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There exist a wide range of applications for lightweight ballistic fabric shields, such as the
protection of critical structural components in transport systems and the human body. How-
ever, some deficiencies are (1) the susceptibility to being abruptly severed by sharp objects,
which completely eliminates the fabric’s ability to stretch and absorb incoming kinetic energy
and (2) environmental degradation of the fabric due to moisture, heat and sunlight, which is
of growing concern, since many new fabrics have multiple purposes, such as electrical and
chemical sensing, in addition to being part of a protective system. Because of these issues,
the coating of fabric can be advantageous, however, it adds weight to the shielding system.
Experiments on this type of coated fabric system are extremely time-consuming. Accord-
ingly, this paper seeks to develop a computational framework using a coated network model
in order to capture the basic characteristics of such systems. One aspect of the model’s useful-
ness is that it can provide qualitative information to guide and reduce costly, time-consuming
experiments. Three-dimensional numerical examples are given to illustrate the computational
model.

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Multilayered ballistic fabric has become a mainstay of many lightweight commercial and

military shielding systems. Unfortunately, there are some weaknesses of fabric shielding, such

as the deterioration of the fabric due to environmental exposure and the possibility of being

abruptly severed by sharp edges of shrapnel, which destroys the fabric’s ability to stretch and

absorb incoming objects’ kinetic energy. One way to mitigate these problems is to coat the

fabric. Explicitly, the advantages of coatings are:

• To help blunt incoming sharp fragments,

• To mitigate the well-known environmental degradation of the polymer-based fabric (such

as Zylon, Kevlar and other materials in the aramid-family) and

• To reduce stress concentrations that arise due to abrupt changes in the material properties

(fabric-to-metal and vice versa) can be alleviated, by matching the coating properties to
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the properties of the other nonfabric layers in the system, for better bonding. In other

words, a coated fabric material can be easily bonded to other structures or tailored to

have a smooth transition to any other type of layer.

However, a disadvantage of coating a fabric is that it adds weight to the overall system. In

the paper we first investigate the trade-offs between increased ballistic resistance and added

mass with a mathematical model. One aspect of the model’s usefulness is that it can guide and

reduce the number of expensive, time-consuming experiments needed (described in the next

section) during the development of new types of shields. Furthermore, it serves as a building

block in a computational framework for a network model that is constructed later in the paper.

Remark: An issue of increasing concern is protection of fabric-based composite mate-

rial from environmental exposure, since many new fabrics have multiple purposes, such as

electrical and chemical sensing, in addition to being part of a shielding system (Zohdi [48]).1

2 Description of experiments

CLAMPED BOUNDARIES

INCOMING OBJECT

Fig. 1 (online colour at: www.gamm-mitteilungen.org) LEFT: A schematic of the impact scenario. MID-

DLE: UC Berkeley facilities Pneumatic gun-breech and barrel set up (top right, photo courtesy of D. Powell). Post

impact puncture of Zylon target. Inset: The yarn comprising Zylon.

The base structural fabric materials that we are seeking to modify by coating are variants of

Zylon (and in some cases Kevlar). Over the last decade, experiments conducted at our labora-

tory at UC Berkeley have attempted to ascertain the number of sheets of Zylon needed to stop

projectiles (Figure 1). We have no experimental data on coated fabric. 2 This experimental

work is ongoing, and is extremely costly and time-consuming. Generally, the microstructure

of the fabric fibers is composed of several microscale fibrils. For example, fabric materials

such as Zylon, which is a polymeric material constructed from woven PBO (Polybenzoxale)

yarn, produced by the Toyobo Corporation (Toyobo [37]), Kevlar and other aramid-based

materials have a microstructure comprised of bundles of microscale “microfibrils” forming

the fibers, which is then tightly woven into sheets. For Zylon, each fiber contains approxi-

mately 350 microfibrils (Figure 1). In order to illustrate the time-consuming complexity of

such experiments, independent of the time needed to coat fabric, which can be signficant, a

1 An in depth mathematical analysis of coupled thermal, diffusive and chemical effects in related materials has

been conducted by Markenscoff [17-19].
2 Reports on uncoated fabric, accessible to the public, can be obtained by making a request to the United States

Federal Aviation Administration (FAA) indicating project 01-C-AW-WISU. For further experiments on individual

yarn, see Verzemnieks [38].
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126 T. I. Zohdi: Coated Lightweight Fabric

few comments are necessary on the testing processes for the fabric material, conducted at our

lab in UC Berkeley (the Werner Goldsmith Ballistics Laboratory). The typical amount of time

taken for a single (labor intensive) ballistic test is rather lengthy, on the order of 90 minutes,

and is described in detail in Kwong and Goldsmith [16], Zohdi [40], Zohdi and Powell [44],

Powell et al. [31], Powell and Zohdi [32] and Powell and Zohdi [33].

To perform the experiments, ballistic sheets of Zylon must be cut with a pair of special

scissors from a fabric roll, clamped around a circular bar and placed into a square holder. The

two parts of this square frame, whose outside dimensions are 356 mm with a 254 mm square

window, are secured by 9.5 mm diameter hard steel bolts via an aluminum strip, which acts as

a continuous washer. After these components are assembled, this device is clamped vertically

to a heavy triangular support, which is mounted onto a 700 kg steel table so that impact is pro-

duced at a preselected location on the target, as specified by a laser beam mounted on the gun

centerline. The tests are conducted inside an enclosed room which is evacuated during firing.

The initial velocity of the projectile is determined from the time required to successively break

two parallel laser beams, 156 mm apart, which were focused on two photodiodes, located 1.5

m in front of the target. The signals from the diodes initiate the start and stop modes of a

Hewlett-Packard 5316 time interval meter. Final velocities are determined in three ways: (1)

by the use of a digital video recording camera, operating at 10,000 frames/s, that capture the

projectile position at a number of instances after the perforation using the dimensions of the

projectile, (2) by means of two silver coated paper make-circuit grids spaced 50.4 mm apart,

whose voltage pulses are directed to a time interval meter and (3) from two sets of 432× 254
mm foils, with each pair separated by 12 mm and each set a distance of 12.7 mm apart, with

the projectile contact providing an “on” circuit for each set, allowing the respective signals

to start and stop a time interval meter. The number of desired sheets are cut and inserted in

the target holder and the bolts were tightened with a 306 N-m torque wrench. The tests were

conducted using a custom built gas gun (12.9 mm inside diameter), housed at UC Berkeley

in the Werner Goldsmith Ballistics Laboratory, with a 20 mm thick high strength steel barrel

of 1.6 m length (see Figure 1). This apparatus is mounted by means of a rail frame onto the

same table as the target. A blast shield is placed in front of the muzzle to prevent interaction

of ejected debris with the target. A projectile and fragment catcher, consisting of a large cloth

filled container, is positioned beyond all final velocity measuring units. 3 The main objec-

tive of this work is to develop a relatively simple computational model that captures the main

physical features, in order to reduce and guide such time-consuming experiments, which are

needed in the development and testing of new coated fabric systems. The importance of the

computational tool is that it can allow one to probe into the failure mechanisms of the fabric

that are not available from our testing facilities.

