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The accumulation of microscale materials at solid—fluid interfaces in biological
channels is often the initial stage of certain growth processes, which are present
in some forms of atherosclerosis. The objective of this work is to develop a
relatively simple model for such accumulation, which researchers can use to
qualitatively guide their analyses. Specifically, the approach is to construct rate
equations for the accumulation at the solid—fluid interface as a function of the
intensity of the shear stress. The accumulation of material subsequently reduces
the cross-sectional area of the channel until the fluid-induced shear stress at the
solid —fluid interface reaches a critical value, which terminates the accumulation
rate. Characteristics of the model are explored analytically and numerically.

1. Introduction

The primary objective of this work is to model a ‘generic” solid—fluid interface
accumulation in biological channels, which contains flowing fluids with suspen-
sions, and to develop a model that is relatively easy to evaulate. In some forms
of growth, the first stage is attributed to accumulation of microscale suspensions
in the fluid which adhere to the flow boundaries (walls). It is this stage, accumu-
lation, that is the focus of this work. For example, one important application that
motivates the present analysis is plaque growth because of high low-density lipo-
proteins (LDL) content. The phenomena of plaque build-up are thought to be due
to a relatively high concentration of microscale suspensions (LDL particles) in
blood. Plaques with high risk of rupture are termed vulnerable. Atherosclerotic
plaque formation involves: (I) adhesion of monocytes (essentially larger suspen-
sions) to the endothelial surface, which is controlled by the adhesion molecules
stimulated by the excess LDL, as well as the oxygen content and the intensity
of the blood flow, (I) penetration of the monocytes into the intima and sub-
sequent tissue inflammation and (Il) rupture of the plaque, accompanied by
some level of thrombus formation and possible subsequent occlusive thrombosis.
For surveys of plaque-related work, see the earlier studies [1-11]. The mechan-
isms involved in the early part of plaque formation (stage (I)) have not been
extensively studied, although some qualitative studies have been carried out
(e.g. [12,13]). Another related problem that motivates the upcoming analysis is cal-
cification in the aortic valve. The deposition of calcium and fatty deposits on the
valve, in relation to the shear stress on the leaflet wall, and how this leads to differ-
ent tendencies of growth on the sides of the leaflet (facing the aorta or left
ventricles) is an open question of increasing interest (e.g. [14-17]).

The approach in the present work is to develop rate equations for the
accumulation of suspended microscale material at the solid-fluid interface. In
the model, the intensity of the shear stress at the interface dictates the rate of
accumulation. As a channel cross section narrows, the flow rate becomes
more intense, thus naturally limiting the accumulation. Both analytical and
numerical approaches are undertaken to determine the model’s characteristics.

2. The basic model

Consider an idealized channel with a circular cross section of (initial) area
Ay = WR% with an initial solid—fluid radius Ry (figure 1). The objective is to
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Figure 1. Flow through a channel with solid—fluid interface accumulation.

describe the mechanism by which A, changes, via a reduction
in Ry, owing to wall accumulation caused by microscale
deposits building up onto the channel’s interior surface.
The interior channel (solid—fluid interface) radius, denoted
R, changes over time (R(t=0)= Rp). As a simplification,
we assume that, at a given location along the channel, the
accumulation is radially symmetric, and that at a given
longitudinal (z) location, at the wall, ¥ =R, and that we
have a velocity profile given by a classical channel-flow of

the form
0 = e (1 - (%)q) 2.1)

where v, is the centreline velocity. For fully developed
laminar flow, g = 2, while for increasing g one characterizes,
phenomenologically, progressively turbulent flow (7> 2).
The shear stress is given by

00U WOmaxq (797!
TRy T TR <E> ' (22)
The (reaction) stress at the wall (at ¥ =R) is 7, = —7(r =R) =

maxq/R. We will further assume that the overall flow rate is
assumed constant

Q:J vdA = Q. (2.3)
A

One can show that

Q(q+2) _ Qolg+2)

Umax = Aq Wqu (24)
The stress at the wall becomes
max 2
f = —7(r = R) = Pomaxt _ Qo7 +2). (2.5)

R 7R3

We have the following observations:

— increasing p, Qp or g increases the stress at the wall (7,,),

— increasing q leads to an increasingly more blunted flow
profile and

— decreasing R increases the stress at the wall (7).

