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Abstract One key aspect of many additive manufacturing
processes is the deposition of heated mixtures of particulate
materials onto surfaces, which then bond and cool, leading to
complex microstructures and possible residual stresses. The
overall objective of this work is to construct a straightforward
computational approach that researchers in the field can eas-
ily implement and use as a numerically-efficient simulation
and design tool. Specifically because multifield coupling is
present, a recursive, staggered, temporally-adaptive, finite
difference time domain scheme is developed to resolve
the internal microstructural thermal and mechanical fields,
accounting for the simultaneous elasto-plasticity and dam-
age. The time step adaptation allows the numerical scheme
to iteratively resolve the changing physical fields by refining
the time-steps during phases of the process when the system
is undergoing large changes on a relatively small time-scale
and can also enlarge the time-steps when the processes are
relatively slow. The spatial discretization grids are uniform
and dense. The deposited microstructure is embedded into
spatial discretization. The regular grid allows one to gener-
ate a matrix-free iterative formulation which is amenable to
rapid computation and minimal memory requirements, mak-
ing it ideal for laptop computation. Numerical examples are
provided to illustrate the approach. This formulation is use-
ful for material scientists who seek ways to deposit such
materials while simultaneously avoiding inadvertent exces-
sive residual stresses.
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1 Introduction to additive processes

1.1 Motivation

The use of deposited particulate mixtures of materials has
recently become of high interest to industry because of the
rise of Additive Manufacturing (AM), Rapid-Prototyping
and 3D printing (Fig. 1). Today, large quantities of inex-
pensive, high-quality, particles for manufacturing processes,
are readily available due to advanced materials processing
techniques such as (a) sublimation from a raw solid to a
gas, which condenses into particles that are recaptured (har-
vested), (b) atomization of liquid streams into droplets by
breaking jets of metal, (c) reduction of metal oxides and (d)
precise comminution/pulverizing of bulk material.

In 2014, print-like based technologies employing depo-
sition of particulate materials, spanning metals to plastics,
and in some cases biological and organic materials was a 2.2
billion dollar industry.1 Applications range from commercial
manufacturing, military, academia, medical to the arts, with
a rough market breakdown being 30 %motor vehicles, 15 %
consumer products, medical 9 % and business 11 %. For an
early history of the printed electronics field, see Gamota et
al. [24]. For reviews of related optical coatings and photon-
ics, see Nakanishi et al. [54], for catalysts, see Haruta [29]
and for MEMS applications, see Fuller et al. [23]. AMmeth-
ods involving particles are, in theory, ideal for large-surface
area applications. These types of applications and associ-
ated technology are closely related to those in the area spray
coatings, and we refer the reader to the extensive works of
Sevostianov and Kachanov [68–70] and to Nakamura and
coworkers: Dwivedi et al. [21], Liu et al. [47,48], Nakamura

1 3D printing was pioneered by Hull [33] of the 3D-Systems Corpora-
tion in 1984.
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Fig. 1 Hot deposited particle mixtures on a surface

and Liu [52], Nakamura et al [53] and Qian et al [59]. For a
general review of deposition and spray technology, see Mar-
tin [40,41].

1.2 Objectives

This work is concerned with the computational character-
ization of the evolution of residual stresses in materials
with microstructures that arise from deposited hot mix-
tures of particles which cool down. Residual stresses arise
because the hot bonded materials cannot freely contract to
their stress-free state, due to to their interaction with other
components in the system and the surrounding environment
to which they are bonded.2 The objective of this work is
to develop a straightforward computational framework that
researchers in the field can easily implement and use as
a computationally-efficient design tool. Generally speak-
ing, there is thermo-mechanical multifield coupling present,
along with material changes associated with material hard-
ening, elasto-plasticity andmechanical damage. Specifically,
a recursively staggered, temporally-adaptive, finite differ-
ence time domain (FDTD) scheme is developed to resolve
the internal microstructural thermal and mechanical fields,
accounting for the simultaneous elasto-plasticity and dam-
age. The time step adaptation is constructed to allow the
numerical scheme to iteratively resolve the changing phys-
ical fields by reducing the time-steps during phases of the
process when the system is undergoing changes on relatively
small time-scales and also to enlarge the time-steps when
the processes are relatively slow. The spatial discretization

2 In many processes, the mixture of particles are heated during deposi-
tion to enhance bonding or to decrease the viscosity of the flow through
the dispenser. This is essentially a material similar to a functionalized
ink or slurry, which may not necessarily involve selective laser process-
ing afterwards.

grids are uniform and dense, with the complex microstruc-
ture being embedded into the mesh. The regular grid allows
one to generate a matrix-free iterative formulation which
is amenable to rapid computation and minimal memory
requirements, making it ideal for laptop computation. The
presentation is broken into three main parts: (1) formulations
for each field in the model problem, identifying the coupling
terms, (2) iterative staggering schemes (including spatial and
temporal discretization) and (3) numerical examples for the
model problem. The approach builds on work found in Zohdi
[79,81,82,85] and [88] and then applies it to particle mixture
deposition systems.

Remarks In this work, we focus on the cooling of a hot par-
ticulate mixture. The initial dynamic deposition process of
multibody and inter-particle collisions is outside the scope
of the present work. However, we mention in passing that
to model the dynamics of particle systems, reduced-order
particle-based or discrete element-based models, which treat
such systems as multibody dynamical groups, are often used.
They are advantageous in dealing with domains that break
apart or coalesce, as compared to traditional continuum
based finite difference and finite element methods, which
have limitations when dealingwith dynamic discontinua. For
reviews see, for example, Duran [20], Pöschel and Schwa-
ger [58], Onate et al. [56,57], Rojek et al. [62], Carbonell
et al. [12], Labra and Onate [42], Leonardi et al [43], Cante
et al [11], Rojek [63], Onate et al [64], Bolintineanu et al
[7], Campello and Zohdi [9,10], Avci and Wriggers [1] and
Zohdi [86,88,91]. In many cases, the deposition of these
materials is the first stage of a multistep process which may
involve, among other processes, compaction. Compaction is
also somewhat outside the scope of the present work, and
we refer the reader to Akisanya et al. [2], Anand and Gu
[4], Brown and Abou-Chedid [8], Domas [14], Fleck [22],
Gethin et al., [25], Gu et al. [28], Lewis et al. [44], Ransing
et al. [60], Tatzel [71] and Zohdi [80,81].

2 Transient thermo-mechanical coupled fields

We consider a model problem of a deposited set of hot par-
ticles which are in the cool-down phase of the process. The
essential field equations and simplifying assumptions that
will be used during the analysis are provided next.

