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Summary In this paper a coupled thermodynamical/chemical/mechanical model is developed

to simulate the time dependent degradation of heterogeneous solid materials subjected to

corrosive environments. The model, which is based on a description of the microscale, employs

the first law of thermodynamics, a mass balance of a diffusing corrosive species, and a balance

of momentum. The presence of the corrosive species is phenomenologically modeled as irre-

versibly reducing the material stiffness, dependent on the amount and time present. Numerical

experiments are given to illustrate some characteristics of the model.

Key words Multiphase materials, micromechanics, environmental degradation

1

Introduction

In the last two decades, composite materials developed and processed through a variety of
methods have become widely used in engineering designs. However, in many industrial ap-
plications, the theoretically designed composite material properties are lost due to contact with
corrosive environments. In this paper, we refer to corrosion as an undesired degradation of a
material through chemical interaction. It is critical to emphasize that the phenomena of
chemical degradation is material-dependent, and that no unified theory exists, nor is one
proposed. However, there is some phenomenological similarities, namely, the reduction of the
material stiffness at a macroscopic point, depending on the amount of the corrosive present
and its time duration. In many cases, the degradation of the mechanical properties of structural
materials can be traced to the absorption of excessive amounts of corrosive substance, for
example hydrogen, in combination with residual or applied tensile stresses. In particular,
metallic solids with heterogeneous microstructure are extremely vulnerable to such degrada-
tion, due to their amplified and highly oscillatory internal fields. Therefore, for a composite
material to be properly evaluated, its response in the environment that it is planned to be used
in must be determined. In total, it is estimated that roughly between US$ 8 to 15 billion are
spent yearly to combat corrosion throughout Europe.

With regards to the phenomenon of corrosion, a structural analyst’s primary interest is
related to the time-dependent changes in the macroscopic response of the material, in par-
ticular, its overall stiffness, due to the penetration and continued presence of the corrosive
species. The usual procedure in engineering is to describe the undamaged macroscopic ag-
gregate response or “effective” constitutive relation of a micro-heterogeneous material, by a
relation between volumetrically averaged stress and strain in a statistically representative
volume element (RVE). Typically one determines E*, where

(6o =E":(e)q .
with

def 1
Vo= — [ -dx .
<>Q |Q| °

In this definition, ¢ and € are the stress and strain fields within the domain €, E is a spatially
variable symmetric, positive definite fourth rank linear elasticity tensor, and
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is the infinitesimal strain, where u is the displacement field. Pointwise, we have
c=F:€,

where all quantities are functions of time and space unless explicitly stated otherwise. The
Tensor E*, which represents the macroscopic response, has constant components. For the
relation between the averages to provide meaningful information, the sample size may have to
be quite large relative to the intrinsic length scales of the microstructure, i.e. it must be
statistically representative. Ideally, one would like to estimate computationally the loss in a
theoretically designed E* as a function of the environment and time, by numerical simulation of
the degradation of statistically representative samples of material. In order to reduce laboratory
expense, the end goal would be to predict the life expectancy of structures exposed to haz-
ardous environments with help from computational simulations.

1.1

Objective

Our objective in this paper is to develop a phenomenological model that can help study the
macroscopic response of a representative sample of a heterogeneous material undergoing
chemical attack from a corrosive environment. The exact underlying degradation mechanism is
essentially irrelevant in this work. The approach is to describe the time-dependent degradation
of the macroscopic aggregate’s mechanical properties by a stress-assisted diffusion model,
where the material strength on the microscopic scale is irreversibly damaged by the growing
and/or continued presence of a corrosive substance. The model, which is based on a de-
scription of the microscale, employs the first law of thermodynamics, a mass balance of a
diffusing corrosive species and a balance of momentum. The outline of the paper is as follows:
the governing equations for the coupled fields are derived in Sec. 2, coupling between the fields
is discussed in Sec. 3, and approximations are made to simplify the analysis in Sec. 4. In Sec. 5,
an intergranular decohesion analysis is performed to obtain phenomenological corrosion pa-
rameters for the continuum scale. In Sec. 6, numerical experiments are carried out on a large
sample of composite material, and concluding remarks are given. While we do not restrict our
attention to any specific type of chemical damage, hydrogen damage due to its widespread
industrial occurrence, will be used later in the paper as a representative example.