3 More information on the experimental setup at UC Berkeley can be found here http: // www.me.berkeley.edu /

compmat/ballistics / gasgun.html.
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3 Computational framework a network model

3.1 Overall description of the framework

As a starting point, we consider a network of coated yarn that captures (1) stretching of inter-

connected yarn networks with coating contributions and (2) interaction with impacting pro-

jectiles, incorporating contact with friction employing network models (Figure 2). The defor-

mation of the fabric is dictated by solving the coupled system of differential equations for the

motion of lumped masses, which are coupled through the fiber-segments under the action of

contact forces acting on the network model. We also consider the effects of progressive fiber

and coating plastic flow, damage and rupture during the deformation process. The fabric and

coating are coupled kinematically, thus leading to a system of differential equations for the

deformation of the coated fabric, the rate equations for the inelastic response of the coupled

fibers and coating, and the projectile which drives the system through contact. A temporally-

adaptive, recursive, staggering scheme is developed to solve this strongly coupled system of

equations. Three-dimensional numerical examples are given to illustrate the model

4

1Ψ

Ψ

Ψ3

Ψ2

Fig. 2 A patch of coated fabric represented by network model of woven-fabric using coupled fiber-

segments. The fiber-segments are joined together by “pin-joint-like” connectors to form a network,

whereby sets of equations must be solved for the system dynamics.

3.2 Dynamics of a network model of fabric

The dynamics of the lumped masses are given by

mir̈i = Ψ
tot
i︸︷︷︸

total

= Ψ
con
i︸ ︷︷ ︸

contact forces

+
4∑

I=1

Ψ
yarn
Ii︸ ︷︷ ︸

surrounding yarn

+
4∑

I=1

Ψ
coating
Ii︸ ︷︷ ︸

surrounding coating

(1)

where i = 1, 2, ..., N , where N is the number of lumped masses, Ψ
yarn
Ii

represents the con-

tributions of the four yarns intersecting at mass i, Ψcoating
Ii

represents the contributions of

the four coatings intersecting at mass i and mi is the mass of a single lumped mass (the total

fabric mass divided by the total number of masses). The forces from the Ith surrounding

yarn-segment (there are four of them for the type of rectangular weaving pattern considered)
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128 T. I. Zohdi: Coated Lightweight Fabric

acting on the ith lumped mass is Ψ
yarn
Ii

. Clearly, Ψ
yarn
Ii

is a function of the mass positions

(ri), which are all coupled together, leading to a system of equations. In order to solve the

resulting coupled system, we develop an iterative solution scheme later in the presentation.

3.3 Yarn-segment network representation for mechanical forces

For the network model, we assume that: (1) the yarn-segments are quite thin, experiencing a

uniaxial-stress condition, whereby the forces only act along the length of the yarn-segments,

(2) the yarn-segments remain straight, undergoing a homogeneous (axial) stress state, (3) the

compressive response of a yarn-segment is insignificant (relative to tensile states) and (4)

yarn-segment buckling phenomena is ignored. We write one-dimensional constitutive laws in

terms of the Piola-Kirchhoff stresses (mimicking 3-D approaches), defined by

P =
force on referential area

referential area
, (2)

and then transform the result to the the second Piola-Kirchhoff stress via P = US, where

U = L
Lo

is the stretch ratio, L is the deformed length of the yarn-segment, Lo is its original

length and where we note that for a relaxed model, when U ≤ 1 (compression), we enforce

P = 0. A standard constitutive relation S = F(U) is then employed, with the primary

objective being to extract the force carried in the yarn-segment (Ψyarn), which is needed later

for the dynamics of the lumped masses. Specifically,

P =
ψyarn

Ao

⇒ ψyarn = USAo =
L

Lo

SAo. (3)

We shall adopt a simple one-dimensional model for the stored energy, W = 1
2IEE2, where

IE is Young’s modulus and E
def
= 1

2 (U
2 − 1) is the Green-Lagrange strain, with the second

Piola-Kirchhoff stress given by ∂W
∂E

= S = IEE. Thus, for the yarn-segment,

P =
ψyarn

Ao

⇒ ψyarn = USAo =
L

Lo

SAo =
L

2Lo

IE

(
(
L

Lo

)2 − 1

)
Ao. (4)

Remark 1: As a result of the previous analysis, Ψ
yarn
Ii

= UISIAoaIi (Ao is the un-

deformed cross-sectional area of the yarn), where the unit axial yarn direction is given by

aIi =
r+

I
−r−

I

||r+
I
−r−

I
||

, where r+I denotes the position vector of the endpoint connected to the

lumped mass and r−I denotes the endpoint that is connected to it neighboring mass. 4

Remark 2: Assumption (3) in the previous section is the adoption of a relaxed-type model,

whereby a zero stress state is enforced for a compressive state. Relaxed models have a long

history, and we refer the reader to works dating back to Pipkin [29], Buchholdt et. al [3],

Pangiotopoulos [27], Bufler and Nguyen-Tuong [4], Papadrakakis [28], Cannarozzi [5], [6],

Steigmann [34], Haseganu and Steigmann [9-11] and Atai and Steigmann [1, 2]. Relaxed

formulations have served as a foundation for computational models describing rupture of

4 || · || indicates the Euclidean norm in R3.
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ballistic fabric shielding in Zohdi [40], Zohdi and Powell [44] and Powell and Zohdi [32]

and are the basis for the present approach.

Remark 3: Consistent with the assumed one-dimensional deformation of the yarn-segments,

we have the following relations, between the defomed and undeformed states for the yarn-

segment length (UI(t) =
LI(t)

LI(t=0) ), cross-sectional area and volume:

VI(t)

VI(t = 0)
=

AI(t)LI(t)

AI(t = 0)LI(t = 0)
= UI(t), (5)

which renders VI(t) = VI(t = 0)U(t) and AI(t) = AI(t = 0) (the cross-sectional area

remains constant). For other alternative possibilities for one-dimensional yarn responses see

Zohdi and Steigmann [41].

3.4 Response of a composite strand

A simple estimate of the increase in stiffness due to the coating can be determined by summing

the forces,

2∑
i=1

ψi =

2∑
i=1

PiAoi = PyAoy + PcoAco (6)

where for the yarns we have from the first Piola-Kirchhoff stress:

Py =
ψy

Aoy

⇒ ψyarn = UySyAoy =
Ly

Loy

SyAoy =
Ly

2Loy

IEy

(
(
Ly

Loy

)2 − 1

)
Aoy. (7)

and for the coating

P c =
ψc

Aoc

⇒ ψcoat = U cScAoc =
Lc

Loc

ScAoc =
Lc

2Loc

IEc

(
(
Lc

Loc

)2 − 1

)
Aoc. (8)

Because of the network model’s kinematics, Ly = Lc = L, Loy = Loc = Lo, Uy = U c = U ,

one obtains:

ψy + ψc =
L

2Lo

(
(
L

Lo

)2 − 1

)
(IEyAoy + IEcAoc) . (9)

One can see that the increase in stiffness is directly related to the extensional rigidity IEcAoc.

Remark 1: For the coating contribution, the enforcement of zero compressive stress is not

necessary. In practice, for ballistic applications, the enforcement of this condition makes little

difference since the material is nearly always in tension.

Remark 2: In the analysis to follow, the cross-sectional area of the yarn is Ay
o = πR2

o

and for the coating of thickness T it is Ac
o = π((Ro + T )2 − R2

o). The cross-sectional area
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130 T. I. Zohdi: Coated Lightweight Fabric

of a Zylon microfibril is Af
o = πr2f . Thus, effective yarn cross-sectional area in the previous

expressions is Ay
o = 350×Af

o . This allows us to define the effective yarn radius through

πR2
o = Ay

o = 350×Af
o ⇒ Ro =

√
Ay

o

π
=

√
350×Af

o

π
. (10)

We recall that Ac
o = π((Ro + T )2 −R2

o), which is an effective coating area.