2.1 Balance of linear momentum

We consider a balance of linear momentum governed by

∇x · σ + f = ρ
d2u
dt2

, (2.1)

in regimes where infinitesimal deformations are appropri-
ate, where σ is the Cauchy stress, f are body forces, ρ is
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the material density and u is the displacement. Consistent
with the infinitesimal deformation approximation we write
∇x ≈ ∇X and d()

dt ≈ ∂()
∂t |X , where X are the referential

coordinates, x are the current coordinates.We consider a con-
stitutive law that describes the evolution of isotropic damage,
elasto-plasticity, given by

σ = D IE0 : (ε − εθ − ε p), (2.2)

which under infinitesimal deformation framework the bal-
ance of linear momentum becomes (ρ ≈ ρo)

∇x · (D IE0 : (ε − εθ − ε p)) + f = ρ
∂2u
∂t2

(2.3)

with infinitesimal strains given by ε = 1
2

(∇xu + (∇xu)T
)
,

thermal strains given by εθ
def= γ ·(θ−θ0)1 and plastic strains

given by ε p, generated by the following unilateral conditions

||σ ′|| > σy ⇒ ζ̇ = a

( ||σ ′||
σy

− 1

)
(2.4)

and

||σ ′|| ≤ σy ⇒ ζ̇ = 0 (2.5)

where ε̇ p = ζ̇ σ ′
||σ ′|| and σ ′ = σ − trσ

3 1 is the deviatoric stress.
Here, the (isotropic) damaged elasticity tensor is IE = D IE0,
where IE0 represents the “virgin” isotropic undamagedmate-
rial, 0 ≤ D ≤ 1 is the scalar continuity (isotropic damage)
parameter (Kachanov [35]), D(t = 0) = 1 indicates the
initial undamaged state and D → 0 indicates a completely
damaged state. The damage arising frommechanical sources
is modeled as being governed by evolution over-stress func-
tions of the form (0 < D ≤ 1)

||σ ′|| > σd ⇒ Ḋ = b

( ||σ ′||
σd

− 1

)
(2.6)

and

||σ ′|| ≤ σd ⇒ Ḋ = 0, (2.7)

We note that the rate constants a and b and the critical
stresses σy and σd are potentially spatially-variable. Clearly,
further evolution laws can be written for other material prop-
erty changes, such as the thermal conductivity, although only
changes in the mechanical property IE are considered during
the formulations to follow.3 In the case of material isotropy

σ = D (
λ0tr(ε − εθ − ε p)1 + 2μ0(ε − εθ − ε p)

)
, (2.8)

3 For further details on these types of phenomenological (damage)
formulations, the interested reader is referred to the seminal work of
Kachanov [35].

where λ0 is the undamaged Lame parameter and μ0 is the
undamaged shear modulus.

2.2 Balance of energy

The interconversions of various formsof energy (mechanical,
thermal, etc) in a system are governed by the first law of
thermodynamics,

ρẇ − σ : ∇x u̇ + ∇x · q − ρz = 0, (2.9)

where w is the stored energy per unit mass (which is a func-
tion of the temperature, θ and elastic strain, εe = ε−εθ −ε p),
q is heat flux, and ρz is the rate of energy absorbed from
sources. We employ the following for the stored energy
(assuming infinitesimal deformations)

ρw = W ≈ 1
2 (ε − εθ − ε p) : IE : (ε − εθ − ε p) + ρCθ,

(2.10)

which implies

ρẇ = Ẇ = (ε̇ − ε̇θ − ε̇ p) : IE : (ε − εθ − ε p)

+1

2
(ε − εθ − ε p) : İE : (ε − εθ − ε p) + ρC θ̇ ,

(2.11)

and thus the first law becomes

ρC θ̇ = σ : (ε̇θ +ε̇ p)− 1

2
(ε − εθ −ε p) : İE : (ε − εθ −ε p)

+∇x · (IK · ∇xθ) + ρz (2.12)

where Fourier’s law, q = −IK · ∇xθ , has been used.

3 Iterative staggering scheme

We now develop a staggering solution framework to solve
the coupled systems of interest. The general methodology is
as follows (at at given time increment): (1) each field equa-
tion is solved individually, “freezing” the other (coupled)
fields in the system, allowing only the primary field to be
active and (2) after the solution of each field equation, the
primary field variable is updated, and the next field equation
is treated in a similar manner. For an “implicit” type of stag-
gering, the process can be repeated in an iterative manner,
while for an “explicit” type, one moves to the next time step
after one “pass” through the system.Wewill employ implicit
staggering. Specifically, for the thermo-mechanical system
under consideration, consider an abstract setting, whereby
one solves for the mechanical field, assuming the thermal
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field is fixed (L is a time-step counter and K is a staggering-
step counter),

A1

(
uL+1,K , θ L+1,K−1

)
= B1

(
uL+1,K−1, θ L+1,K−1

)

(3.1)

then one solves for the thermal fields, assuming the mechan-
ical field fixed,

A2

(
uL+1,K , θ L+1,K

)
= B2

(
uL+1,K , θ L+1,K−1

)
(3.2)

where the only underlined variable is “active” at that stage of
the process.Within the staggering (iterative) scheme, implicit
time-steppingmethods (with time step size adaptivity)will be
used throughout the upcoming analysis (described shortly).
The process is driven by minimizing nondimensional rela-
tive iterative coupling error (of both fields) within a time-step
(difference between successive iterations). A tolerance check
determines whether the iterations should continue, or if the
time steps should be adaptively reduced to increase the rate of
convergence. The time steps can be increased if convergence
occurs too quickly, thus allowing larger time-steps and faster
simulations for a given iterative error tolerance. The details
of this process are discussed shortly. Generally speaking, if a
recursive staggering process is not employed (an explicit cou-
pling scheme), the staggering error can accumulate rapidly.
However, simply employing extremely small time steps,
smaller than needed to control the discretization error, in
order to suppress a (nonrecursive) staggering process error,
can be computationally inefficient. Therefore, the objective
of the next subsection is to develop a strategy to adaptively
adjust, in fact maximize, the choice of the time step size in
order to control the staggering error, while simultaneously
staying below a critical time step size needed to control the
discretization error. An important related issue is to simul-
taneously minimize the computational effort involved. We
now develop a staggering scheme by extending an approach
found in the work of Zohdi [79,81,82,85] and [88].

Remark 1 The symbol || · || will signify the L2(�)-norm
throughout this work. The nondimensional error metric for
the mechanical field is (where we assume that the denomi-
nator is nonzero)

� K
u

def=
∣
∣
∣
∣uL+1,K − uL+1,K−1

∣
∣
∣
∣

∣∣∣∣uL+1,K − uL
∣∣∣∣ , (3.3)

and for the thermodynamic field

� K
θ

def=
∣∣∣∣θ L+1,K − θ L+1,K−1

∣∣∣∣
∣∣∣∣θ L+1,K − θ L

∣∣∣∣ . (3.4)

Thereafter, we select the maximum nondimensionalized
error for adaptivity

� ∗,K def= max
(
� K

u ,� K
θ

)
, (3.5)

Remark 2 Staggering schemes are widely used in the com-
putational mechanics literature, dating back, at least, to
Zienkiewicz [77] and Zienkiewicz et al. [78]. For in depth
overviews, see the works of Lewis and Schrefler (Lewis et
al. [45] and Lewis and Schrefler [46]) and a series of works
by Schrefler and collaborators: Schrefler [65], Turska and
Schrefler [73], Biano et al. [6] and Wang and Schrefler [74].