2

Multifield coupling and phenomenological corrosion

We consider a structure which occupies an open-bounded domain in Q € R’. Its boundary is
denoted 9Q. The body is in equilibrium under the action of body forces b and surface tractions
t. The boundary 022 consists of a portion I, on which the displacements d are prescribed, and
a part I'; on which tractions t are prescribed. In the solid, there exist interconversions of
mechanical, thermal and chemical energies. These processes are governed by the first law of



thermodynamics. To derive the energy equation describing the first law of thermodynamics we
start with the equation of equilibrium

V.64 pb=pi , (1)

where ¢ is the Cauchy stress and p is the density. Forming a scalar product with the velocity a,
and integrating over the body

/Q(V-G—&—pb—pii)-ﬁdxzo, (2)

one can easily show

/Vﬁ:cdx+/pii-1'1dx—/pb-1'1dx+/ ¢-n-uds . (3)
Q Q Q 0Q

~~
dé dK dw
dt dr dt

By further manipulations one can write the time rate of kinetic energy as

i—fz/ﬂpiiw’ldx. (4)

For a thermomechanical continuum it is customary to express the time rate of change of
internal energy by

d¢ d de
EZa/gPedx:/Qpadxa (5)

where e is the internal energy per unit mass. Heat conduction as well as thermal source effects
are included by

ds
—déf—/ g-nds—l—/pzdx, (6)
dt 0Q Q
—_— ——
conduction sources

where g is the heat flux per unit area per unit time and z is the heat influx per unit mass due to
sources (possibly external sources or chemical reactions). This leads to

d_K+d_g—d_W+§ (7)
dt  dr  dt dr

or, explicitly, the local form can be written
pe=c6:Va—-V-g+pz . (8)

Therefore, if pé = pA# 9, where J# is the heat capacity per unit mass, and 0 is the rate of
temperature change (0 is the absolute temperature), then

v-g:—pé+pZ+GZVﬁ=—[LW@—I—,DZ—FO':VI.I. 9)

Here, pz represents mechanical energy losses during corrosion, for example, pz > 0 for all
x € Q undergoing chemical attack.

Remark: This phenomenological model does not account for losses or gains in mass due to
chemical reactions. The material is assumed to change properties but the mass remains the
same. Classical models for changes in the overall mass can be found in [1-3] or [4].

3

Model for corrosive species accumulation

An observed phenomenon in the diffusion of a small species in a solid is that of accumulation
in regions of relatively low hydrostatic pressure. A simple constitutive model of such a
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phenomenon, relating the flux of a small solute diffusing in a stressed solid, is given by the
modified form of Fick’s law incorporating the effects of pressure and pressure gradients into
the diffusion equation, see [5-12],

F=-D-(Vc—owVc—yVa) y,a>0, (10)

where ¢ is the concentration of the solute and where w is the volumetric strain, which under
infinitesimal deformations is tr €. One can argue on the basis of statistical mechanics that the
diffusivity D (m?/sec) must be positive definite in order to coincide with observed phenomena,
i.e. a diffusing species is attracted to regions of relatively lower concentration under stress-free
conditions. In the most general case, D is considered a second order tensor. The effect of the
extra terms are as follows:

e 0wV¢; the species are repelled from regions where the concentration is high and the volu-
metric strain gradients are negative

e ycVw; the species accumulate in regions where the concentration is high and the volumetric
gradients are positive.

It is clear that such a model can lead to sharp concentration fronts, which is a desired effect
since it is experimentally observed. Upon substituting this relation into the conservation law,

c+V-F=0,

one obtains the following equation governing the diffusion of a dilute solute in a stressed solid:
¢=V:[D-(Vc—awVc—yVm)| . (11)
The diffusivity of a material has a well-known relationship to the temperature, namely the
Arhennius form

D = D

where D° is a spatially heterogeneous diffusivity tensor at a reference temperature, Q is the
activation energy for solute motion per mole of diffusive species and R is the universal gas
constant.

3.1
Transport relations
If we employ the Fourier ansatz, for heat conduction

g=-K- V0

K being the thermal conductivity, a second order tensor in the most general case and positive
definite by the second law of thermodynamics, we have the following relations:

—V -F=¢, (mass conservation)

—V.-6=pb—pi, (momentum balance) (12)
—V.g=p#0—06:Va—pz , (first law of thermodynamics)

where c is the concentration of the diffusing corrosive solute (per unit volume),
F=F(u,0,c), 6=o0(u0,c) and g=g(ub,c) .

3.2

Phenomenological degradation

As we have mentioned in the introduction, the macroscopic loss in material stiffness suggests
an irreversible phenomenological model for mesoscopic degradation:

for each x € Q if ¢ > c4i at a moment in time t, then [E|<t tor) S [E|(t)
0< [E|(t+(5t) < [E|(t) < HE|(t:0) Vxe Q. (13)
The notation E|,, ;) < E|,) means that the eigenvalues of E[, ;, — E|, are negative semi-

definite. In the literature, a variety of models employing exponential laws for mechanical



damage growth have been successful in matching experiments, see for example [13]. With this
in mind, an expedient model is:

for each x € Q if ¢ > c4i at a moment in time t, then E — Fe % 0 < b,
restriction: 0 < IE|(t+5t) S [E|(t) S E|(t:0) Vx S Q. (14)

With this model, increasing f§ increases the detrimental effects of the corrosive. Here, f§ is a
material constant, and we refer to it as the corrosion parameter. From the physical point of
view, the corrosion parameter f and the critical amount of the corrosive c.; should be selected
to match realistic damage rates observed in laboratory experiments. This model is irreversible,
in the sense that if the corrosive leaves after a period of time, the material does not return to its
original state. We assume that the energy lost from the weakening of the mechanical properties
is in the form of heat, in other words, using the previous notation, the source term in the energy
equation becomes:

for each x € Q if ¢ > ¢,y at a moment in time ¢, then: pz = {pV E: [E,

for each x € Q if ¢ < ¢y at a moment in time ¢, then: pz =0 , (15)

where ( is a measurable material constant, which represents a constant of conversion of
mechanical properties into heat energy. This is merely one of many possible choices for a
phenomenological corrosion law.