3.5 Damage evolution in a yarn-segment network

Until this point, we have not included yarn damage in the formulation. Generally, the mi-

crostructure of the fabric yarn is composed of several microscale fibrils. For example, fabric

materials such as Zylon, which is a polymeric material produced by the Toyobo Corpora-

tion (Toyobo [37]), Kevlar and other aramid-based materials have a microstructure comprised

of bundles of microscale “microfibrils” forming the yarns, which is then tightly woven into

sheets. For Zylon, each yarn contains approximately 350 microfibrils, which are randomly

misaligned within the yarn, leading to a gradual type of failure, since the microfibrils become

stretched to different lengths (within the yarn), when the yarn is in tension. A simple approach

(Zohdi and Powell [44]) to describe failure of a yarn is to check whether a critical stretch (for

a yarn-segment) has been attained or exceeded, U(t) ≥ Ucrit, and to track the progressive

damage with a single damage (isotropic) variable, αy , used construct a new stiffness, αyIEy ,

where 0 ≤ αy ≤ 1. The damage variable for each yarn-segment typically has an evolution law

associated with it, which represents progressive stretch-induced damage.5 Specifically, for a

yarn that is undamaged, αy = 1, while for a yarn that is completely damaged, αy = 0. For

illustration purposes, for example, we adopt the damage representation of Zohdi and Powell

[44]

αy
I (t) = min

(
αy
I (0 ≤ t∗ < t), e

(−λ(
UI (t)−UI,crit

UI,crit
))
)
, (11)

where αy
I (UI(t = 0)) = 1, UI(t) is the stretch of the yarn-segment I at time t, and where

0 ≤ λ is a damage decay parameter. The above relation indicates that damage is irreversible,

i.e. αy
I is a monotonically decreasing function. As λ → ∞, the type of failure tends towards

sudden rupture, while as λ → 0, then there is no damage generated. The progressive damage

of yarns can be written for the material constants as, for the Young’s modulus, IEy(t) =
αyIEy(to). Note that as αy → 0, the physical trends are IEy(t) → 0. The formulation is

repeated for the coating IEc(t) = αcIEc(to). The damage variable is relatively easy to track

during the staggering scheme. For detailed analysis of damage in materials at the microscale,

we refer the reader to Ghosh [7] and Ghosh and Dimiduk [8].

3.6 Plastic flow

In order to incorporate the plastification of the coating and/or yarn, consider the decomposition

F = FeFp ⇒ U = UeUp, where Up is sometimes refered to as a “plastic (stretch) strain”,

and where, if σ ≤ σy , then U̇p = 0, and if σ > σy and σ > 0

5 Multiscale and damage formulations for structural yarns have been explored in detail in Zohdi and Powell [44],

Powell and Zohdi [32] and Zohdi [48].

www.gamm-mitteilungen.org c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



GAMM-Mitt. 37, No. 1 (2014) 131

U̇p = P(
|σ|

σy

− 1), (12)

and if |σ| > σy and σ < 0

U̇p = −P(
|σ|

σy

− 1), (13)

where P is a rate parameter, where σy is the yield stress, which has the following stretch

sensitivity, σy = σyo + H(Up), where σyo is the yield stress and H(Up) is a hardening

variable. Thereafter, one may write Ee =
1
2 (U

2
e − 1), and use a simple constitutive law of the

form

S = IEEe = IE
1

2
(U2

e − 1) =
IE

2
((U/Up)

2 − 1) (14)

Remark: Note, one could adopt a different constitutive law using a decomposition of

(E − Ep) instead Ee, yielding

S = IE(E − Ep) = IE(
1

2
(U2 − 1)−

1

2
(U2

p − 1)) =
IE

2
(U2 − U2

p ). (15)

4 Overall numerical solution scheme

In order describe the overall time-stepping scheme, we first start with the dynamics of a single

(ith) lumped mass (Equation 1).

4.1 Adaptive time-stepping scheme

Following Zohdi [44]-[48], employing a trapezoidal-like rule (0 ≤ φ ≤ 1), we have

vi(t+Δt)− vi(t)

Δt
= v̇i(t+ φΔt) (16)

and

vi(t +Δt) = vi(t) +
1

mi

∫ t+Δt

t

Ψ
tot
i dt = vi(t) +

Δt

mi

(
φΨtot

i (t+Δt) + (1− φ)Ψtot
i (t)

)
. (17)

The position can be computed via by applying the mid-point rule again,

ri(t+Δt) = ri(t) + Δtvi(t+ φΔt) ≈ ri(t) + Δt (φvi(t+Δt) + (1− φ)vi(t)) . (18)

By substituting Equation 17 into 18, we obtain

ri(t+Δt) = ri(t)+vi(t)Δt+
φ(Δt)2

mi

(
φΨtot

i (ri(t+Δt)) + (1− φ)Ψtot
i (ri(t))

)
+Ô(Δt)2, (19)
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where if φ = 1, then Equation 19 becomes the (implicit) Backward Euler scheme, which is

very stable, dissipative and Ô(Δt)2 = O(Δt)2 locally in time, if φ = 0, then Equation 19

becomes the (explicit) Forward Euler scheme, which is conditionally stable and Ô(Δt)2 =
O(Δt)2 locally in time and if φ = 0.5, then Equation 19 becomes the (implicit) Midpoint

scheme, which is stable and Ô(Δt)2 = O(Δt)3 locally in time. 6 Equation 19 can be solved

recursively by recasting the relation as

r
L+1,K
i = G(rL+1,K−1

i ) +Ri, (20)

where K = 1, 2, 3, ... is the index of iteration within time step L + 1 and Ri is a remainder

term that does not depend on the solution, i.e. Ri �= Ri(r
L+1
1 , rL+1

2 ...rL+1
N ). The conver-

gence of such a scheme is dependent on the behavior of G. Namely, a sufficient condition

for convergence is that G is a contraction mapping for all r
L+1,K
i , K = 1, 2, 3... In order

to investigate this further, we define the iteration error as �L+1,K
i

def
= r

L+1,K
i − rL+1

i . A

necessary restriction for convergence is iterative self consistency, i.e. the “exact” (discretized)

solution must be represented by the scheme

G(rL+1
i ) +Ri = rL+1

i . (21)

Enforcing this restriction, a sufficient condition for convergence is the existence of a contrac-

tion mapping

|| rL+1,K
i − rL+1

i︸ ︷︷ ︸
�

L+1,K
i

|| = ||G(rL+1,K−1
i )− G(rL+1

i )|| ≤ ηL+1,K ||rL+1,K−1
i − rL+1

i ||, (22)

where, if 0 ≤ ηL+1,K < 1 for each iteration K , then �L+1,K
i → 0 for any arbitrary start-

ing value r
L+1,K=0
i , as K → ∞. This type of contraction condition is sufficient, but not

necessary, for convergence. Explicitly, the recursion is

r
L+1,K
i = rLi + vL

i Δt+
φ(Δt)2

mi

(
(1− φ)Ψtot,L

i

)
︸ ︷︷ ︸

Ri

+
φ(Δt)2

mi

(
φΨtot,L+1,K−1

i

)
︸ ︷︷ ︸

G(rL+1,K−1
i

)

, (23)

where Ψ
tot,L+1,K−1
i = Ψ

tot,L+1,K−1
i (rL+1,K−1

1 , rL+1,K−1
2 ...rL+1,K−1

N ) and Ψ
tot,L
i =

Ψ
tot,L
i (rL

1 , r
L
2 ...r

L
N ). The overall objective is to simultaneously maximize the time-step sizes

to decrease overall computing time, while obeying an error tolerance on the numerical solu-

tion’s accuracy. 7 In order to achieve this goal, we follow an approach found in Zohdi [44]-