3.1 Spatial discretization of the fields

Numerically, the components of the gradient of functions
such as u and θ are approximated by central finite difference
stencils of the basic form (Fig. 9):

∂ui
∂x j

|x ≈ ui (x j+	x j )−ui (x j−	x j )
2	x j

(3.6)

for each of the (x1, x2, x3)-directions, in order to form the
terms needed in ∇xu and ∇x · σ . This is a second-order
accurate stencil. For a generic second order scheme spatial
derivative, such as

∂σ

∂x
|x ≈ σ

(
x + 	x

2

) − σ
(
x − 	x

2

)

	x
, (3.7)

where generically, for example with an arbitrary material
coefficient a(x) = λ(x) or a(x) = μ(x) (Fig. 2):

w

w

ww

w

w

wi,j−1,k

i−1,j,k

i,j,k+1

i,j,k−1

i,j+1,k

i+1,j,ki,j,k

CURING MATERIAL

Fig. 2 A typical three dimensional finite-difference stencil for a field
w(x, y, z)
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σ

(
x + 	x

2

)
≈ a

(
x + 	x

2

)
u(x + 	x) − u(x)

	x︸ ︷︷ ︸
∂u
∂x |

x+ 	x
2

(3.8)

and

σ

(
x − 	x

2

)
≈ a

(
x − 	x

2

)
u(x) − u(x − 	x)

	x︸ ︷︷ ︸
∂u
∂x |

x− 	x
2

(3.9)

where

a

(
x + 	x

2

)
≈ 1

2
(a(x + 	x) + a(x)), (3.10)

and

a

(
x − 	x

2

)
≈ 1

2
(a(x) + a(x − 	x)). (3.11)

These approximations are made for all components and
combinations in ∇x · σ . The mixed derivatives are derived
in a similar manner in Appendix 1. Similarly, for a second
order scheme spatial derivatives in the heat conduction

∂q

∂x
|x ≈ q

(
x + 	x

2

) − q
(
x − 	x

2

)

	x
, (3.12)

where (in conjunction with Fourier’s Law)

q

(
x + 	x

2

)
≈ −IK

(
x + 	x

2

)
θ(x + 	x) − θ(x)

	x︸ ︷︷ ︸
∂θ
∂x |

x+ 	x
2

(3.13)

and

q

(
x − 	x

2

)
≈ −IK

(
x − 	x

2

)
θ(x) − θ(x − 	x)

	x︸ ︷︷ ︸
∂θ
∂x |

x− 	x
2

(3.14)

where

IK
(
x + 	x

2

)
≈ 1

2
(IK(x + 	x) + IK(x)), (3.15)

and

IK
(
x − 	x

2

)
≈ 1

2
(IK(x) + IK(x − 	x)). (3.16)

These approximations are made for ∂q1
∂x1

, ∂q2
∂x2

and ∂q3
∂x3

, in
order to form the terms needed in ∇x · q. This is done at each
node in the grid. See Appendix 1 for more details.

3.2 Temporal discretization of fields

3.2.1 Mechanical field

For the mechanical field (infinitesimal deformation formula-
tion) we write

dv

dt
= ∂v

∂t
= 1

ρ
(∇x · σ + f )

def= �. (3.17)

We discretize for time= t + φ	t , and using a trapezoidal
“φ − scheme” (0 ≤ φ ≤ 1, see Appendix 3)

v(t+	t)−v(t)

	t
≈ �(t +φ	t)≈φ�(+	t)+ (1−φ)�(t).

(3.18)

Rearranging, yields

v(t+	t) ≈ v(t)+	t (φ�(t + 	t) + (1 − φ)�(t)) (3.19)

where the previously introduced spatial discretization is
applied to the terms in � (∇x · σ ). Since this is a second-
order system, the procedure is then repeated to determine the
displacement field u (see Appendix 3)

u(t + 	t) = u(t) + v(t + φ	t)	t (3.20)

= u(t) + (φv(t + 	t) + (1 − φ)v(t))	t,

or more explicitly

u(t + 	t) = u(t) + v(t)	t + φ(	t)2�(t + φ	t). (3.21)

The term �(t + φ	t) can be handled in two main ways:

• �(t + φ	t) ≈ �(φu(t + 	t) + (1 − φ)u(t)) or
• �(t + φ	t) ≈ φ�(u(t + 	t)) + (1 − φ)�(u(t)).

The differences are quite small between either formulation
(both exhibiting similar orders of error) and we choose the
latter. Therefore,

u(t + 	t) = u(t) + v(t)	t + φ(	t)2 (φ�(t + 	t)

+ (1 − φ)�(t)) . (3.22)

When φ = 1, then this approach can be considered to be a
(implicit) Backward Euler scheme, which is very stable (very
dissipative) and O((	t)2) locally in time, while if φ = 0,
the scheme can be considered as a (explicit) Forward Euler
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scheme, which is conditionally stable and O((	t)2) locally
in time and if φ = 0.5, then the scheme can be considered
as a (implicit) Midpoint scheme, which is marginally stable
and Ô((	t)2) = O((	t)3) locally in time. The dependent
plastic and damage variables are also integrated in a similar
manner

ε(t + 	t) = ε(t) + 	t (φε̇(t + 	t) + (1 − φ)ε̇(t)) (3.23)

and

D(t + 	t) = D(t) + 	t
(
φḊ(t + 	t) + (1 − φ)Ḋ(t)

)
.

(3.24)

3.2.2 Thermal fields

For the thermal field we write

∂θ

∂t
= 1

ρC

(
σ : (ε̇θ + ε̇ p) − 1

2
(ε − εθ − ε p) :

İE : (ε − εθ − ε p)

+∇x · (IK · ∇xθ) + ρz)
def= Y . (3.25)

We discretize for around the time= t + φ	t , yielding

θ(t + 	t) ≈ θ(t) + 	t (φY(t + 	t) + (1 − φ)Y(t)) ,

(3.26)

where the previously introduced spatial discretization is
applied to the terms in Y .