4

Widespread example: hydrogen damage

The relatively small atomic form of hydrogen allows it to easily penetrate most solid structures.
Primarily, because molecular hydrogen is too large to diffuse from the surface into the metal
lattice, it is usually assumed that atomic hydrogen must be formed on the surface of a structure.
The atomic form of hydrogen can occur in a variety of ways: corrosion processes, electro-
plating, as a waste product in chemical reactions of combustion cycles, etc. The mechanisms of
hydrogen degradation are numerous. A prominent example is the formation of brittle hydrides
which inhibit grain sliding during deformation, thus embrittling the material. Another example
is blistering caused by hydrogen accumulating, reacting and causing high pressure which
results in localized rupture. Both premature failure and loss of strength are usually observed in
tensile tests of metals exposed to hydrogen gas. There are a variety of view points as to the
actual subcontinuum mechanism for hydrogen damage in metallic solids. However, there are
some commonly agreed upon aspects. In general, it is believed that hydrogen damage in
metallic materials occurs because hydrogen absorption at highly stressed sites lowers the
surface energy required for intergranular microcracks to grow. There are two classical schools
of thought, both advocating a microinterface (intergranular) decohesion model. The first
proposes that the decohesion occurs at the highest stress triaxiality (hydrostatic) region, see
[14] and [15], while the second is based on hydrogen-induced microplasticity models, see [16]
and [17]. Loosely speaking, hydrogen reduces the bonding energy of the metal lattice suffi-
ciently enough to allow intergranular cracking. There are numerous works in the area of
intergranular decohesion and hydrogen damage, and we refer the reader to [18-28]. From a
structural analyst’s point of view, regardless of the exact intergranular failure mechanism, the
important effect is that the grains are observed to separate, and that the likelihood of deco-
hesion is directly related to the amount of hydrogen present.

4.1

Analysis of intergranular decohesion: a method to determine

the phenomenological corrosion parameters

Intergranular crack growth rates in the presence of hydrogen have been reported in the
literature to be on the order of 1078 — 1077 m/sec for commonly used metallic solids such as
steel, [20], [25], indicating that an intergranular crack jumps approximately 1 micron every 20
seconds. Experimentally, this is determined by locating crack arrest markings with a scanning
electron microscope. One way to determine the corrosion parameter f§ for our degradation
model, is to consider decohesion of the intergranular interfaces. In a relevant study, [29], the
decohesion was modeled as a result of hydrogen reaction with internal constituents, carbides
in carbon steels, which form high-pressure microvoids filled with methane gas. These pres-
surized microvoids grow until they coalesce and form intergranular cracks, (Fig. 2). It is the
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immediate objective of this Section to investigate the effects of stress on the diffusion of
hydrogen from a macroscopic crack containing hydrogen, which has resulted from a such
corrosion process.

4.2

Analysis at a crack tip

A close-up view of a single grain is shown in Fig. 3. To model intergranular decohesion, we
consider an idealization of an intergranular crack with hydrogen atoms adsorbed at the root.
We motivate a blunted crack model both physically and mathematically, by considering an
initially sharp crack under a remote uniaxial loading causing the stress field in the solid. The
usual linearly elastic mode I crack solution (opening mode) in an infinite two-dimensional
domain under uniaxial tension is considered for plane states. The elastic stress field in mode I
loading for in-plane stress near the crack tip can be expressed as

7y = fil0) | (16)

where f;; is a known function of 0 and K; is at this point still unknown, since the body and
loading are unknown. Here, polar coordinates (r, ) from the origin of the crack tip are used. If
K; is known, then all stresses can be determined. It is usual to express K; = no+/a, where a is
the half-length of the crack, o is the remote stress and # is unknown. For an infinite planar
domain under remote uniaxial loading we have (with n = \/7)

Grain
boundary

Hydrogen o
filled : 5
blunted L LLLLL L)
crack

Fig. 3. A close-up view of a blunted in-
tergranular crack
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Ki cos 0 <
Oyy = ———COS—
e V2nr 2

K; 0 L4 0 . 30
o = ——CO0S — Sin —Sin —
7 2nr 2 27 2)

K .0 0 30
sin—cos—cos—, (17)

Oy = —/—
Yoo Vomr 22 2

0z = V(0xx + 0yy) for plane strain, 53

0., =0 for plane stress,
Oxz = Oyz = 0,

where v is the material Poisson ratio. Such an analysis is classical, involving Airy stress
functions and standard complex variable methods, see [30].