[48], originally developed for continuum thermo-chemical multifield problems where (1) one

approximates ηL+1,K ≈ S(Δt)p (S is a constant) and (2) one assumes that the error within an

6 In order to streamline the notation, we drop the cumbersome O(Δt)-type terms.

7 According to Equation 23, convergence is scaled by η ∝
(Δt)2

mi
, and that the contraction constant of G(r) is

(1) directly dependent on the magnitude of the interaction forces, (2) inversely proportional to the lumped masses

mi and (3) directly proportional to Δt. Thus, if convergence is slow within a time step, the time step size, which is

adjustable, can be reduced by an appropriate amount to increase the rate of convergence.
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iteration to behave according to (S(Δt)p)K�L+1,0 = �L+1,K , K = 1, 2, ..., where �L+1,0

is the initial norm of the iterative error and S is intrinsic to the system. 8 The objective is

to meet an error tolerance in exactly a preset number of iterations. To this end, one writes

(S(Δttol)
p)Kd�L+1,0 = TOL, where TOL is a tolerance and where Kd is the number of

desired iterations. Typically, Kd is chosen to be between five to ten iterations. If the error

tolerance is not met in the desired number of iterations, the contraction constant ηL+1,K is

too large. Accordingly, one can solve for a new smaller step size, under the assumption that

S is constant, yielding Δttol = Δt

(
( TOL
�L+1,0 )

1
pKd

(�
L+1,K

�L+1,0 )
1

pK

)
. Numerous parameter studies using this

expression can be found in Zohdi [44]-[48]. The assumption that S is constant is not crucial,

since the time steps are to be recursively refined and unrefined throughout the simulation.

4.2 Algorithm

(1)GLOBAL FIXED− POINT ITERATION : (SET i = 1 AND K = 0) :
(2) IF i > N THEN GO TO (4) (N = # OF NODES)
(3) IF i ≤ N THEN :

(a) COMPUTE MASS POSITION :rL+1,K
i

(b) ENFORCE CONTACT IF NECESSARY (DISCUSSED IN NEXT SECTION)
(c) GO TO (2) AND NEXT MASS (i = i + 1)

(4a) COMPUTE/UPDATE FORCES : ψtot,K
i

(4b) COMPUTE/UPDATE FABRIC/COATING DAMAGE : αy
I , α

c
I

(4c)COMPUTE/UPDATE FABRIC/COATING PLASTIC STRAIN : Up,I,f ,Up,I,c

(5) ERROR MEASURE :

(a)�K
def
=

∑N
i=1 ||r

L+1,K
i − r

L+1,K−1
i ||∑N

i=1 ||r
L+1,K
i − rL

i ||
(normalized)

(b)ZK
def
=

�K

TOLr

(c)ΛK
def
=

⎛
⎜⎝ (TOL

�0
)

1
pKd

(�K

�0
)

1
pK

⎞
⎟⎠

(6)IF TOLERANCE MET (ZK ≤ 1) AND K < Kd THEN :

(a) CONSTRUCT NEW TIME STEP :Δt = ΛKΔt
(b) SELECT MINIMUM :Δt = MIN(Δtlim,Δt)
(c) INCREMENT TIME : t = t +Δt AND GO TO (1)

(7)IF TOLERANCE NOT MET (ZK > 1) AND K = Kd THEN :

(a) CONSTRUCT NEW TIME STEP :Δt = ΛKΔt
(b) RESTART AT TIME = t AND GO TO (1)

(24)

Remark 1: The expression ΛK can also be used for time step enlargement (to reduce

computational effort) if convergence is met in less than Kd iterations.

Remark 2: External damping (for example from the environment) can easily be incorpo-

rated by adding ciṙi in the equations of motion:

mir̈i = Ψ
tot
i︸︷︷︸

total

= Ψ
con
i︸ ︷︷ ︸

contact forces

+

4∑
I=1

Ψ
yarn
Ii︸ ︷︷ ︸

surrounding yarn

+

4∑
I=1

Ψ
coating
Ii︸ ︷︷ ︸

surrounding coating

− ciṙi︸︷︷︸
damping

(25)

8 For the class of problems under consideration, due to the quadratic dependency on Δt, p ≈ 2.

www.gamm-mitteilungen.org c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



134 T. I. Zohdi: Coated Lightweight Fabric

4.3 Fabric/rigid-body interaction

Following an approach found in Zohdi [46] for rigid projectile-fabric interaction, based on

classical contact algorithms, if penetration of a fabric node into the projectile is detected

(“contact”), the following process is enacted: (1) Move the fabric node to the closest point

on the rigid body’s surface.9 and (2) If there is friction, then a stick condition is assumed

(assuming a common position and velocity for the point on the surface of the projectile and

the fabric node). The friction force is then checked against the static limit, which if violated,

enacts a sliding friction force.

PROJECTILE

CLOSEST
SURFACE
POINT

FABRIC GAP

Fig. 3 Interpenetration of a fabric node.

Assuming interpenetration for a node i, we calculate the contact force on a node i (Figure3)

ψcon
i =

mi

Δt2
(rf,corr

i (t+Δt)− r
f,pred
i (t+Δt)) (26)

where the corrected contact position, r
f,corr
i (t+Δt), is given by

r
f,corr
i (t+Δt) = r

f,pred
i (t+Δt) +

Δt2

mi

ψcon
i (27)

and where the predicted contact position, r
f,pred
i (t+Δt), is given by10

r
f,pred
i (t+Δt) = r

f
i (t) + Δt(φvf,pred

i (t+Δt) + (1 − φ)vf
i (t)) (28)

and

v
f,pred
i (t+Δt) = v

f
i (t) +

Δt

mi

(φψf,pred,oth
i (t+Δt) + (1− φ)ψf,oth

i (t)), (29)

where ψ
f,oth
i are all forces other than the contact forces. The fabric node is corrected to

r
f,pred
i (t+Δt) = r

p,cp
i (t+Δt), (30)

9 There are a variety of algorithms to perform this operation (see Wriggers [39] for details).
10 v

f
i (t) is the converged value from the previous time step.
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where r
p,cp
i (t+Δt) is the closest point on the surface of the contacting object (Figure 3). For

an in-depth review of these types of methods see Wriggers [39]. Additionally, we must assign

values to the velocity. We first assume that the projectile-fabric surface “sticks”. In this case,

we assign the velocity of the fabric node to that of the closest point on the body, for node i

v
f,corr
i (t+Δt) = v

p,cp
i (t+Δt). (31)

The friction force is that calculated via

ψ
fric
i = miv̇i −ψcon

i −ψ
f,oth
i . (32)

If the friction force exceeds the theoretical limit

||ψfric
i || > μs||ψ

con
i ||, (33)

then the assumption that there is “stick” is incorrect, and sliding must occur, resulting in a

nonmatching velocity of11

v
f,corr
i (t+Δt) = v

f,pred
i (t+Δt) +

Δt

mi

(ψcon
i +ψ

fric
i ), (35)

with the (frictional) projection

ψ
fric
i = μd||ψ

con
i ||

v
p,cp
i − v

f,cp
i

||vp,cp
i − v

f,cp
i ||

. (36)

After the calculations culminating with Equation 36 have been completed, the velocity of

the projectile is recalculated via (summing the nodal contributions)

vp(t+Δt) = vp(t)−
Δt

mp

Nc∑
i=1

(
ψcon

i +ψ
fric
i

)
+
Δt

mp

(
φψp,oth(t+Δt) + (1− φ)ψp,oth(t)

)
(37)

where N c is the number of nodes in contact, and

rp(t+Δt) = rp(t) + Δt(φvp(t+Δt) + (1− φ)vp(t)). (38)

11 We remark that the velocity of any point i on the surface of the body can be determined by simply calculating

vi = vcm +ω × rcm→i. (34)
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The projectile’s angular velocity and rotation are determined in a similar manner by integrat-

ing the equations for an angular momentum balance

Ḣcm =
d(I · ω)

dt
= MEXT

cm , (39)

where I is the mass moment of the projectile, ω is the angular velocity and MEXT
cm is the sum

of all moment contributions external to the projectile, around its center of mass. A general

rigid body solution algorithm is provided in Zohdi [46], as well as in the Appendix.

