3 ≤ 𝛬3 ≤ 𝛬(+)

3 , etc. These upper and lower limits are dictated by what is physically 
feasible.

Data availability

No data was used for the research described in the article.
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