4.2.1
Observations
Along the 0 = 0 axis, the pressure gradients behave as VP = (¢/(r2). It is important to realize
that the pressure is harmonic, i.e. V2P = 0, in the case of constant body forces and provided
the fields are twice differentiable. This is a direct result of the Beltrami-Mitchell formulation of
elasticity. The result does hold for plastic responses under the assumption that the dilatational
stresses are not affected by plastic deformations (J, theory).

Suppose we restrict the diffusion equation to a single direction (one-dimensional problem).
By inserting the relations in Eqs. (17) into Eq. (11), the general relations collapse to

Al
C//+—3:0 s

X2

where A is a constant. Such a problem is ill-posed since the singularity is not integrable, i.e.
o €dx = oo. In order to extract some meaningful information we must consider that the
material will plastify ahead of the crack tip. The resulting solution is therefore regularized. A

rough idea of the plastic zone size and shape can be determined by finding all points, where
V6’ : 6 > 0yied. The plastic zone for the plane strain condition is given by

1, = max K7 coszg 1—2v+ sing CK coszg (18)
P 2 ’ 2 ’
27wYield 2 2 2710},i d 2
while for plane stress
K7 [cosg <1 —|—s'n9>]2 (19)
rp - - mn— .
21634 2 2

A simple approximation is to assume that the pressure is constant in the plastic zone, and to
use the elastic field outside of the plastic zone, see Figs. 4 and 5. It is clear that such a model will

Plane strain

Plane stress
Fig. 4. A close-up of the plastic zone shapes ahead of a crack
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Plastic zone

Fig. 5. An elasto-plastic pressure field ahead of the crack

force accumulation at the plastic-elastic interface. This has been experimentally and compu-
tationally observed in [19], [23-28]. The usual assumption is that the crack will advance when a
critical amount of hydrogen has been absorbed in the plastic zone, and the material ahead of
the crack is sufficiently weakened.

4.3

Inverse problem for the corrosion parameter

A way to determine the corrosion parameter f§ is by finding the minimum of f that will produce
complete degradation of the material in the plastic zone in 20 seconds. In other words one must
find the minimum of f that achieves a sufficiently weakened intergranular strip material,
measured by the following

(EQ)o — (Ef)g
(E?)q

in lym

Intergranular strip losses &f <1, (20)

where E¢ is the time-dependent spatially varying corroded Young’s modulus and E? is the
original uncorroded Young’s modulus of the intergranular strip. Accordingly, we solve

—V-F=¢ F=-D-(Vc—awVc—ycVm), D = Dl ® , (21)

along a one-dimensional strip with a constant temperature field by the finite difference method.
The pressure field is taken to be a constant in the plastic zone, dictated by the yield stress. In
the elastic zone, the pressure is harmonic and is governed by Egs. (17). Quantitative results are
given in Table 1. The results are mesh-independent, i.e we successively refined the time and
spatial steps until no change in the solution occurred to 5 significant digits We employ

f = 0.001 and c.rir = 1.0 as a realistic combination of parameters for the RVE scale simulations.

5

Numerical and analytical approximations

In multiphase media, a prevalent damage mechanism is the phenomenon of corrosive species
trapping. This degradation mechanism frequently occurs when two phases of varying diffu-
sivities are present, see [20] for comments on hydrogen trapping. For example, when a high-
diffusivity matrix is present, the corrosive initially diffuses through quickly, and remains
trapped between the denser low diffusivity particulate phases. After initial absorption by the
matrix, the corrosive is trapped between the low diffusivity particles, whereby it destroys the
material. In an attempt to simulate such trapping, we consider two-phase dispersed-phase

Table 1. The corrosion parameter for a given critical amount of hydrogen in 20 seconds;
Kk = 162 GPa, u = 75.8 GPa, 0yja = 100 MPa, grain boundary length = 10 um and plastic zone size 1 um,
(values for homogeneous steel; for other parameters s. Table 2)

Cerit .B <EOE_0EC> 1pm
0.5 0.00001 0.019
0.5 0.0001 0.177
0.5 0.001 0.859
1.0 0.00001 0.009
1.0 0.0001 0.093

1.0 0.001 0.624




particulate composites. For moderate contrasts in the particle and matrix material, the sample
must contain several particles to be statistically representative. We consider an idealization of a
microstructure that would be susceptible to trapping: a cube of material with a heterogeneous
two-phase particulate isotropic random block microstructure. The cubical domain is subdi-
vided into subblocks of uniform size. They are randomly assigned either hard (particulate) or
soft (matrix) material values (a random 3-D “checkerboard”, Fig. 6), and then the hard sub-
blocks are scaled down, Fig. 7, forming interparticle ligaments vulnerable to the trapping
phenomena. One can consider the hard subblocks to be the stiffer, harder to penetrate, par-
ticles, while the surrounding material to be the softer, more permeable, matrix. Numerical
results are presented below.