5 Numerical examples

As an example, we considered a spherical projectile with an incoming velocity of 500m/s,

with the following system parameters:

• size of the sheet: 0.254m× 0.254 (meters) (=10in× 10 (inches)),

• critical stretch to failure of a Zylon micro-fibril: U∗,y ≈ 1.034 (3 % strain),

• stiffness of a Zylon microfibril: IEf = IEy ≈ 180GPa, with a random statistical

variation of ± 10 % from the mean governed by a Gaussian distribution,

• stiffness of the coating: IEc = 50GPa,

• radius of a Zylon microfibril: rf ≈ 5× 10−6m,

• density of a Zylon microfibril: ρy ≈ 1540 kg/m3 (yarn constructed as before),

• density of the coating: ρc ≈ 5000 kg/m3,

• mass of the projectile: mp ≈ 0.037 kg (spherical) and

• diameter of the spherical projectile: d ≈ 0.025m.

• lumped masses: 100× 100 (a 100× 100 yarn network weave),

• damage rate for the fabric, λ = 1 and the plastic rate was zero (P = 0),

• damage rate for the coating, λ = 3 and the plastic rate was P = 1,

• trapezoidal time-stepping parameter φ = 0.5 (mid-point rule),

• initial (upper limit) time-step size: Δt = 0.000001 (seconds),

• damping coefficient, c = 0.01 (Newton-second/meter),

• iterative tolerance per time step: TOL = 0.000001,

• iteration limit per time-step: Kd=6.

Figure 4 shows successive frames taken from the progression of a projectile through mul-

tiple sheets. The colors at the nodes indicate the damage (αy). Generally, one would expect

far less sheets would be needed for a smooth blunt projectile (like a sphere) that does not con-

centrate the force on the fabric yarn. Ongoing work is under way to calibrate the code against

ongoing experiments and those conducted over the last few years at the UC Berkeley Ballistics

lab (Kwong and Goldsmith [16], Zohdi [40], Zohdi and Powell [44], Zohdi [48], Powell et al

[31], Powell and Zohdi [32] and Powell and Zohdi [33]) for various types of projectiles. This

example was simply to illustrate the basic construction of the model. Our long-term objective

is to fully develop and refine this model to provide information on the failure mechanisms of

the coated yarn, in particular in the contact zone.

Remark: The trends observed in Figure 4, can be qualitatively predicted with simple

models, and projectiles with constant contact area, developed in Appendix 2.
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Fig. 4 (online colour at: www.gamm-mitteilungen.org) Incoming velocity (right to left) was vo = 500
m/s. TOP LEFT: For no coating, T /Ro = 0, frames extracted from the progression of a projectile

through multiple sheets. The colors indicate the fiber damage (αy). TOP RIGHT: The velocity in

the z-direction as a function of the penetrated sheets. BOTTOM LEFT: For coating, T /Ro = 0.25,

ρo = 5000 kg/m3, frames extracted from the progression of a projectile through multiple sheets. The

colors indicate the fiber damage (αy). BOTTOM RIGHT: The velocity in the z-direction (initially

perpendicular to the sheets) as a function of the penetrated sheets. Statistical randomness was built into

the yarn.

6 Extensions and conclusions

In summary, initially, a relation was derived to determine the number of ballistic fabric sheets

needed to stop an incoming projectile as a function of the thickness of an added coating.

The relation is a function of projectile mass, initial velocity and properties of the yarn and

coating (stiffness, stretch to failure, thickness and density). The model served as a basis for

a computational tool to study the deformation of coated textiles. In order to simulate such

a system, one must solve a set of coupled equations governing the system dynamics. The

deformation of the fabric is dictated by solving the coupled system of differential equations for

the motion of lumped masses, which are related through the yarn-segments under the action

of forces acting on a network model. The quantitative numerical simulations were provided,
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using an approach based on a temporally-adaptive staggering time-stepping algorithm. We

remark that higher fidelity simulations could be obtained by including other dissipative effects,

such as inter-sheet contact, self-contact and friction. However, these effects would appear to

be somewhat small for the application under current consideration, since the fabric sheets are

quite smooth and combine to produce a low coefficient of friction. However, if the surfaces are

rough, or sticky, then intersheet action is quite important. This would require extensive contact

search over the fabric surfaces, and efficient techniques for performing this type of calculation

are currently being pursued by the author, based on methods of sorting and binning of contact

nodes. Methods for fast contact search based on binning of nodes can be found in Pöschel

and Schwager [30] and Zohdi [47]. Such approaches assume that a node stays in a certain

fixed region (a “bin”) for a few time steps, and that one does not need to search over all the

other nodes for contact over the whole domain. Furthermore, one can construct so-called

“interaction” or “Verlet” lists of neighboring nodes which that node interacts with, for a few

time steps, and then update the interaction periodically.

Finally, one critical enhancement to the model are accurate predictions of the effective

composite material properties of the coated fabric. Such coating can be produced by par-

ticulate spray processing of fabric. There are a number of methods to estimate the overall

macroscopic properties of materials particle-functionalized materials, dating back to Maxwell

[22], [23] and Lord Rayleigh [26]. For an extensive overview of random heterogeneous media,

we refer the reader to Torquato [36], for more mathematical homogenization aspects to Jikov

et al.[15], to Hashin [12], Mura [24], Nemat-Nasser and Hori [25], Huet [13], [14] for solid-

mechanics oriented works and for computational aspects to Ghosh [7], Ghosh and Dimiduk

[8] and Zohdi and Wriggers [45]. Currently, the author is developing methods for spray sim-

ulation of fabric, and estimation of the resulting properties, based on a computational models

developed in Zohdi [42, 43, 49].
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8 Appendix 1: dynamics of a general rigid body

Following Zohdi [46], since the translational motion of the rigid body has been already con-

sidered in the main part of the paper, we now turn to the rotational contribution. There are two,

more or less, equivalent approaches to compute the rotations using a (1) Inertially-fixed frame

and (2) Body-fixed frame. We employ an inertially-fixed approach for the duration of the

presentation.12 This approach entails, at each (implicit) time step, decomposing an increment

of motion into an incremental rigid body translational contribution and an incremental rigid

body rotational contribution (rotation about the center of mass). The rotational contribution

is determined by solving a set of coupled nonlinear equations governing the angular velocity

and the incremental rotation of the body around the axis of rotation (which also changes as a

function of time, and must also be determined). The equation for the angular momentum can

be written using fixed inertial coordinates

Ḣcm =
d(I · ω)

dt
= MEXT

cm . (40)

Because the body rotates, the moment of inertia about the center of mass, I , is implicitly

dependent on ω (and hence time), which leads to a coupledsystem of nonlinear ODE’s, which

will be solved with an iterative scheme. Equation 40 is discretized by a trapezoidal scheme

d(I · ω)

dt
|t+φΔt =

(I · ω)|t+Δt − (I · ω)|t
Δt

. (41)

thus leading to

(I · ω)|t+Δt = (I · ω)|t +ΔtMEXT
cm (t+ φΔt). (42)

Solving for ω(t+Δt) yields

ω(t+Δt) =
(
I(t+Δt)

)−1
·
(
(I · ω)|t +ΔtMEXT

cm (t+ φΔt)
)
, (43)

12 For a body-fixed formulation, see Powell and Zohdi [31].

www.gamm-mitteilungen.org c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



GAMM-Mitt. 37, No. 1 (2014) 141

where

MEXT
cm (t+ φΔt) ≈ φMEXT

cm (t+Δt) + (1− φ)MEXT
cm (t) (44)

which yields an implicit nonlinear equation, of the form ω(t + Δt) = F(ω(t + Δt)), since

I(t +Δt), due to the body’s rotation. An iterative, implicit, solution scheme may be written

as follows for K = 1, 2...