4 The overall solution scheme

In order to construct a solution, the algorithm is as follows:

(1) Spatio-temporal discretization Construct derivative
terms such as

∂u(x)

∂x
≈ u(x + 	x) − u(x − 	x)

2	x
, etc (4.1)

and insert into the governing equations. This leads
to a system of coupled equations, for each node
[(i, j, k) in Fig. 3], which are cast in the following
(implicit/recursive) form [which are a recasting of the
abstract system (Eqs. 3.1–3.2)]

u(t + 	t) = F(u(t + 	t), θ(t + 	t), . . .), (4.2)

and

θ(t + 	t) = Y(u(t + 	t), θ(t + 	t), . . .). (4.3)

(2) System staggering Compute u-field with θ -fields
fixed, then compute θ -field with u-fields fixed, etc, and
iterate at time interval L + 1, K = 1, 2 . . . for

uL+1,K = F
(
uL+1,K−1, θ L+1.K−1

)
, (4.4)

and

θ L+1,K = Y
(
uL+1,K , θ L+1.K−1

)
, (4.5)

Solving each of the above Eqs. (4.4 and 4.5), with
the respective other fields fixed, can be achieved in a
variety of ways, for example iteratively or by direct
(Gaussian-type) solution methods (Fig. 3). For exam-
ple, an interior iterative loop, within the staggering
loop (within a time-step), can be used to update the
solution to solve the individual field, for example the
mechanical field, before moving to the next field (for
example the thermal field). Those internal iterations
can be performed until that individual field converges.
This can then be repeated for the next field. This would

UPDATE PLASTICITY AND DAMAGE

CONVERGED?

YES NO

STAGGERING−IMPLICIT

STAGGERING−EXPLICIT

GO TO NEXT TIME STEP

CHECK ERROR NORM

SOLVE ELASTO−PROBLEM
(MOMENTARILY DECOUPLED)

(TIME−EXPLICIT OR TIME−IMPLICIT (ITERATIVE OR DIRECT SOLVER))

SOLVE THERMO−PROBLEM
FIRST LAW)(MOMENTARILY DECOUPLED 

(TIME−EXPLICIT OR TIME−IMPLICIT (ITERATIVE OR DIRECT SOLVER))

u

LINEAR MOMENTUM

Θ

SWEEP AND UPDATE SWEEP AND UPDATE

FIRST LAW

ITERATE

UPDATE PLASTICITY AND DAMAGE

Fig. 3 The overall coupled staggering (left) solution and the matrix-free approach (right)
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then complete one staggering iteration. There are of
course many possible variants of this process. In the-
ory, one could even simply perform an explicit update
(no recursion). This is discussed further in the remarks
that follow.

(3) Compute error measures: � ∗,K def= max(� K
u ,� K

θ ),
i = 1, . . . , nodes in the system.

(4a) If tolerance is met, � ∗,K ≤ Ctol and K ≤ Kd , then:

(i) Increment time forward: t = t + 	t ,

(ii) Construct new time step: (	t)new = �K (	t)old,

where �K
def=

⎛

⎝
(

Ctol
�∗,0

) 1
pKd

(
�∗,K

�∗,0

) 1
pK

⎞

⎠

(iii) Select 	t = min((	t)lim,	t) and go to (1)

(4b) If tolerance is not met, � ∗,K > Ctol and K = Kd ,

then construct (refine) new time step: (	t)new
def=

�K (	t)old

�K
def=

⎛

⎜⎜
⎝

(
Ctol
� ∗,0

) 1
pKd

(
� ∗,K

� ∗,0

) 1
pK

⎞

⎟⎟
⎠ (4.6)

and go to (1). This time-scaling relation is derived in
Appendix 1.

At a given time, once the process is complete, then the time is
incremented forward and the process is repeated. The over-
all goal is to deliver solutions where the iterative error is
controlled and the temporal discretization accuracy dictates
the upper limit on the time step size (	t lim). Clearly, there
are various combinations of solution methods that one can
choose from. For example, for the overall field coupling, one
may choose implicit or explicit staggering and within the
staggering process, either implicit (0 < φ ≤ 1) or explicit
time-stepping (φ = 0), and, as mentioned previously in the
case of implicit time-stepping, iterative or direct solvers for
the balance of linear momentum and the first law of thermo-
dynamics (Fig. 3).

4.1 Algorithmic observation 1

It is important to emphasize that one should use the
previous (converged) time step’s solution as the start-
ing guess for the next time step to obtain a “head-start”(
uK=0(t + 	t) = u(t)

)
. When selecting a time step, one

must balance accuracy concerns and, simultaneously, stabil-
ity issues.4 Clearly, the smaller the time-step, the more stable

4 Typically, the number of iterations needed to solve the coupled sys-
tem, if an iterative scheme is used, increases with the time step size and
the value of φ.

the solution process, however, more time steps implies more
system evaluations. Since the multifield staggering scheme
iterates anyway, implicit methods are preferred for the appli-
cations of interest. As the physics changes, the field that is
most sensitive (exhibits the largest amount of relative nondi-
mensional change) dictates the time-step size. Because the
internal system solvers within the staggering scheme are also
iterative and use the previously converged solution as their
starting value to solve the system of equations, a field that
is relatively insensitive at given stage of the simulation will
converge in a very few internal iterations (perhaps even one).

4.2 Algorithmic observation 2

Generally speaking, the solution to the individual field equa-
tions progresses in a node by node fashionwhereby, at a node
(i, j, k), for example for the mechanical field calculations,
one has in an abstract form

u(t + 	t) ≈ F(u(t), u(t + 	t), θ(t), θ(t + 	t)), (4.7)

where the term on the lefthand side is updated and the terms
on the right are previous iterate (old) values. This entails
using the old values for all finite difference stencils that even-
tually become updated only after the algorithm completely
traverse through the system, updating values, node by node
(no matrices need to be formed, Fig. 3). There exist many
methods to accelerate such computations, such as Succes-
siveOver-Relaxation, based on the pioneeringwork ofYoung
[76]. For reviews, see Ames [3] or Axelsson [5]. Note that for
the mechanical field calculations the thermal field is instan-
taneously fixed, and are updated only when it is to be solved,
in the staggered manner (fixing the mechanical variables).
At the algebraic equation solution level, after the individual
field has been solved, the entire solution is passed to the next
field equation, as described in the previous algorithm (Fig.
3). This is a Jacobi-type scheme, whereby the updates are
made only after one complete system iteration, which is eas-
ier to address theoretically, as opposed to aGauss-Seidel type
method, which involves immediately using the most current
field values, when they become available. The Jacobi method
is easily parallelizable, if desired. In other words, the calcu-
lation for each node is (momentarily) uncoupled, with the
updates only coming at the end of an iteration. Gauss-Seidel,
since it requires the most current updates, couples the nodal
calculations immediately.