Remark. In the next few sections, we will assume that the
flow profile exponent (g) is independent of velocity. How-
ever, later in the presentation, we will relax this restriction
and correlate g to the centreline Reynolds” number (Re).

3. Rate of interface accumulation

It is assumed that the tendency for material to adhere to the
wall is controlled by the intensity of the shear stress near
the wall. Essentially, higher shear stresses reduce the likeli-
hood of material adhering to the wall, whereas lower shear
stresses increase the tendency of material to adhere to the

wall. Accordingly, we consider the accumulation rate to be [ 2 |

proportional to the non-dimensionalized fractional difference
between the shear stress at the wall (at a fixed z-location) and
the critical ‘detachment’ stress (7 > 0). Specifically, for the
reduction of the solid-fluid radius

d—R*— max T T 0
ar -~ " >

(1 £ 42) )

7R3 (3.1)
where Ry — R(f) is the reduction in radius (figure 1) and 7 is a
rate constant representing the accumulation per unit time. As
the velocity increases (increasing the shear stress), the micro-
scale material in the fluid is less likely to adhere. We have the
following observations:

— increasing 7* increases the rate of adhesion,

— the unilateral limiter 7,, > 7 in equation (3.1) shuts off the
accumulation at the solid—fluid interface,

— the rate of accumulation decreases with increasing ., Qo
and g and

— the rate of accumulation decreases with decreasing R.

Remark 3.1. Assuming that 7, <7, the accumulation
equation has the following form:

dR 1Qo(q +2) a def

- 1= ) _ 5, S FR 2

dt "( e g2 FR), (32
where a1 = (quQo(q +2))/ 77 and a, = n. If we linearize
F(R) about Ry = R(t = 0), and we obtain

dRt
T biRE + by, (3.3)

where the superscript L indicates a linearized value and
b1 = —(3a1/R}) and b, = (4a1/R}) — ay. Using standard tech-
niques (superposing homogeneous and particular solutions),
we obtain

R 7TRET

Lipy — [ 20 0
R(”_( 3 " 3uQ(g +2)

4 TR
“Ry—— 0%
3N T 3uQu(g + 2)

3
Clearly, the rate of decay (of R) is dictated by 7, and that
decay is expected to be exponential. Beyond that, the linear-

)e—(s/Rg><<qu<q+z>/m>>t

(3.4)

ized solution provides little insight into the character of
general model, which is treated numerically next.

Remark 3.2. The steady-state value of the solid—fluid inter-
face, denoted R*, can be determined by setting dR/dt =0,
leaving

dR:O:>T* =Ty =T —MQO(EH—Z)
dt v m(Rss)?
1/3
(12002 .

which illustrates

— the steady-state value R* is independent of 7,

— increasing the detachment stress threshold (7*) leads to
more accumulation (reduction of R*®), with an inverse
cubic dependency and

— increasing u, Qo and g leads to less accumulation (larger
R**) with a cubic dependency.
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Figure 2. For n = 10_3/d> ms ' (a) the evolution of the radius for various accumulation rates and (b) the evolution of the centreline Reynold’s number,
Re = (pVimax2R/ ) x 10~° for various accumulation rates. The dashed curve on the left corresponds to the highest value of ), while the curve on the right
is for the lowest value of 7. The curves in between progress monotonically from the highest to the lowest values of 7. (Online version in colour.)

Remark 3.3. One can compute the amount of change of R*
owing to changes in the parameters from the sensitivities to
the parameters in the system

OR®s
viscosity: 6R*(8u) = B Su, where
m
OR* 1 (Quq+2)\"
opn 3 T B
8R«S
flow-rate: SR** (8 =——38Q0,
(8Qo) 90, Qo
OR* 1 /(p(q+2) 1 -2/3
whereaQ0—3< g b,
. ss OR®
flow profile exponent: 6R*(8g) = 37 &4,

OR® 1 (mQo\'"® o
h === 2
where 90, 3<m;k) (g+2)
and
Ss
shear stress threshold: 8R*(87") = oy 87",
ss 1/3
where ggo = f% (7MQO(Z_+2)) (T*)74/3.
Furthermore, the ratios of the sensitivities provide

information on the relative sensitivity of one parameter to
another, for example

SR=(3Q)) _ 1 8Q
SR=(5u) Qo op
SR™(3g)

0
flow profile exponent/viscosity: 5R™ (5p1) = T+ Z)B_q
(8w 13

flow-rate/viscosity:

and

6RSS 8 X 6 *
shear stress threshold/viscosity: —SRSS(( 87)) = % 6T .
w w

This allows one to determine the amount of change of one
parameter, say Q) that would be needed to make a comparable
change 8R* due to say Su by computing

BR*(8Q0) _ 1 8Q
SR=(3n) Qo om

The procedure is virtually identical for the other parameters in
the system.