5.1

Approximation schemes for thermo/chemical/mechanical coupling

In order to reduce the complexity of the computations, we employ some classical approxi-
mations for the mechanical fields. The internal mechanical fields will be approximated from
above and below in a certain sense. Thereafter, we can construct the local pressure-dependent
diffusive coefficients for the mass conservation equation throughout the body as well as the
mechanical contributions to the energy equation. In order to approximate the internal me-
chanical fields, we employ standard micro/macroenergy arguments. As we have stated in the
introduction, macroscopic, aggregate or “effective” constitutive relations of a microheteroge-
neous material are usually computed from a relation between averaged stress and strain in an
RVE with volume |Q|, s Sec. I. However, for the relation between averages to make sense, i.e. to
be statistically representative, the sample size may have to be quite large relative to the intrinsic
length scales of the microstructure. The size requirements placed on the RVE can be stated
concisely by the following micro/macroenergy equality:

(0:€)g=1(0)q:(€)g ,

known as Hill’s condition, [31]. For a heterogeneous body, two important loadings that fall
under Hill’s condition are

(Dulpg=8-x=(€)g=8,
(22)
(2)tlpo=T-n=(0)o =T,

where S and T are constant strain and stress tensors, respectively. Note, that € is a special linear
boundary displacement. Clearly, for Hill’s condition to be realizable in a sample within a
macroscopic structure under possibly nonuniform external loading, the sample must be large
enough to have negligibly small field fluctuations relative to its size. Under Hill’s condition, it is
possible to relate E* to the approximations (E),, and (E~!),', due to Voigt (constant strain
throughout the body) and Reuss (constant stress throughout the body), respectively. As a simple
calculation reveals the above relation implies (E™') ;! < E* < (E),,. It is well known that one can
relate the upper bound to an assumed constant strain field (Voigt) within the RVE, € = €°,

Cross-sectional view

Nodal cross-section
for a subblock

Fig. 6. The model problem before scaling
down the microstructure to simulate hydro-

gen trapping

55



56

Ambient
hydrogen

Initially hydrogen-free

microstructure Fig. 7. Cross section after the scaling down of the particles
(6)g=(E:€)g=(E)g: € =E =(E), . (23)
Alternatively, an assumed constant stress field (Reuss), 6 = ¢° yields
(€o=(E":0)g=(E"):6"=F =(E"), . (24)

Therefore, the Reuss and Voigt fields provide the two extremes of possible elastic microfield
behavior. The first produces kinematically inadmissible fields, while the second produces
statically inadmissible fields. We will use these extreme conditions to construct all approxi-
mations. Accordingly, the numerical simulations must be performed twice, once with the Voigt
approximation and once with the Reuss approximation. If we assume uniform pressure loading
on the boundary of the sample, we obtain

+P° 0 0 n
6-nly, = 0 +P° 0 ny |, (+ stands for compression, — for tension) , (25)
0 0 +P° ns

which yields (P), = P°; this can be proven by a simple integration by parts, and is usually
referred to as the “average stress theorem”. One arrives at

tre 0
Reuss : P = —3KT = constant = P = P° |

tre p P° (26)
Voigt : — = —— = constant = P = x—— .

3 3K (K)g

In accordance with the approximations in Egs. (26), we focus on a normalized loss in the
Young’s modulus, E = 9xp/(3k + ), as a function of time. Here, y is the spatially variable
shear modulus. Under our assumptions thus far, measures for the losses in the macroscopic
response are

def
Reuss losses = % =

(B0 D' () '
(B9 o'

)

def (27)

Voigt losses = Ly = (E%)g—(ES)g

(E®)q

)

where EC is the time-dependent spatially varying corroded Young’s modulus and E° is the
original uncorroded, spatially variable Young’s modulus.

5.1.1

Simple updating scheme

The physical process is clear in such problems: (1) the diffusing species penetrates, (2) the
reactions occur, (3) the mechanical properties change and (4) the heat is released. Numerically,



the irreversible term pz(o, Vu) and the corresponding corrosion of E are updated only at the
end of each time step. The time steps are chosen to correspond to the observed finite time for
granular decohesion to occur. Therefore, throughout a fixed time step (t + ot), pz = pz|, and
E = E|,. With these approximations, we can use the following algorithm at each time step: (1)
solve the energy equation; (2) solve the diffusion equation with the temperature fields; (3)
compute the corrosion of the material and (4) update the mechanical fields.

5.2
Numerical solution of the mass conservation (diffusion) equation

We employ standard implicit finite difference schemes to compute the diffusive behavior of
corrosive species. To make the notation somewhat easier to follow we define the following:

F=-D:(Vc—awVc—yVa) = -D-Vc+D- (ycVa) , (28)
where

Qlxy.z)

DY D(1 —oaw), D(x,y,z) =D"(x,y,z)e ™ .

