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On the sensitivity of homogenized material responses
at infinitesimal and finite strains
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SUMMARY

On a practical level, when computing macroscopic or homogenized mechanical responses of materials possess-
ing heterogeneous irregular microstructure, one can only test finite-sized samples. The macroscopic responses
computed from various equal finite-sized samples exhibit deviations from one another. Consequently, any use
of such data afterwards contains a degree of uncertainty. For example, certain classes of finite deformation
response functions such as compressible Neo-Hookean functions, compressible Mooney—Rivlin functions, and
others, employ predetermined linear elastic coefficients in parts of their representations. Therefore, they will
contain the mentioned uncertainties. In this work we study the magnitude of deviations between computed
homogenized linearly elastic responses among equal finite sized, samples possessing random microstructure.
Afterwards, the sensitivity of finite deformation response functions to such deviations is addressed. The
primary result is that deviations of the responses in the infinitesimal range bound the resulting perturbed
response in the finite deformation range from above. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A primary research issue in the analysis of solid microheterogeneous materials is the determination
of ‘effective’ or ‘homogenized’ constitutive laws for use in macroscopic structural calculations. The
usual approach is to determine a relation between averages, E*, defined through (6)q =E*: (g)q.

Here, (- )q & /19 [, d2, and ¢ and € are the stress and strain fields within a statistically repre-
sentative volume element (RVE) with volume |Q|. If E* is assumed isotropic one may write

e (3o xder ({60t (@)a 1)
(tre/3) K (&0 (&)
where tro and tre are the dilatational components of the stress and strain and where ¢’ and

¢ are the deviatoric stresses and strains. We note that even if the aggregate response is not
purely isotropic, one can always interpret the above expressions as generalizations of isotropic
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responses. In theory, an effective response will be invariant for a sample that is infinitely large
compared to the microstructure. However, from a practical point of view, whether computationally
or experimentally, we can only test finite-sized samples of material. Therefore, equal-sized finite
samples will produce E*’s that exhibit deviations from one another. Clearly, no single effective
response appears. Therefore, in the case of overall isotropic responses, we have uncertainties, such
as ¥ £ Ap* and k* £ Ax™. The determination of the magnitude of such uncertainties is the subject
of this work. In particular, because of the widespread use of lightweight polymeric materials, the
determination of their accurate responses is necessary in many applications. In this work, our
interest is in the response of porous polyethelenes. Polyethelenes and related polymers have the
largest volume use of any plastic in the world. They are prepared by the catalytic polymerization
of ethelyene. Depending on the mode of polymerization, one can obtain a high-density (HDPE)
or a low-density (LDPE) polyethelene polymer. A common use of LDPEs is for lightweight
packaging. Such porous polyethelenes can readily be prepared and are characterized by excellent
low thermal conductivity, high strength-to-weight ratio, low water absorption, and high energy
absorption. These attributes have made such porous polyethelenes of special interest as insulation
boards for construction, protective packaging materials, insulated drinking cups, and floatation
devices. For more details on applications see the well-known text of Gibson and Ashby [1]. In
many manufacturing processes such materials are obtained by chemically treating a vulcanized
polymer, which results in a fine distribution of pores or extremely soft inclusions, throughout the
material. Such porous polymeric materials are expected to undergo finite deformations. Certain
classes of models to describe the mechanical responses of such materials are constructed from
the linearly elastic coefficients. Therefore, if one is to construct an admissible effective finite
deformation response function from the linearly elastic responses an uncertainty enters. Therefore,
we also study the effects of the perturbations when used in finite deformation response functions,
with examples focusing on modelling compressible porous polyethelenes. A widely used class
of models are the compressible Neo-Hookean and compressible Mooney—Rivlin material response
functions.

The outline of the paper is as follows. In Section 2 a brief summary of the linear theory
of effective properties is given, and numerical tests are performed varying the ratio of sample
size to micro-particle/pore diameter. In Section 3 finite deformation responses are developed that
employ material parameters obtained in Section 2 are given. In Section 4 the sensitivity of the
finite deformation response to perturbations in the linearly elastic effective constants are developed.
Finally, in Section 5 a summary and concluding remarks are given.

2. QUANTIFYING PERTURBATION MAGNITUDES

When determining effective responses, the basic assumptions are (1) the RVE geometry is a scale
smaller than that of the macroscopic body (and the macroscopic external loading) such that it
can be considered as a ‘material point’ that can only ‘see’ uniform boundary loading and (2) the
length scales of the microconstituents are a scale smaller than the RVE geometry thus allowing
negligibly small fluctuations of microfields in relation to the RVE length scale. A concise statement
of such size requirements placed on the RVE is (6: €)g = (6)q: (€)q, where ¢ and € are the stress
and strain tensor fields within a statistically representative volume element (RVE) with volume
|2]. This is known as Hill’s condition (for example see Reference [2] or [3]). A special class
of fields, referred to as ‘uniform’, that fall under Hill’s condition are those produced in bodies
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with applied boundary data of the following forms: (1) pure linear displacements in the form
ulso=¢&-x and (2) pure tractions in the form t|sno =% -n; where & and & are constant strain
and stress tensors, respectively. If effective response, E*, is assumed isotropic, then only one test
loading, containing non-zero dilatational (tr¢ and trg) and deviatoric components (¢’ and €), is
necessary to determine the effective bulk and shear moduli (x* and p™*).