5 Numerical examples

As a model problem, we consider a group of particles with a
smaller scale interstitial (compacted very fine particle) mate-
rial that is assumed to be a continuous phase. We generated
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a group of Np randomly dispersed spherical particles, of
equal size, embedded in a cubical domain of dimensions,
D × D × D. The particle size was determined by a parti-
cle/sample size ratio, whichwas defined via a subvolume size

V
def= D×D×D

Np
. The non-dimensional ratio between the parti-

cle radii (b) and the subvolumewas denoted byL def= b

V
1
3
. The

volume fraction occupied by the particles consequently can

bewritten as vp
def= 4πL3

3 . Thus, the total volume occupied by
the particles denoted ζ , can be written as ζ = vpNpV . Large
values of ζ > 0.5 allow for overlap. We used Np = 100 par-
ticles (Fig. 4). This sample sizewas arrived at by successively
enlarging sample until there were no significant changes in
the overall system response for further enlargements. The
classical random sequential addition algorithm was used to
place nonoverlapping particles randomly into the domain of
interest (RSA;Widom[75]). Theparticleswere then enlarged
from those locations and allowed to overlap.

Remark For higher volumes fraction during the first phase of
this algorithm (particle placement), more sophisticated algo-
rithms, such as the equilibrium-based, Metropolis algorithm
can be used or methods based on simultaneous particle flow
and growth, found in Torquato [72], Kansaal et al. [39] and
Donev et al. [15–19].

5.1 Sample size selection

In order to select a suitable sample that is statistically repre-
sentative (a RVE), we employ a “framing” method, whereby
the boundary conditions are applied (u and θ ) to the bound-
ary of a sample (Fig. 4), and an interior subsample is used to
probe what the material would experience without the direct

influence of the applied boundary conditions. This approach
avoids introducing boundary layer effects into the interior
response. For more details, see Zohdi [85,87]. An imple-
mentation of a “framing” approach is as follows:

• STEP (1) Generate a sample with a certain number of
particles in its interior,

• STEP (2) For the effective property calculation (aver-
aging), select a subsample (“a sub-box”, Fig. 4) in the
interior (to avoid boundary layer effects that arise from
the imposition of boundary conditions),

• STEP (3) Repeat STEPS (1) and (2) for different ran-
dom realizations for a given sample size, and average the
resulting response to determine a mean value,

• STEP (4) Repeat STEPS (1)–(3) for a larger sample,
• STEP (5) Continue the process (STEPS (1)–(4)) until
the response ceases to change to within an acceptable
tolerance.

For a more in depth discussion on size-effect issues, see the
works of Zohdi [79,81,84,85] and [87].

5.2 Numerical examples

As an example, the following parameters were used:

• reference temperature, θr = 600 ◦K,
• initial temperature, θ0 = 600 ◦K,
• total time, T = 10−5 s,
• initial time step size, 	t = 10−10 s,
• damage lower bound, α = 0.1,
• displacement loading on all sides u = (0, 0, 0) m,

SUBSAMPLE

BC’S APPLIEDCURING
MATERIAL

Fig. 4 LEFT Hot deposited particles on a surface. With the framing
method, a sample is probed with interior subsamples, within the larger
sample, in order to avoid boundary layer effects that occur from impos-

ing boundary conditions on the large-sample exterior. RIGHT A mesh
of the curing subsample (showing only one of the particle phases for
illustration purposes)
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• temperature of all sides, θ(t) = −300◦ t
T + 600 ◦K,

• dimensions of the sample, 0.001 × 0.001 × 0.001 m,
• particles in the sample, Np = 100,
• base density, ρ = 1000kg/m3,
• base Lame parameters, λo = 10 GPa, μo = 3 GPa,
• base conductivity, IK o = Ko1, Ko = 100 W/K◦m,
• base thermal expansion coefficient, βo = 0.000001
1/◦K,

• base heat capacity, Co = 10 J/K◦ kg,
• base plastic rate coefficient, ao = 0.001,
• base yield stress, σyo = 10 MPa,
• base damage rate coefficient, bo = −10000000,
• base damage flow stress, σdo = 10 MPa,
• relative densities, ρ1r = ρ1

ρ
= 1, ρ2r = ρ2

ρ
= 2,

• relative Lame parameters, λ1r = λ1
λo
, λ2r = λ2

λo
= 5,

• relative Lame parameters, μ1r = μ1
μo

= 1, μ2r = μ2
μo

=
5,

• relative conductivity, K1r = IK1
IKo

= 1, K2r = IK2
IKo

= 5,

• relative thermal expansion, β1r = β1
βo

= 1, β2r = β2
βo

=
10,

• relative heat capacity, C1r = C1
Co

= 1, C2r = C2
Co

= 2,
• relative plastic rate coefficient, a1r = a1

ao
= 1, a2r =

a2
ao

= 1,

• relative damage rate coefficient, b1r = b1
bo

= 1, b2r =
b2
bo

= 1,

• relative plastic yield, σy1r = σy1
σyo

= 1, σy2r = σy2
σyo

= 5,

• relative damage threshold, σd1r = σd1
σdo

= 1, σd1r =
σd2
σdo

= 5,
• a time stepping factor φ = 0.5 (mid-point rule),
• an overlapping length scale of the particles of ζ = 0.625,
• the number of desired iterations per time step set to Kd =

5, along with a coupling/staggering tolerance of Ctol =
10−2,

• weights for the iterative error norm, w1 = 0.5 and w2 =
0.5.

Throughout the computations, the spatial discretization
meshes were repeatedly refined until the solutions did not
exhibit any more sensitivity to further refinement of the grid-
spacing.We started withmeshes such as a 21×21×21mesh,
arising from having a cubical mesh with 10 nodes from the
centerline plane of symmetry and one node in themiddle, and
then repeatedly refined in the following sequential manner:

1. Mesh # 1 a 21× 21× 21 mesh, which has 9261 degrees
of freedom (DOF) for the thermal field and 27,783 DOF
for the mechanical field, for a total of 37,044 DOF.

2. Mesh # 2 a 41×41×41 mesh, which has 68921 degrees
of freedom (DOF) for the thermal field and 206783 DOF
for the mechanical field, for a total of 275,684 DOF.

3. Mesh # 3 a 61×61×61mesh, which has 226,981 degrees
of freedom (DOF) for the thermal field and 680,943 DOF
for the mechanical field, for a total of 907,924 DOF.

4. Mesh # 4 a 81×81×81mesh, which has 531,441 degrees
of freedom (DOF) for the thermal field and 1,594,322
DOF for the mechanical field, for a total of 2,125,764
DOF.

Approximately between a 61-level and a 81-level mesh, the
results stabilized, indicating that the results are essentially
free of any appreciable numerical error. All numerical results
are shown in Figs. 5, 6, 7, 8. At the length-scales of inter-
est, it is questionable whether the ideas of a sharp material
interface are justified. Accordingly, we simulated the system
with andwithoutLaplacian smoothing,wherebyone smooths
the material data by post-processing the material data, node
by node, to produce a smoother material representation, for
example, for the thermal conductivity, ÎK (using the stencil
in Fig. 9 in the Appendix 1)

∇2
x IK = 0 ⇒ ÎK i, j,k = 1

6

(
IK i+1, j,k + IK i−1, j,k

+ IK i, j+1,k+ IK i, j−1,k+ IK i, j,k+1+ IK i, j,k−1
)
.