We assume that D is isotropic, but spatially variable. Therefore, D can be represented by a
scalar function, D. Using a seven-point finite difference stencil in three dimensions, the terms
that appear in the governing differential equation are approximated as follows:

DVC ~ D(X,y, Z) (c(erh,y,z)thc(xfh,y,z) i+ c(xy+hz)—c(xy—hz) . + c(x,y,z+h)

exyha); e )

2h

where h is the uniform grid spacing for the x, y and z directions. Applying the difference
formulas once again to the fluxes, we obtain

. 1 -
V- (DVe) =—[D(x+ h,y,z

412 C(x+2h7yaz) _[)(x_h7yvz)c(x7y7z)

bz

x+hy7 ny)’az)‘FDx h)’a)(x—Zh}’,

(W]l

+D(x,y + h,z)c(x,y + 2h,z D(xy h,z)c(x, y,

)
( z)c( ( z)
( )e( ) — z)
(x,y + h,z)c(x,y,2) + D(x,y — h,z)c(x,y — 2h, z)
( )e( ) — z)
D( )e( ( 2h)

(W] bz

+ D(x,y,z+ h)c(x,y,z+ 2h ﬁ(xy, h)c(x,y,

x,y,z+ h)c(x,y,z) + D(x,y,z — h)c(x,y,z — ]def

(30)

and

V - (DeyVw) ~— [D(x + h,y,z)c(x + h, y,2)p(x + h,y, z2)w(x + 2h, y, z)

4h2
x—hyz
x+h,y,

z)c
z)
x—h,y,z)
)

x—h.y,z)w(x,y,z)
x+h,y,z)o(x,y,z)
x—h,y,z)o(x — 2h,y,z)
x,y+h,z)w(x,y + 2h,z)
x,y —h,z)w(x,y,z)
x,y+h,z)o(x,y,z)
x,y—h,z)w(x,y — 2h,z)
x,¥,z+ h)w(x,y,z+ 2h)
x,y,z2— h)w(x,y,z)
x,y,z+h)w(x,y,z)

ef
x,y,2—hyw(x,y,z—20)] Ldie . (31)

x—hyz)y
x+h,y,z)y
x—h,y,z)y
x,y+h,z)y
x,y—h,z)y
x,y+h,z)y
x,y—h,z)y
x,¥,2+ h)y
x,y,2—h)y
x,y,z2+h)y

—h)

zZ)c

[
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— D(

+ D(
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The time-dependent term is approximated by a central difference approximation at ¢t + Jt/2,
¢ ~ (c|,5 — cl|;)/6t. The standard scheme for 0 < A < 1 is as follows:
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A(dic — dfc) + (1 — A)(dfc — diic) = ¢ . (32)
approximated at t+0¢/2

approximated at ¢ approximated at ¢+t

The implicit nature of this approach allows us to take relatively large time steps compared to a
direct explicit method. For more details see e.g. [32].

5.3

Frontal solver

For the considered problems, due to the microstructure the rapid fluctuations in the fields force
the numerical mesh density to be quite high for sufficient accuracy. Because of this, simulations
typically require a minimum of several thousand degrees of freedom, even for a relatively small
problem. Such a system of equations must be solved at each time step, and thus can overwhelm
most workstations, unless computationally efficient schemes are employed. The approach ta-
ken here is, at a fixed time step, to group together terms and apply the Successive Over
Relaxation (SOR) iteration procedure in a moving front fashion. In this approach, all nodes
behind the front have the updated SOR values, while those ahead have the previous iteration
values, Fig. 8. This allows no zeros to be stored (no full matrix) in the iteration process. The
approach is standard, see e.g. [33]. Grouping together terms, noting that all values of ¢(x, y, z),
where (x, y,z) are nodal coordinates of the discrete approximation, behind the front have the
previous SOR iteration’s values, we have, evaluated at the current time ¢ + Jt, on the front

e 1-4 - - -
A‘H—ét d:f _{z[D(x+h7y7z> +D<x_ hvyvz) +D(x7y+haz)+
1

+D(x,y— h, 2) +13(x,y,z+h) +15(x,y,z— h)]}
t-+ot

ahead of the front

f(1—A, = - . -
B(1)|t+5t d_f{ [D(x + h7y7 Z)Cl ISOR(x + Zhaya Z) + D(XJ’ + h7 Z)Cl ISOR(x7y + 2h7 Z)

4h?
+D(x,y,z+ h)c R (x,y,z + Zh)]} —aW , (34)
t+ot t+ot
behind the front
(2) def [1 -4 = iSOR A iSOR

B, s = 4—]12[D(x —h,y,z)c>"(x — 2h,y,z) + D(x,y — h,z)c” " (x,y — 2h, 2)