2.1. Some numerical experiments with the finite element method

To model random porous microstructures, we considered a matrix containing very soft spherical
nonintersecting particles/pores randomly distributed throughout a cube of dimensions L x L x L.
The mechanical data x = 1.5 GPa and u = 1.0 GPa were used for the matrix material. For simplicity
we scaled down elasticity tensor’s eigenvalues (x and u) in the particles/pores to 11W of the matrix.
The dimensions of the particles/pores were controlled such that 27// =0.75 where /=L/N'/, and
where N is the number of particles/pores, and r is the radius of the particles/pores. This was done
to keep the particle/pore volume fraction constant, which, dictated by the particle/pore dimensions,
was approximately 22.5 per cent. The finite element method was employed to numerically simulate
the response. The meshes employed were uniform, and repeatedly refined until no significant
changes in the responses occurred. Mesh densities of approximately 9 x 9 x 9 trilinear finite element
hexahedra per particle were the final ones used. During the computations, to increase the resolution
of the internal geometry, we applied a ‘%’ Gauss rule, i.e. a 2 x 2 x 2 Gauss rule if there was no
material discontinuity in the element, and a 5 x 5 x 5 rule if there is a discontinuity (Figure 2).
This process, which was not the subject of this work, has been studied more in detail in Reference
[4]. In these tests, the following sequence of particles/pores per sample was used: 2 (5184 DOF),
4 (10125 DOF), 8 (20577 DOF), 16 (41720 DOF), 32 (81000 DOF) and 64 (151959 DOF)
particles/pores (Figures 1 and 2). In order to get more reliable response data for each sample size,
the tests were performed five times and the responses averaged. Since the microstructures were
random, we tracked the isotropic quantities x* and u*, as defined in Equation (1). We considered
the following test loading in the infinitesimal deformation linearly elastic range:

ui)an 611 612 613 X
s | = | 612 6 &3 X2 @)
us|an &1 63 633 X3
N————
&

where &; =0.001, i,j=1,2,3, throughout the tests. For the effective bulk responses a difference
of approximately 6.7 per cent occurred between samples containing two particles and 64 particles
samples, while a 2.6 per cent difference occurred between the effective shear responses (Table I).
The following relations are the corresponding least-squares curve-fits for samples containing 2—64
particles/pores:

W =0.0001530N %127 92 =0.953
K*=0.8779N 018 92 =0.965 3)
p=0.7841N 000702 92— 0912

where 0> =1.0 is a perfect curve fit (Figures 3-5).
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Figure 1. A series of test samples with increasingly more particles/pores, but with the volume fraction fixed.
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Figure 2. High mesh densities and oversampling to capture the micro-geometry.

Table I. Perturbation magnitudes for various quantities as a function of
pore/particle number in the sample. Note that N is the number of pores/

particles and Wy — Wsét(g(fQ Vu: E: VudQ)y — (fQ Vu: E: Vu dQ)es.

o K* _ K* o * 0k
N Wy — Wea Kb — e & Ak -~ Wi — = At L*MM
Kea Heg
2 0.072 x107° 0.055 0.067 0.020 0.026
4 0.046 x1073 0.040 0.049 0.011 0.014
8 0.038 x107° 0.033 0.041 0.008 0.010
16 0.015 x1073 0.013 0.016 0.004 0.002
32 0.002 x1073 0.002 0.002 0.001 0.001

Further tests were then carried out for a fixed sample size containing 20 randomly distributed
particles/pores. This sample size selection was based upon the somewhat ad hoc fact that for three
successive enlargements of samples, i.e. 16,32 and 64 particle samples, the responses differed
from one another on average by less than 1 per cent in the previous tests. We simulated 100
samples, each time with a different random distribution of 20 non-intersecting softer particles/pores
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Figure 3. The values of effective bulk responses of the system for samples containing various numbers
of particles/pores. Five tests were performed per sample size and averaged.
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Figure 4. The values of effective shear responses of the system for samples containing various numbers
of particles/pores. Five tests were performed per sample size and averaged.
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Figure 5. The values of effective energetic responses of the system for samples containing various numbers
of particles/pores. Five tests were performed per sample size and averaged.

Table II. Results of 100 material tests for randomly distributed particulate microstructures.

Quantity Average Max—Min Stan. dev.

Jo, Vu: E: VudQ(GPa) 0.16634 x 10~* 0.0049 x 1074 0.9596 x 1077
K™ (GPa) 0.8249 0.025 0.5565 x 1072
uw* (GPa) 0.7674 0.023 0.4315 x 1072

(Table II). The loading was the same as in Equation (2) with the full matrix combined loading,
6;;=0.001, i,j=1,2,3. Consistent with the previous tests, the mesh densities used were 9 x 9 x 9
trilinear finite element hexahedra per particle resulting in a total 24 x 24 x 24 mesh (46 875 dof per
test). The results are shown in Figures 6-8. We observe that the ratio of the maximum-minimum
deviations to the average for the effective bulk and shear responses, as well as the strain energy,
all were approximately 3 per cent for the 20 particle samples. Each 20 particle finite element
test in this paper was carried out in no more than minute on a single RISC 6000 workstation.
Therefore, 100 of such tests lasted approximately two hours.