(5.1)

The same was done for the mechanical properties by
enforcing ∇2

xλ0 = 0 and ∇2
xμ0 = 0 and as well as other

material data. The simulations were run with and without
data smoothing, with the results being negligibly different for
sufficiently fine meshes (Fig. 4). In particular, Fig. 4 depicts
a typical microstructure showing the contact area (only illus-
trating one of the phases), while Fig. 5 shows successive
frames of the deviatoric stress, 25 % into the interior of the
sample. Figures 6, 7, 8 illustrate the various metrics that a
materials designer would be interested in quantifying. In Fig.
8, the variation of the time step size (normalized by the start-
ing time step size) is depicted. The size of the time steps were
purposely started quite small (	t = 10−10 s) and given an
enlargement cap of 50 times in magnitude. This allows the
system to slowly evolve to capture the quite transient behav-
ior. During the bulk of the computation, the large steps were
warranted (the time-step size evolved), as dictated by the
physics and the adaptive algorithm. For other material selec-
tions and loading regimes, other adaptivity modes can occur.
All simulations were run on a standard laptop requiring min-
imal memory requirements. It is important to stress that it is
virtually impossible to determine a-priori whether the initial
time step is adequate to meet a tolerance and whether adap-
tivity is needed. Obviously, we can use this scheme for any
(trapezoidal) value of 0 ≤ φ ≤ 1. Time-step size adaptivity
is important, since the solution can drastically change over
the course of time, possibly requiring quite different time step
sizes to control the iterative (staggering) error. However, to
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Fig. 5 From left to right and top to bottom: the evolution of the devi-
atoric stress (in gigapascals). Starting from the top left, a uniform low
stress exists in the hot mixture. Thereafter because of the heterogeneous

nature of thematerial properties, large differences arise in the stress state
as the material cools. Note: The morphology is shown in Fig. 4
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Fig. 6 LEFT The volume averaged normed deviator ||σ ′|| (in gigapascals). RIGHT The volume averaged pressure p
def= trσ

3 (in gigapascals)

Fig. 7 LEFT The volume averaged temperature 〈θ〉� (in Kelvin) RIGHT The volume averaged norm of the plastic strain ||ε p||

Fig. 8 LEFT The volume averaged damage ||D||. RIGHT The time-step size variation
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Fig. 9 Various Finite-difference stencils in “computational molecule”
form (centered at (xi , x j , xk)), where: (1) TERM-I: a ∂u

∂xi
, (2) TERM-

II: ∂
∂xi

(
a ∂u

∂xi

)
and (3) TERM-III: ∂

∂x j

(
a ∂u

∂xi

)

maintain the accuracy of the time-stepping scheme, onemust
respect an upper bound dictated by the discretization error,
i.e.,	t ≤ 	t lim . The example shownwas simply to illustrate
the overall process.

Remark While our stated focus is the evolution of stresses in
deposited hot powders/particles a by-product of the analysis
overall effective mechanical stiffness relation defined by

〈σ 〉� = F∗(〈ε〉�), (5.2)

where 〈·〉� def= 1
|�|

∫
�

· d�. Similarly, one can generate effec-
tive thermal responses

〈q〉� = G∗(〈∇θ〉�). (5.3)

There are a variety of estimates for effective responses in
manyfields.We refer the reader toHashin andShtrikman [30]
based on variational principles using the concept of polariza-
tion tensor fields (filtering/separation of micro-macro scales)
and numerical techniques to extract the effective response of
such materials (Zohdi [84]). Estimates for the effective prop-
erties of heterogeneous materials date back over 150 years
to Maxwell [49] and [50] and Lord Rayleigh [61]. For a
relatively recent and thorough analysis of a variety of clas-
sical approaches, such as the ones briefly mentioned here,
see Torquato [72] for general interdisciplinary discussions,
Jikov et al. [34] for more mathematical aspects, Hashin [31],
Mura [51], Nemat-Nasser and Hori [55] for solid-mechanics
inclined accounts of the subject, for analyses of defect-laden,
porous and cracked media, see Kachanov [36], Kachanov,
Tsukrov and Shafiro [37], Kachanov and Sevostianov [38],
Sevostianov, Gorbatikh and Kachanov [66], Sevostianov and
Kachanov [67], and for computational aspects see Ghosh
[26], Ghosh and Dimiduk [27], Zohdi andWriggers [84] and
Zohdi [87].

6 Summary and extensions

6.1 Summary

The overall goal of this research was to develop a compu-
tational framework that is relatively easy to implement in
order to analyze deposited hot particulate microstructures
undergoing cooling. Specifically, a computational approach
that efficiently resolves the strongly coupled time-transient
thermo-mechanical stress fields that arise, built on a direct
discretization of a deposited microstructure and an iterative
staggering scheme, was developed. The spatial discretiza-
tion grids used were uniform and dense, and the deposited
microstructure was embedded into spatial discretization. The
regular grid allows one to generate a matrix-free iterative
formulation which is amenable to rapid calculation and
minimal memory requirements, making it ideal for laptop
computation. Variants of the technique have been applied
to related problems involving more coupled multiphysics,
such as electro-magneto-thermo-mechano-chemo effects, in
Zohdi [85] whereby one computes the electrical E-field with
the magnetic field H , thermal field θ , displacement field u
and chemical field c fixed, then computes H-field with E, θ ,
u and c fields fixed, etc, and iterates at time interval L + 1,
K = 1, 2 . . . for (written directly in iterative implicit form)

EL+1,K = F
(
EL+1,K−1, H L+1,K−1, θ L+1.K−1,

uL+1.K−1, cL+1.K−1
)

, (6.1)

and

H L+1,K = G
(
EL+1,K , H L+1,K−1, θ L+1.K−1, uL+1.K−1,

cL+1.K−1
)

, (6.2)

and

θ L+1,K = Y
(
EL+1,K , H L+1,K , θ L+1.K−1, uL+1.K−1,

cL+1.K−1
)

, (6.3)

and

uL+1,K = L
(
EL+1,K , H L+1,K , θ L+1.K , uL+1.K−1,

cL+1.K−1
)

, (6.4)

and

cL+1,K = C
(
EL+1,K , H L+1,K , θ L+1.K , uL+1.K ,

cL+1.K−1
)