ωK+1(t+Δt) =
(
I
K
(t+Δt)

)−1

·
(
(I · ω)|t +ΔtMEXT,K

cm (t+ φΔt)
)
, (45)

where I
K
(t + Δt) can be computed by a similarity transform (described shortly) 13. After

the update for ωK+1(t+Δt) has been computed (utilizing the I
K
(t+Δt) from the previous

iteration), the rotation of the body about the center of mass can be determined. The incremen-

tal angular rotation around the instantaneous rotation axis aK+1(t + φΔt) (which will also

have to be updated) is obtained by

dθK+1

dt
(t+ φΔt) = ωK+1(t+ φΔt) ≈

ΔθK+1(t+ φΔt)

Δt
(46)

where ωK+1(t+ φΔt) = ωK+1(t + φΔt)aK+1(t + φΔt), ωK+1(t + φΔt) being a scalar

rotation about the instantaneous axis,

aK+1(t+φΔt)
def
=

ωK+1(t+ φΔt)

||ωK+1(t+ φΔt)||
≈

φωK+1(t+Δt) + (1− φ)ω(t)

||φωK+1(t+Δt) + (1− φ)ω(t)||
, (47)

and thus

ΔθK+1(t+ φΔt) = ωK+1(t+ φΔt)Δt, (48)

where ωK+1(t+Δt) = ||φωK+1(t+Δt)+(1−φ)ω(t)||. To determine the movement of the

individual points on the rigid body, we need to perform a rigid body translation and rotation

(described in the next section). For example, consider a point ri on the body. The update

would be

ri(t+Δt) = ri(t) + ucm︸︷︷︸
due to cm translation

+ ui,rot︸ ︷︷ ︸
due to rotation wrt cm

(49)

where ucm = rcm(t +Δt)− rcm(t) and where ui,rot is contribution due to an incremental

rotation of the relative position vector τ (i) def
= ri(t)− rcm(t) by Δθ about the cm (Figure 5).

13 One may view the overall process as a fixed-point calculation of the form ωK+1(t+Δt) = F(ωK(t+Δt)).
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Fig. 5 Aligning the primed coordinate system with the instantaneous axis of rotation (for a general

body, Zohdi [46]).

8.1 Transformation matrices for updates and incremental rotation

In order to rotate any point i associated with the rigid body, with position vector τ (i) we

require some standard transformations. The same transformation are needed to rotate the

body’s moment of inertia, I . It is a relatively standard exercise in linear algebra to show

that any vector, τ , which can be expressed in either the unprimed or primed basis, τ = (τ ·
ei)ei = (τ · e′j)e

′
j where summation index notation is employed. These two representations

are explicitly related by

⎡
⎣ τ1

τ2
τ3

⎤
⎦′

=

⎡
⎣ e1 · e

′
1 e2 · e

′
1 e3 · e

′
1

e1 · e
′
2 e2 · e

′
2 e3 · e

′
2

e1 · e
′
3 e2 · e

′
3 e3 · e

′
3

⎤
⎦

︸ ︷︷ ︸
[A]

⎡
⎣ τ1

τ2
τ3

⎤
⎦ . (50)

Note that A−1 = AT , thus τ ′ = A · τ and τ = AT · τ ′. This basic result can be used

to perform rotation of a vector about an axis, as well as the rotation of the inertia tensor.

Without any loss of generality, we align the e′3 axis to instantaneous rotation axis a. The total

transformation (rotation) of a vector τ (i) representing a point i on the body, can be represented

by

[τ (i)]rot = [A]T [R(Δθ)] [A][τ i]︸ ︷︷ ︸
[τ (i)]′︸ ︷︷ ︸

[τ (i)]rot,′︸ ︷︷ ︸
[τ (i)]rot

(51)

where

[R(Δθ)] =

⎡
⎣ cos(Δθ) −sin(Δθ) 0

sin(Δθ) cos(Δθ) 0
0 0 1

⎤
⎦ (52)
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Similarly, for the rotation inertia tensor

[I]rot = [A] [R(Δθ)]T [A]T [I][A]︸ ︷︷ ︸
[I ]′

[R(Δθ)]

︸ ︷︷ ︸
[I ]rot,′

[A]T

︸ ︷︷ ︸
[I]rot

, (53)

where, during the iterative calculations, [I] = [I(t)] and [I]rot = [I(t+Δt))].

8.2 Algorithmic procedure

The overall procedure is as follows, at time t:

1. Compute the new position of the center of mass.

2. Compute (iteratively) the incremental angular rotation of the body with respect to the

center of mass until system convergence:

||ωK+1(t+Δt)− ωK(t+Δt)|| ≤ TOL||ωK+1(t+Δt)||. (54)

This requires a rotation of the body within the iterations:

(a) Given that ωK+1(t+Δt) has been computed

ωK+1(t+Δt) =
(
I
K
(t+Δt)

)−1

·
(
(I · ω)|t +ΔtMEXT,K

cm (t+ φΔt)
)

(55)

(b) Compute the (updated) axis of rotation:

aK+1(t+ φΔt)
def
=

ωK+1(t+ φΔt)

||ωK+1(t+ φΔt)||
≈

φωK+1(t+Δt) + (1 − φ)ω(t)

||φωK+1(t+Δt) + (1 − φ)ω(t)||
. (56)

(c) Compute the basis e′3-aligned instantaneous axis of rotation:

(i) e′3, is aligned with aK+1(t+Δt)

(ii) e′1 = e′3 × e3/||e
′
3 × e3|| and

(iii) e′2 = e′3 × e′1/||e
′
3 × e′1||

(d) Compute the composite transformation for the inertia tensor in Equation 53 and

obtain the update I
K+1

(t+Δt).

(e) Repeat steps (a)-(d) until Equation 55 is satisfied.

3. Compute the total new position of the points on the body (i) with Equation 51, increment

time forward and repeat the procedure.
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9 Appendix 2: some analytical modeling

As mentioned in the body of the paper, the trends observed in Figure 4, can be qualitatively

predicted with simple models, and projectiles with constant contact area, which are described

in the following sections.

9.1 Stretching and rupture

T

COATING

FABRIC
YARN

CONTACT

RUPTURE

STRETCHING

INCOMING PROJECTILE

NEXT SHEETS

x

VELOCITY PROFILE

oR

Fig. 6 The idealized sequence of events.