Qo

=1=8Q =m>. (3.6
w

4. Direct time-transient numerical simulation

The general form of the equation

dR - rQo(q+2) ,O) (&1)

G F(R) = —mmax <1 e

is solved using an explicit forward Euler time integration of
the form

R(t+ At) = R(E) + ALF(R(E)). (4.2)

The simulation time was set to 10 years.! An extremely
small (relative to the total simulation time) time-step size of
5 x 10™* ¢, where ¢ = 3600 x 24 x 365 is the number of seconds
in a year, was used. Further reductions of the time-step size pro-
duced no notable changes in the results, thus the solutions
generated can be considered to have negligible numerical

error. The following physical parameters were used:

— R(t=0)=Ryp=0.01m,

— Qo= on vdA = TR0 (t = 0) m®s ™!, where v,,(t=0)=
0.1ms ! in the mean velocity,

w=0.003Pas},

— 7 =1kPa,
p=10° kg m 2 and
107

— 7= ) ms .

The results are shown in figure 2. As indicated in figure 2,
eventually, the accumulation slows, then terminates, once the
channel narrows sufficiently to raise the fluid-induced shear
stress to exceed the threshold value of 7*. For the set of
parameters chosen, the initial centreline velocity is Upax =
02ms ! and ramps up to V. =82.207ms ' owing to the
reduction of the cross section and the constant volumetric
flow rate Q = Qo (figure 3). Realistically, as the cross-sectional
narrows, the flow becomes relatively more turbulent, i.e. the
Reynolds” number increases. The exponent g must then also
change from a quadratic profile a more blunted profile. To
incorporate this effect, we introduce a dependency of g on the
centreline Reynolds number shortly. This will have the effect
of further accumulation rate limitation. Clearly, for increasing
7, the rate of accumulation increases, and the time to steady-
state decreases. While figure 2 illustrates the basic behaviour
with respect to variations in the accumulation rate parameter,
there are clearly other possible parameters to vary, and we
refer the reader to §3 pertaining to a sensitivity analysis.
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Figure 3. For y=10"/¢pms " the evolution of v,y for various
accumulation rates. The dashed curve on the left corresponds to the highest
value of m), while the curve on the right is for the lowest value of m). The
curves in between progress monotonically from the highest to the lowest
values of 7. (Online version in colour.)

Remark. We note that one can write the time needed to reach

a given value of R(t*) = R* in terms of the following integral:

B JR* 7R3 7
Rr(t—0) M(1Qo (g +2) —

which can be numerically integrated, however, this timescale
can also be inferred easily from figure 2.

R (4.3)

5. Model extensions: rate limiting effects—
blunted velocity profile evolution

Clearly as the Reynolds number increases, the velocity
profile will change from a quadratic (7 = 2) to a more blunted
profile (7 > 2), which represents, phenomenologically, turbulent
(inertia-dominated) behaviour (figure 4).

5.1. Incorporating profile changes
The effect of a changing profile is described by representing q
by a linear function of the centreline Reynolds” number (Re)

g = q(Re) = c1Re + c3, (5.1)

where Re = pvmax2R/ n and ¢ and ¢, are constants. Models of
this type, linking the the profile exponent (g) to the centreline
Reynolds” number (Re), are quite well-established (e.g. [18]).
Usually, 0 <c¢; <1 and ¢; =2, and in the limit we have,
for c; =0 and ¢, = 2, laminar flow (g =2). For the general
case, combining equation (2.4) with equation (5.1) and the
definition of the centreline Reynolds” number, we obtain a
quadratic relationship for g,

7~ (y+c2)g—2y=0, (5.2)

where y = 2¢1Qop/ 7Ru. This quadratic relationship can be
solved in closed form for g to yield*

g(Re) :%((y—i—cZ) + 4/ (y+ cZ)2+87). (5.3)

Clearly, the larger root is the physically correct choice. Q(Re)

is clearly a function of R™' and decreasing R increases 4.
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Figure 4. As the Reynolds number increases, the velocity profile will increase
(¢>2.