, (6.5)
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where the only underlined variable is active at that stage of the
process. One then computes the maximum of the error mea-

sures � ∗,K def= max
(
� K

E ,� K
H ,� K

θ ,� K
u ,� K

c

)
in order

to determine if time-step adaptivity is necessary, as intro-
duced earlier for the thermo-mechanical scheme. Generally,
the methods discussed in this work can be combined to cre-
ate hybrid block-partitioned approaches, whereby the entire
domain is partitioned into subdomains and within each sub-
domain an iterative method is applied. In other words, for
a subdomain, the values at all nodes from outside are ini-
tially frozen, as far as calculations involving members of the
group are concerned. After each isolated subdomain’s solu-
tion (nodal values) has converged (computed in parallel),
then all nodal values are updated, i.e. the most current values
become available to all members of the grid, and the iso-
lated subdomain calculations are repeated. Although parallel
computation of the introduced algorithms was not pursued
in this work, it is currently being investigated by the author.
Finally, we remark that often the use of lasers is a critical
component of the types of processes described in this paper,
specifically to selectively control the temperature in targeted
zones (Zohdi [92]). In particular, for deposited particle-based
materials, selective thermal processing using lasers (or vari-
ants based on electron beams) is quite attractive. The upper
bound for the power of a typical industrial laser is approx-
imately 10,000 W. Typically, the initial beam produced is
in the form of collimated (parallel) beams which are then
focused with a lens onto a small focal point (approximately
50 mm away) of no more than about 0.000025 m in diam-
eter. Selective laser processing/sintering, was pioneered by
Householder [32] in 1979 and Deckard and Beamen [13] in
the mid-1980s.5 Generally, an overall future computational
technological goal is to develop simulation tools to accel-
erate the manufacturing of printed electronics. Lasers can
play a central role in precisely processing these systems. To
describe the laser-target interaction, the following must be
accounted for: (a) absorption of laser energy input, (b) beam
interference (attenuation) from the heterogeneous media and
(c) heat transfer by conduction. Integration of laser input into
the models described in this paper is currently being pursued
by the author based on Zohdi [83,89,92].

Appendix 1: Spatial finite difference stencils

The following standard approximations are used:

5 A closely related method, Electron Beam Melting, fully melts the
material and produces dense solids that are void free.

1. For the first derivative of a primal variable u at (x1, x2,
x3):

∂u

∂x1
≈ u(x1 + 	x1, x2, x3) − u(x1 − 	x1, x2, x3)

2	x1
(7.1)

2. For the derivative of a flux at (x1, x2, x3), with an arbi-
trary material coefficient a:

∂

∂x1

(
a

∂u

∂x1

)

≈
(
a ∂u

∂x1

)
|
x1+ 	x1

2 ,x2,x3
−

(
a ∂u

∂x1

)
|
x1− 	x1

2 ,x2,x3

	x1

= 1

	x1

[
a(x1 + 	x1

2
, x2, x3)

×
(
u(x1 + 	x1, x2, x3) − u(x1, x2, x3)

	x1

)]

− 1

	x1

[
a(x1 − 	x1

2
, x2, x3)

×
(
u(x1, x2, x3)−u(x1−	x1, x2, x3)

	x1

)]
,

(7.2)

where we have used

a(x1 + 	x1
2

, x2, x3) ≈ 1

2
(a(x1 + 	x1, x2, x3)

+ a(x1, x2, x3)) (7.3)

and

a(x1 − 	x1
2

, x2, x3) ≈ 1

2
(a(x1, x2, x3)

+ a(x1 − 	x1, x2, x3)) (7.4)

3. For the cross-derivative of a flux at (x1, x2):

∂

∂x2

(
a

∂u

∂x1

)
≈ ∂

∂x2
(a(x1, x2, x3)

×
(
u(x1 + 	x1, x2, x3) − u(x1 − 	x1, x2, x3)

2	x1

))

≈ 1

4	x1	x2
(a(x1, x2 + 	x2, x3) [u(x1 + 	x1, x2

+	x2, x3) − u(x1 − 	x1, x2 + 	x2, x3)]

−a(x1, x2 − 	x2, x3) [u(x1 + 	x1, x2 − 	x2, x3)

−u(x1 − 	x1, x2 − 	x2, x3)]), (7.5)
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Remark To illustrate second-order accuracy, consider a Tay-
lor series expansion for an arbitrary function u

u(x + 	x) = u(x) + ∂u

∂x

∣∣∣∣
x
	x + 1

2

∂2u

∂x2

∣∣∣∣
x
(	x)2

+1

6

∂3u

∂x3

∣
∣∣∣
x
(	x)3 + O

(
(	x)4

)
(7.6)

and

u(x − 	x) = u(x) − ∂u

∂x

∣
∣∣∣
x
	x + 1

2

∂2u

∂x2

∣
∣∣∣
x
(	x)2

−1

6

∂3u

∂x3

∣∣
∣∣
x
(	x)3 + O

(
(	x)4

)
(7.7)

Subtracting the two expressions yields

∂u

∂x
|x = u(x + 	x) − u(x − 	x)

2	x
+ O

(
(	x)2

)
. (7.8)

Appendix 2: temporally-adaptive iterative methods

Implicit time-stepping methods, with time step size adaptiv-
ity, built on approaches found in Zohdi [79,82,85,88] and
[90] were used throughout the analysis in the body of the
work. In order to introduce basic concepts, we consider a
first order differential equation for a field W :

Ẇ = �(W), (8.1)

which, after being discretized using a trapezoidal “φ-
method” (0 ≤ φ ≤ 1)

W L+1 = W L + 	t
(
φ�

(
W L+1

)
+ (1 − φ)�

(
W L

))
.

(8.2)

Generally, for systems of equations of this form, a straight-
forward iterative scheme can be written as

W L+1,K = G
(
W L+1,K−1

)
+ R, (8.3)

where R is a remainder term that does not depend on the
solution, i.e. R �= R(W L+1), and K = 1, 2, 3, . . . is the
index of iteration within time step L + 1. The convergence
of such a scheme is dependent on the behavior of G. Namely,
a sufficient condition for convergence is that G is a contrac-
tion mapping for all W L+1,K , K = 1, 2, 3 . . . In order to
investigate this further, we define the iteration error as

� L+1,K def= ∣∣∣∣W L+1,K − W L+1
∣∣∣∣. (8.4)

A necessary restriction for convergence is iterative self
consistency, i.e. the “exact” (discretized) solution must be
represented by the scheme

G
(
W L+1

)
+ R = W L+1. (8.5)

Enforcing this restriction, a sufficient condition for con-
vergence is the existence of a contraction mapping

� L+1,K = ∣∣∣∣W L+1,K − W L+1
∣∣∣∣

= ∣∣∣∣G(W L+1,K−1) − G(W L+1)
∣∣∣∣ (8.6)