+ D(x,y,z — h)c® (x, y,z — 2h)]} —p? , (35)
t+o0t t+o0t

For SOR updates:
use "old" nodal values
behind the front and
"current” nodal values
ahead of the front

@ ® e

Fig. 8. The moving front corresponding to the SOR
V method



evaluated at the previous time ¢

def 2 2 c(x,y,2)
Rl % Adio)| - adho)| +7522] (36)
where we have split the terms into those ahead of and behind the front
(1) def 1 — A
a’ = W[D('x + I’l7)/, Z)C(x + h?)/? z)y(x + h7y7 Z)w(x + Zhvya Z)
— D(x+ h,y,z)c(x + h,y,2)y(x + h,y,z)w(x, y,2)
+ D(x,y + h,2)c(x,y + h,2)p(x,y + h,z)w(x,y + 2h, z) 59
— D(x,y + h,2)c(x,y + h,2)p(x,y + h,z)w(x, y,2)
+ D(x.y,z+ Welx,y, 2+ hYy(x.y,2 + Wo(x,,2 + 2h)
— D(x,y,z2+ h)c(x, 3,2+ h)y(x,y, 2 + h)w(x,y,2)] ,
(37)
and
b & LR Dlx — by, 2)elx — .y, 2)y(x — by, 2oy, )
a2 x—hy.z)c(x—h,y,z)y(x—hy,z)wox,y,z
+D(X h% )C(X hya )'})(X hy7 )w(x_2h7y7z)
—D(x,y — h,2)c(x,y — h, 2)(x,y — b, 2)m(x.y,2)
+D(x,y — h,z)c(x,y — h,2)p(x,y — h,z)w(x,y — 2h,z)
_D xy7 )C(xaya )'})(X Y,z )w(xayaz)
+D<x Y,z )C(xvyaz )'))(X Y,z )w(xvyaz_Zh)] . (38)
Therefore, the system of equations yields
(B( )+B )|t+(>t+A|t+0t gg|t+0t+R|t_0 (39)
The iterations may be compactly written as follows at a time step:
Ci’yﬁ%‘wét =(1- Q)Ci_hyw?h%t + Qci’gy|t+5t )
(BY + 52,5, + Rl (40)

G5
R

)

A|t+(3t

where i is the current SOR iterate value, 1 < Q < 2 is the free relaxation parameter, 4.9
denotes the standard Gauss-Seidel iteration without relaxation, Q2 is a parameter that reduces
the spectral radius of eigenvalues of the iteration matrix, see [34] for details. We will make
specific choices for Q later in the paper. The iterations are carried out until at each time step

25\]:1 |Ci+1 - Ci|
N .
2oic |6t

< tol .

5.4

Energy equation solution

For the energy equation the numerical procedure is quite similar to that for the diffusion
equation. Using a seven-point finite difference stencil in three dimensions, the terms that
appear in the governing differential equation are approximated as follows (assuming K is
isotropic):

KV0 ~ K(x,y, Z) (0(x+h7y,z)2;19(x7h,y,z) i+ 0(xy+h72)2*h@(x~,}/*h~2)j + 9(xﬁ)’7z+h)2*h@(x~,)”z*h) k) , (41)
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where h is the uniform grid spacing for the x,y and z directions. Applying the difference
formulas once again to the fluxes, we obtain

V- (KV0) ~ — [K(x + h,y,2)0(x + 2h,y,z) — K(x — h, y,2)0(x, y, z)

(
K(x+h,y,2)0(x,y,2) + ( —h,y,2)0(x — 2h,y, z)
K(x,y +h,z)0(x,y +2h,z) — K(x,y — h,z)0(x, y, z)
K(x,y+ h,z)0(x,y,2z) + K(x,y — h,z)0(x,y — 2h,z)
( z)
( 2h)

hZ

K(x,y,z4+ h)0(x,y,z+ 2h) — K(x,y,z — h)0(x,y,z

20 ¥ %0 . (a2)

—K(x,y,z+ h)0(x,y,z) + K(x,y,z— h)0(x, y, z
The time-dependent term is approximated by a central difference approximation at ¢ + 6¢/2,
0~ 0|,,s — 0],/0t. The standard Crank-Nicolson scheme for 0 < A < 1 is as follows, with the
coupling terms treated as fixed loads:

Ad*0 + (1-Md*0 = A - 0z — (6:Va)
U G R, L
approximated at t  ,phroximated at £-+3t approximated at t+4%f  approximated at ¢  approximated at ¢
where
. Vu|, — Vu|,
Vi~ —L ot 44
u 57 (44)
Grouping together terms evaluated at the current time ¢ + 0t on the front we have
def [1—A
Als = — yTE [K(x+h,y,2) + K(x — h,y,z) + K(x,y + h, z)
+ K(x,y — h,z) + K(x,y,z+ h) + K(x,y,z — h)]}
t+ot
p(x,y,2)K(x,y, 2) (45)

ot ’
ahead of the front

B(1)|t+5t « {% [K(x+ h,y,2)0" 5% (x 4+ 2h, y,2) + K(x,y + h,2)0" 5% (x, y + 2h, 2)