We initially consider the stretching and rupture of a single yarn in the fabric, and later

extend the analysis to the response of multiple yarn in a sheet within the projectile contact

zone. We denote ρyo as the initial (undeformed) density of the yarn and Ay
o is the initial cross-

sectional area. During the stretching to final rupture, the yarn is assumed to attain a linear

(symmetric) velocity profile (0 ≤ x ≤ Lo/2) given by v(x) = vp2x/Lo, where vp is the

velocity of the projectile (Figure 6). We assume that the contact area of the projectile/fabric

is sufficiently small with respect to the target size so that it can be considered as a point load

during this stage of the analysis. Later, the dimensions of the projectile will be taken into

account. By integrating the differential kinetic energy, we obtain

2

∫ Lo
2

0

1

2
ρyoA

y
o(v(x))

2 dx =
ρyoA

y
oLo

6
(vp)

2. (57)

An energy balance yields

1

2
mp(v

(i)
p )2︸ ︷︷ ︸

kinetic eng. after ith sheet

− wy(U∗,y)︸ ︷︷ ︸
absorbed elastic eng.

=
1

2
mp(v

(i+1)
p )2︸ ︷︷ ︸

kinetic eng. after i+1 th sheet

+
ρyoA

y
oLo

6
(v

(i+1)
p )2︸ ︷︷ ︸

fabric kinetic eng.

, (58)

where the stretch throughout the yarn (on either side of the projectile) has been approximated

as being uniform, due to the assumed linear mode of deformation (Figure 6). The absorbed

(stored) energy at failure is denotedwy(U∗,y), whereU∗,y is the critical stretch ratio at failure.
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The stretch ratio is defined as U
def
= L

Lo
, where L is the stretched length and Lo is the original

unstretched length. Equation 58 may be written in the form of a recursion (i=sheet counter

number)

v(i+1)
p =

√
α(v

(i)
p )2 − β, (59)

where

α =
mp

mp +
ρ
y
oA

y
oLo

3

and β =
2wy(U∗,y)

mp +
ρ
y
oA

y
oLo

3

. (60)

For moderate finite strains (the case here), the response of the thin one-dimensional yarn

can be accurately described by a constitutive law of the form S = IEyE, where S is the

second Piola-Kirchhoff stress, IEy is the Young’s modulus and E
def
= 1

2 (U
2−1) is the Green-

Lagrange strain. The quantity of interest here is the absorbed (stored) energy wy(U∗,y) =
LoA

y
o

2 IEy( (U
∗,y)2−1

2 )2 at final rupture, where W y(U∗,y)
def
= 1

2IE
y
(

(U∗,y)2−1
2

)2

is the ab-

sorbed (stored) energy per unit volume. We shall use this simple absorbed (stored) energy

function in the analysis that follows. However, we note that other material models could

easily be employed without any complication.

Remark 1: The axial strains, for structural fabric such as Zylon or Kevlar, are expected to

be in the range of 2 %-10 % before rupturing.14 Therefore, a relatively simple Kirchhoff-St.

Venant material model is reasonable. Although it is not explicitly needed in this analysis, the

Cauchy stress (σ) is related to the second Piola-Kirchhoff stress in the following manner for

this simple one-dimensional case, σ = US = σ = IE U3−U
2 .

Remark 2: The use of a linear velocity profile was motivated by observations in laboratory

experiments and large scale numerical studies for sheets of fabric that are clamped to a target

holder (Kwong and Goldsmith [16], Zohdi [40], Zohdi and Powell [44], Powell et al. [31],

Powell and Zohdi [32] and Powell and Zohdi [33]).

Remark 3: The exact mechanism for damage evolution and fracture of the fabric is out-

side the scope of the present work. The reader is referred to the recent work of Ghosh [7]

and Ghosh and Dimiduk [8] for a thorough review and analysis of the micromechanisms of

damage evolution and failure for a variety of lightweight composite materials.

9.2 Introduction of a coating layer

Now we augment the model with a coating (superscript c) layer (Figure 6) which is assumed

to undergo the same loading as the fabric (superscript y), to which it is bonded. Integrating

the differential kinetic energy, we obtain

2

(∫ Lo
2

0

1

2
ρyoA

y
o(v(x))

2 dx+

∫ Lo
2

0

1

2
ρcoA

c
o(v(x))

2 dx

)
=

ρyoA
y
oLo

6
(vp)

2 +
ρcoA

c
oLo

6
(vp)

2.

(61)

14 For example, Zylon ruptures at approximately a 3 % axial strain (Toyobo [37]).
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An energy balance yields

1

2
mp(v

(i)
p )2︸ ︷︷ ︸

kin. eng. after ith sheet

− wy(U∗,y)︸ ︷︷ ︸
absorbed fab. eng.

− wc(U∗,c)︸ ︷︷ ︸
absorbed coat. eng.

=
1

2
mp(v

(i+1)
p )2︸ ︷︷ ︸

kin. eng. after i+1 th sheet

+
ρyoA

y
oLo

6
(v(i+1)

p )2︸ ︷︷ ︸
fab. kin. eng.

+
ρcoA

c
oLo

6
(v(i+1)

p )2︸ ︷︷ ︸
coat. kin. eng.

. (62)

Equation 62 may be written in the form of a recursion

v(i+1)
p =

√
α(v

(i)
p )2 − β, (63)

where

α =
mp

mp +
(ρy

oA
y
o+ρc

oA
c
o)Lo

3

and β =
2(wy(U∗,y) + wc(U∗,c))

mp +
(ρy

oA
y
o+ρc

oA
c
o)Lo

3

. (64)

For the coating, for illustration purposes, we will assume that it is a metal-like, and ignore

the small elastic strains and assume a dissipated amount of plastic work/energy of the form,

wc(U∗,c) =
LoA

c
o

2 IEc,p( (U
∗,c)2−1
2 )2, where IEc,p is the plastic or damaged modulus of the

material, and U∗,c is the strain to complete failure of the coating.

Remark: The cross-sectional area of the yarn is Ay
o = πR2

o and for the coating of thickness

T it is Ac
o = π((Ro + T )2 −R2

o).

9.3 Estimation of the number of sheets

Equation 63 can be put into an easier to manipulate form by squaring both sides to obtain

(v(i+1)
p )2 = α(v(i)p )2 − β, (65)

and subtracting this result from the relation evaluated at the previous sheet

(v(i)p )2 = α(v(i−1)
p )2 − β, (66)

to yield

(v
(i+1)
p )2 − (v

(i)
p )2

(v
(i)
p )2 − (v

(i−1)
p )2

= α. (67)

Thus, the ratio of the loss of kinetic energy, 1
2mpv

2
p, from sheet to sheet, is constant, and

therefore

(v(i+1)
p )2 − (v(i)p )2 = αi

(
(v(1)p )2 − (v(0)p )2

)
, (68)
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where the notation αi denotes α to the ith power (as opposed to superscript (i)). As a result,

we obtain an expression relating the sheets penetrated (i) to the velocities between layers

i =
1

lnα
ln

(
(v

(i+1)
p )2 − (v

(i)
p )2

(v
(1)
p )2 − (v

(0)
p )2

)
. (69)

Setting the velocity at sheet i + 1 to zero yields an expression for the velocity after i sheets

have been penetrated,

(v(i+1)
p )2 = α(v(i)p )2 − β = 0 ⇒ v(i)p =

√
β

α
. (70)

Combining the two previous relations, we obtain the number of sheets (i∗) that a projectile

will penetrate before stopping

(0)2 − β
α

(v
(1)
p )2 − (v

(0)
p )2

= αi ⇒ i∗ =
1

lnα
ln

(
− β

α

(v
(1)
p )2 − (v

(0)
p )2

)
. (71)

By applying the recursion relation to the first sheet

(v(1)p )2 = α(v(0)p )2 − β ⇒ (v(1)p )2 − (v(0)p )2 = α(v(0)p )2 − β − (v(0)p )2, (72)

we obtain an expression for the number of sheets penetrated solely in terms of the system

parameters and the initial velocity

i∗ =
1

lnα
ln

(
−β
α

(α− 1)(v
(0)
p )2 − β

)
. (73)

Since i∗ represents the number of sheets penetrated, it should be rounded up to an integer

value. Furthermore, since i∗+1 represents the number of sheets needed to stop the projectile,

it should also be rounded up to an integer value. Rounding the values up will provide a

conservative estimate in each case.