≤ ηL+1,K
∣∣∣∣W L+1,K−1 − W L+1

∣∣∣∣, (8.7)

where, if 0 ≤ ηL+1,K < 1 for each iteration K , then
� L+1,K → 0 for any arbitrary starting value W L+1,K=0,
as K → ∞. This type of contraction condition is sufficient,
but not necessary, for convergence. Inserting these approxi-
mations into Ẇ = �(W) leads to

W L+1,K ≈ 	t
(
φ�(W L+1,K−1)

)

︸ ︷︷ ︸
G(W L+1,K−1)

+ 	t (1 − φ)�(W L) + W L
︸ ︷︷ ︸

R
, (8.8)

whose contraction constant is scaled by η ∝ φ	t . Therefore,
if convergence is slow within a time step, the time step size,
which is adjustable, can be reduced by an appropriate amount
to increase the rate of convergence. Decreasing the time step
size improves the convergence, however, we want to simul-
taneously maximize the time-step sizes to decrease overall
computing time, while still meeting an error tolerance on the
numerical solution’s accuracy. In order to achieve this goal,
we followanapproach found inZohdi [79,82,85,88] and [90]
originally developed for continuum thermo-chemical multi-
field problems in which one first approximates

ηL+1,K ≈ S(	t)p (8.9)

(S is a constant) and secondly one assumes the error within
an iteration to behave according to

(S(	t)p)K� L+1,0 = � L+1,K , (8.10)

K = 1, 2, . . ., where � L+1,0 is the initial norm of the itera-
tive error and S is intrinsic to the system.6 Our goal is to meet
an error tolerance in exactly a preset number of iterations. To
this end, one writes

(S(	ttol)
p)Kd� L+1,0 = Ctol , (8.11)

6 For the class of problems under consideration, due to the linear depen-
dency on 	t , p ≈ 1.
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where Ctol is a (coupling) tolerance and where Kd is the
number of desired iterations.7 If the error tolerance is not met
in the desired number of iterations, the contraction constant
ηL+1,K is too large. Accordingly, one can solve for a new
smaller step size, under the assumption that S is constant,

	ttol = 	t

⎛

⎜⎜
⎝

(
Ctol

� L+1,0

) 1
pKd

(
� L+1,K

� L+1,0

) 1
pK

⎞

⎟⎟
⎠ . (8.12)

The assumption that S is constant is not critical, since
the time steps are to be recursively refined and unrefined
throughout the simulation. Clearly, the expression in Eq. 8.12
can also be used for time step enlargement, if convergence is
met in less than Kd iterations.8

Appendix 3: Second-order temporal discretization

Discretization of temporally second-order equations can be
illustrated by considering

Ü = V̇ = �(U). (9.1)

Expanding the field V in a Taylor series about t + φ	t
we obtain

V (t + 	t) = V (t + φ	t) + dV
dt

|t+φ	t (1 − φ)	t

+1

2

d2V
dt2

|t+φ	t (1 − φ)2(	t)2 + O((	t)3)

(9.2)

and

V (t) = V (t + φ	t) − dV
dt

|t+φ	tφ	t

+1

2

d2V
dt2

|t+φ	tφ
2(	t)2 + O((	t)3) (9.3)

Subtracting the two expressions yields

dV
dt

|t+φ	t = V (t + 	t) − V (t)

	t
+ Ô(	t), (9.4)

where Ô(	t) = O((	t)2), when φ = 1
2 . Thus, inserting

this into the governing equation yields

V (t + 	t) = V (t) + 	t�(t + φ	t) + Ô((	t)2). (9.5)

7 Typically, Kd is chosen to be between five to ten iterations.
8 At the implementation level, since the exact solution is unknown,

the following relative error term is used, � L+1,K def= ||W L+1,K −
W L+1,K−1||.

Note that adding aweighted sum of Eqs. 9.2 and 9.3 yields

V (t + φ	t) = φV (t+	t)+(1−φ)V (t) +O((	t)2), (9.6)

which will be useful shortly. Now expanding the field U in
a Taylor series about t + φ	t we obtain

U(t + 	t) = U(t + φ	t) + dU
dt

|t+φ	t (1 − φ)	t

+1

2

d2U
dt2

|t+φ	t (1 − φ)2(	t)2 + O((	t)3)

(9.7)

and

U(t) = U(t + φ	t) − dU
dt

|t+φ	tφ	t

+1

2

d2U
dt2

|t+φ	tφ
2(	t)2 + O((	t)3). (9.8)

Subtracting the two expressions yields

U(t + 	t) − U(t)

	t
= V (t + φ	t) + Ô(	t). (9.9)

Inserting Eq. 9.6 yields

U(t + 	t) = U(t) + (φV (t + 	t) + (1 − φ)V (t))	t

+Ô((	t)2). (9.10)

and thus using Eq. 9.5 yields

U(t + 	t) = U(t) + V (t)	t + φ(	t)2�(U(t + φ	t))

+Ô((	t)2). (9.11)

The term �(U(t + φ	t)) can be handled in two main
ways:

• �(t + φ	t) ≈ �(φU(t + 	t) + (1 − φ)U(t)) or
• �(t + φ	t) ≈ φ�(U(t + 	t)) + (1 − φ)�(U(t)).

The differences are quite minute between either of the above,
thus, for brevity, we choose the latter. In summary, we have
the following:

U(t + 	t) = U(t) + V (t)	t + φ(	t)2 (φ�(U(t + 	t))

+(1 − φ)�(U(t))) + Ô((	t)2). (9.12)

We note that

• When φ = 1, then this is the (implicit) Backward
Euler scheme, which is very stable (very dissipative) and
O((	t)2) locally in time,
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• When φ = 0, then this is the (explicit) Forward Euler
scheme, which is conditionally stable and O((	t)2)
locally in time,

• When φ = 0.5, then this is the (implicit) “Midpoint”
scheme, which is stable and Ô((	t)2) = O((	t)3)
locally in time.

In summary, we have for the velocity9

V (t + 	t) = V (t) + 	t (φ�(U(t + 	t))

+(1 − φ)�(U(t))) (9.13)

and for the position

U(t + 	t) = U(t) + V (t + φ	t)	t

= U(t) + (φV (t + 	t) + (1 − φ)V (t))	t,

(9.14)

or more explicitly

U(t + 	t) = U(t) + V (t)	t + φ(	t)2 (φ�(U(t + 	t))

+(1 − φ)�(U(t))) . (9.15)

In iterative (recursion) form

U L+1,K = (φ	t)2�(U L+1,K−1)︸ ︷︷ ︸
G(U L+1,K−1)

+U L + V L	t + (	t)2φ(1 − φ)�(U L)︸ ︷︷ ︸
R

(9.16)

Remark Applying this scheme to the balance of linear
momentum continuum formulation, under infinitesimal
deformations,∇x ·σ + f = ρ ∂2u

∂t2
we use�(u(t)) = ∇x ·σ+ f

ρ
,

and must apply the (iterative) process introduced earlier to
all nodes in the system.
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