+K@JJ+hW“wW&%Z+NM} , (46)

t4ot

behind the front

o [1—4 . .
B(Z)‘H-ét = {W [K(x — h,y, Z)HISOR(x —2h,y,z) + K(x,y — h, z)H’SOR(x,y —2h,z)

+ K(x,y,z — h)0™®(x,y,z — 2h)]} , (47)
t+ot
evaluated at the previous time ¢
€ 1) K ') ')
R g, 4 LXK D0y | ”
ot .

and
), ¥ z 4+ ¢:Vu (49)

t = p : .

approximated at t ~ approximated at ¢



Therefore, the system of equations can be written as
(B(l) + B(2>)|t+6t + A|t+5t0i7gy|t+5t + R|t + L|t =0. (50)

As for the diffusion equation, the iterations may be compactly written as follows at a time step:

i, S OR i—1,90R RAS
0" trot (1- o) bre |t+5t + o' |t+6t )
1
Hi,.f&’y o _(B(l) +B(2))’t+5t+R’t+L’t (5 )
5t = )
ot A‘H»ét
6

Numerical results

In the RVE simulations, we have taken the sample of material of the size

0.1mm x 0.1 mm x 0.1 mm, containing 100 cubical particles, occupying 40.9% volume. This
volume was determined by successively increasing the sample size, until the response did not
change. Each particle has dimensions 14 um x 14 yum x 14 um. We have computed that the
theoretical time to complete fracture, i.e. the time for an uninhibited crack to move through this
distance, to be approximately 0.0001 m/10~” m/s = 1000 seconds. The boundary conditions
have been c|,, = 1.0 and 0|,, = 0. No external heat was supplied. The properties of materials
tested are shown in Table 2. A steel matrix is considered, with 2 trial microstructures. For
simplicity, the diffusivity of the materials, which are solute-dependent, were taken to be those
for hydrogen in steel measured in [20]. Trial 2 corresponds to a homogeneous material. We have
chosen ¢t = 1.0 and = 0.001. In our computations we have set A = 0.5 (corresponding to
the Crank-Nicolson method), 2 = 1.5 (a middle over-relaxation value) and an iterative toler-
ance of tol = 107%. For the given sample, meshes of a 38 x 38 x 38 mesh density (54872 un-
knowns) have been used. Each set of simulations, a complete time history, took more than 10
minutes. A single HP-P1100 PC was used for all computations. Comparable hardware is
available in most academic and industrial work places, and thus such simulations are easily
achievable for other material parameter selections. It is clear from the simulations that, with this
model, the tensile loading is more detrimental than the compressive loading. This effect was
expected, since the tensile state “opens up” (dilatates) the material. However, the rise in tem-
perature is a more complex issue, and no simple explanation encompasses all of the presented
results. The only common feature to the presented load cases was the initial rise in temperature
due to the initial large conversion of high (virgin) mechanical strength, Eq. (15), into heat.

7

Conclusions and future work

The presented results have provided some initial qualitative and quantitative information
which we intend to use in the development of more advanced numerical approaches for the
complete model with irregular microstructure, employing no analytical approximation of the
internal mechanical fields. For the numerical simulations to be of any practical value, bench-
marking of the results against experiments is necessary. Due to the continually degrading
material, the microstructure becomes highly heterogeneous during the progressive corrosion
stages. With the finite difference method, it is only possible to capture this behavior at nodal
points, therefore the finite element method, which is integral based, is more advantageous, due
to the fact that more material variations can be captured by Gauss points in the interior of each
element. If we remove the analytical approximation of the mechanical fields, we must employ a
fully staggered scheme at each time step, and this is under current investigation by the authors.

Table 2. Local material properties used in the simulations; Q = 7000 Nm/mole, 5 = 345.17 N/deg s,
a«=1x 107" m*N, y =3 x 10~° Nm/deg m’

Material K(Gpa) w(Gpa) D (m/sec?) K (N/deg sec) o (kg/mz’)
Steel 162 75.8 1.2x107" 61.92 7864.84
Trial 1 1620. 758. d2x 1078 619.2 78648.4

Trial 2 162 75.8 1.2x 107" 61.92 7864.84
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Normalized Reuss losses in macroscopic stiffness

Normalized Reuss losses in macroscopic stiffness

Normalized Voigt losses in macroscopic stiffness

Normalized Voigt losses in macroscopic stiffness
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Fig. 9. Losses Ly in tension (top)
and compression (bottom), with the
Reuss microfield approximation at
B =0.001, cerie = 1.0

Fig. 10. Losses Ly in tension (top)
and compression (bottom), with the
Voigt microfield approximation at
B =0.001, ceri = 1.0
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