5.2. Numerical examples

The general form of the equation

dR
E_]:(R)
#Qo((G(Y(R) + c2)+
VOR) + 02 +84(R) +2)
= —mmax| 1— g ,01 (54)
is solved using a forward Euler time integration,

R(t + At) = R(t) + AtF(R(t)). The same parameters as for
the g # g(Re) case were used, with the two additional par-
ameters for the change of flow profile with Reynolds’
number, ¢; =1072 and ¢, = 2. Figures 5 and 6 illustrate the
rate limiting effect of the blunting of the flow profile (increas-
ingly more turbulent flow), relative to the case where g is not a
function of the flow velocity (figures 2 and 3). For the set of
parameters chosen, the initial centreline velocity is Upmax =
02ms ! and ramps up to Umax=9.716 ms !, which is
much more realistic than the constant 4 model which predicts
Umax = 82.207 m s~ L. Numerically, the solution of this more
relatively complex model q=q(Re) requires virtually no
additional effort relative to g # g(Re). One could attempt to
analytically extract the steady-state value of R by setting
dR/dt = 0 and combining it with equation (5.3), leaving

1Qo(q(Re) + 2)
Tt

MQO G((

R =

R) +c) +\/ R) + c2)* + 8¥(R)) +2)

(5.5)

However, this leads to a highly nonlinear equation, with mul-
tiple roots, that would have to be solved numerically. Clearly, it is
easier to simply track the steady-state value of R from figure 5.

6. Conclusion

As indicated at the beginning of this paper, the primary
objective of this communication was to investigate solid—
fluid interface accumulation on the walls of biological
channels and to develop a model that researchers in the
field can easily implement and use to guide experiments.
Semi-analytical relationships were also developed which
characterize accumulation and flow-induced rate limitations,
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owing to the more intense flows for smaller (occluded) cross
sections. This is useful because of the long-term character of
experiments involved with tracking accumulation. Future
work should concentrate on the development of a subsequent
growth model, involving both adhesion as well as constitu-
tive growth (e.g. [19-23]). It is also important to explore
how growth depends on temporal/spatial gradients of wall
shear stress. These processes probably involve strongly
coupled diffusive, chemical effects and thermal effects, and
we refer the reader to Markenscoff [24-26] for in depth
mathematical analysis of such coupled systems. There are
conflicting reports on whether high or low shear stress corre-
lates with growth. Certainly, there may be scenarios where
growth is controlled by low shear stress in one phase and
high shear stress in another. Clearly, the mechanism for bio-
logical attachment is quite involved, and the simple notion
used in this paper of a critical attachment/detachment
stress threshold may be inadequate. Therefore, models
building upon results such as those found in Hermanowicz
[27-29], Sawyer & Hermanowicz [30] and Yoon & Mofrad
[31] may prove quite useful in this regard.

The presented analysis and model can provide a useful
guide to designing and interpreting experiments, which can
take years. However, while the model can provide qualitative
a priori information for further computationally intensive
large-scale simulations, extensions are invariably going to

require complex spatial discretization of the system under
analysis and could also entail resolving particle-fluid inter-
action. The number of research areas involving particles in
a fluid undergoing various coupled processes is immense,
and it would be futile to attempt to catalogue all of the var-
ious applications. However, a common characteristic of
such systems is that the various physical fields (thermal,
mechanical, chemical, etc.) are strongly coupled, with par-
ticles that tend to agglomerate (cluster). In Zohdi [32], a
flexible and robust solution strategy was developed to resolve
coupled systems comprising large groups of flowing particles
embedded within a fluid, based on agglomeration models
found in Zohdi [33]. In that analysis, particles were sur-
rounded by a continuous interstitial fluid which is assumed
to obey the compressible Navier—Stokes equations. Thermal
effects were also considered. Such particle/fluid systems are
strongly coupled because of the mechanical forces induced
by the fluid onto the particles and vice-versa. Because the
coupling of the various particle and fluid fields can dramati-
cally change over the course of a flow process, a primary
focus of that work was the development of a recursive ‘stag-
gering” solution scheme, whereby the time-steps were
adaptively adjusted to control the error associated with the
incomplete resolution of the coupled interaction between
the various solid particulate and continuum fluid fields.
The approach is straightforward and can be easily
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incorporated within any standard computational fluid mech-
anics code based on finite difference, finite-element, finite
volume or discrete-element discretization, for example,

those developed in earlier studies [34-39].
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