9.4 Experimental observations/estimated ballistic resistance

We have some limited tests on uncoated (for the zero-thickness (T = 0) case) materials which

we can use to compare the analytical expression (Equation 73) against. In order to do this, we

extend the analytical expression to describe a sheet with multiple participating yarn (Figure

7). Typically, for structural fabric, the microstructure of the yarn is composed of groups of

microscale fibrils. As mentioned earlier, Zylon (the material that we have extensive data

for) possesses such a multiscale structure, constructed from PBO (Polybenzoxale) microscale

fibrils, which are bundled to form yarn, which are then tightly woven into sheets Figure 6.

The following system parameters (from the described experiments) and standard properties of

Zylon fabric (Toyobo [37]) were used:

• length of the target: Lo ≈ 0.254m,

• critical stretch to failure of a Zylon micro-fibril: U∗,y ≈ 1.034 (3 % strain),

• stiffness of a Zylon microfibril: IEf = IEy ≈ 180GPa,

• radius of a Zylon microfibril: rf ≈ 5× 10−6m,
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Fig. 7 (online colour at: www.gamm-mitteilungen.org) LEFT: An approximate determination of the total

number of load sharing yarn is determined by computing the number of yarn in the horizontal direction in contact

region and the number of yarn in the vertical direction. Essentially only the yarn shown participate/contribute to

any significant degree in the ballistic resistance for clamped boundary conditions. RIGHT: For vo = 106m/s and

coating variation of T /Ro = 0, 0.1, 0.2...1, with a coating density of ρc = 5000kg/m3 and stiffness being the

same (IEc/IEy = 1) as the fabric. For T /Ro = 0 (top curve), approximately i∗ = 6.52 (rounded up to seven)

were predicted penetrated by the theory, and i∗+1 = 7.52 (rounded up to eight) were predicted to stop the projectile.

This is nearly the exact number indicated by the experiments (six sheets penetrated and seven to stop the projectile).

• density of a Zylon microfibril: ρo ≈ 1540 kg/m3,
• mass of the projectile: mp ≈ 0.036 kg and
• diameter of the projectile cross-section: d ≈ 0.0127m.

The cross-sectional area of a Zylon microfibril is Af
o = πr2f . Thus, effective yarn cross-

sectional area in the previous expressions is Ay
o = 350 × Af

o . This allows us to define the

effective yarn radius through

πR2
o = Ay

o = 350×Af
o ⇒ Ro =

√
Ay

o

π
=

√
350×Af

o

π
. (74)

We recall that Ac
o = π((Ro + T )2 − R2

o), which is an effective coating area. Since a single

yarn does not take the entire load, the absorbed (stored) energy and the mass of the yarn are

multiplied (see Equations 63 and 64) by the number of yarn, Y (“load sharers” Figure 7) to

compute the effective inertia and effective absorbed (stored) energy, yielding

i∗ =
lnγe
lnαe

, (75)

where

γe =

−βe

αe

(αe − 1)(v
(0)
p )2 − βe

, (76)
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and

αe =
mp

mp +
Y (ρy

oA
y
oLo+ρc

oA
c
oLo)

3

and βe =
2Y (wy(U∗,y) + wc(U∗,c))

mp +
Y (ρy

oA
y
oLo+ρc

oA
c
oLo)

3

. (77)

The typical denier (yarn weave density) of a Zylon weave is 35 yarn/inch (=35×(100/2.54) =
3500/2.54 ≈ 1378 yarn/meter). In order to estimate the number of yarn that share the load

in a sheet, for a cylindrical penetrator, such as the one used in the experiments, we took twice

the diameter (yarn in the vertical and horizontal directions) of the projectile (0.0127 meters)

and multiplied this by the yarn per unit length (Figure 7). Thus, the number of yarn that

share the load is approximately 2 × 0.0127 × 35 × (100/2.54) = 35 and the number of

fibrils is approximately 350 × 35 = 12250. Inserting this data into Equation 75 yields i∗ =
6.52, which asserts that approximately seven sheets (conservatively rounding up to an integer

value) will be penetrated by the projectile and that eight (i∗ + 1) sheets are needed to stop the

projectile. The laboratory experiments described earlier in the introduction indicated that, for

a projectile initially traveling at approximately 350 feet/sec (106.68 meters/sec) penetrated

six (boundary) clamped sheets. Therefore, seven sheets were needed to stop the projectile.

One key reason for the close agreement between the analytical and experiment results is the

choice of the linear velocity profile in the fully deformed configuration, which essentially

matches the observed state of the fabric for clamped boundary conditions. Essentially only

the yarn shown in Figure 7 participate to any significant degree in the ballistic resistance

for clamped boundary conditions. Figure 8 illustrates the typical velocity/sheet-penetration

square-root (sub-linear) behavior widely observed in ballistics studies. The vo = 300m/s
case has approximately nine times the initial kinetic energy as the vo = 106m/s case, thus

leading to approximately nine times the sheets needed.
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Fig. 8 (online colour at: www.gamm-mitteilungen.org) LEFT: For vo = 300m/s-coating variation of

T /Ro = 0, 0.1, 0.2...1. The vo = 300m/s case has approximately nine times the initial kinetic energy as the

vo = 106m/s case, thus leading to approximately nine times the sheets needed. RIGHT: vo = 300m/s : Trends

for increasing coating stiffness, IEc, in increments of 0.25 × IEy , starting from IEc/IEy = 0 (top curve) to

IEc/IEy = 2 (bottom curve). Note the coating density used was ρc = 5000kg/m3.
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Of primary interest is to plot the reduction of the number of sheets needed to stop the

projectile, I∗(T )
def
= i∗(T )−i∗(0)

i∗(0) , as a function of the coating thickness, where i∗(T ) is the

number of sheets needed with added coating of thickness (T ) and i∗(0) is the number of

sheets needed with no coating. In Figure 8, the trends are illustrated for an incoming projectile

velocity of vo = 300m/s, with curves for increasing coating stiffness, IEc, in increments of

0.25 × IEy , starting from IEc = 0 × IEy (top curves/not stiff coatings) to IEc = 2 × IEy

(bottom curves/stiff coatings). A coating density of ρc = 5000kg/m3 was used.15 There

is a mild reduction of the number of sheets needed for soft coatings (IEc << IEy), which

is attributable to the increased mass of the sheets. For weak (not stiff) coatings, this trend

has a nearly linear dependence on T /Ro. However, for sufficiently stiff coatings, the curves

illustrate the dramatic (essentially exponential) reduction of the number of sheets needed to

stop the projectile. The utility of this analysis is that the analytical expression/curves provide a

quick way to qualitatively study the decrease in sheets needed as a function of added mass (or,

alternatively, coating thickness). However, clearly, the model has utility to describe qualitative

effects, but is deficient in dealing with projectiles with a non-flat profile, where the contact area

changes as well as frictional sliding between the projectile and fabric. However, the model

can serve as a building block to construct a computational framework for networks of coated

yarn which form sheets. This is discussed in the main body of the paper.

15 In addition, we used the same critical stretch parameter for the fabric and coating (U∗,c = U∗,y).
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