Remark. Before, continuing, we note that theoretical issues pertaining to size effects in finite-sized
samples, in particular a posteriori bounds, have been discussed in depth in a series of papers
stemming from the materials group at the Ecole Polytechnique in Lausanne: Huet [5, 6], Hazanov
and Huet [7] and Hazanov and Amieur [8], as well as in a recent paper of our own, Zohdi and
Wriggers [9].
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Figure 6. The values of effective bulk responses for 100 samples each containing
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Figure 7. The values of effective shear responses for 100 samples each containing
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Figure 8. The values of effective energy for 100 samples each containing a different
distribution of random particles/pores.

3. A PERTURBATION ANALYSIS FOR A CLASS OF FINITE DEFORMATION
RESPONSE FUNCTIONS

We now address the issue of the sensitivity of finite deformation response functions to the effective
property deviations observed in the previous tests. As will be seen, the primary result is that
deviations of the responses in the infinitesimal range bound the resulting perturbed response in
the finite deformation range from above. In the analysis to follow we choose a somewhat general
standard form for a stored energy function, W

W:K](TC—3)+K2(I_IC—3)+§(\/IHC—1)2 (4)
-—

incompressible part f
P P compressible part

where the first and second invariants of the right Cauchy—Green tensor, C def FT.F, Ic and IIc, have
been scaled by the square-root of the third invariant (J e et F= VI, Ie=1clll ™" P =1cJ 723,
and IIc =1l %3 =11cJ~*3, to insure that they contribute nothing to the compressible part of
the response. The symbol Fdéf(?x/ﬁX is the deformation gradient, where x =X + u is the current

position of a material point, X is the reference configuration, and u is the displacement of a point
at X. We recall the relation
ow

S=275 5)
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where S=F~! .6 -F~1J is the second Piola—Kirchoff stress, where ¢ is the Cauchy stress. Any
stored energy function must obey five criteria: (1) C=1<F=1<{c=I1Ic=3, llIc=1)W =0,
where (Ic,llc,Illlc) are the principle invariants of C, (2) W >0, (3) W —oco<detF—0 or
detF — 00, (4) S=0 for C=1 and (5) the material constants in a finite deformation material law
must be adjusted so that they give hyperelastic responses with known Lame constants, A (= —
2p1/3) and p, when perturbed around the undeformed configuration (see Reference [10] for more
details). By satisfying conditions (1)—(5) for an admissible response function, we obtain the
condition K| + K, = /2. Therefore, we have in the general case

_ — K
W:Kl(lc—3)+(g—Kl)(llc—3)+§(\/lllc—l)2 (6)
In the examples to follow, we consider a convex combination decomposition
Ky | K L LU
— 4+ —==¢=+(1-P)z== <¢<l1
S = HU—pT =1 0<¢ (M

We remark that the special case where ¢ =1 implies that K; = 1/2 and K, =0, and is denoted as
a Compressible Neo-Hookean material

W:g(ic—s)jtg(\/mc—nz (8)

Now consider a finite deformation stored energy function, such as in Equation (6), that employs
the effective linear elastic constants, those given in Equation (1), for its material values

W:Kl*(fcf3)+K2*(ﬁc73)+%*(\/HIC7 1) 9)

We refer to this expression as the effective stored energy function.

4. BOUNDS ON THE SENSITIVITY TO COEFFICIENT PERTURBATION

Our now interest is in the sensitivity of the effective response functions to perturbations in the
coefficients x* and p*.

4.1. Bounds on the perturbed stored energy

In either the compressible Neo-Hookean and compressible Mooney—Rivlin case, since the stored
energy function is linear in the material coefficients, we have

ow
OK*
~—

bulk sensitivity

W(* + Ak*) — (k)= NN (10)

and

ow o
WO+ M) =Wy = o A N (11)
—~—

shear sensitivity
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In order to make meaningful comparisons of the sensitivity at various loading intensities, we
normalize by the stored energy:

— Ee o &
v = ;V , Ep= ;V (12)
We note that the normalized sensitivities, &, are well defined at zero strain
. ¢
Iim = <oo (13)

w,é—o W

because the numerator and denominator tend to zero at the same rate. One can prove this using
L’Hopital’s rule of limits for indefinite forms such as lim, ,_.o x/y.
The sensitivities to perturbations in the coefficients, x* and u* are

ow 1 ow
N/ VL4 A W ) (14)
0 2 ou*
From straightforward algebraic manipulations we have
= A 20 (/I — 1)? - Ax*
T 20 = 3) + (1= ¢)2(0e = 3) + wF2* (Ve — 12| | e (15)
. — |Ak*
11]71m |él€* =0, II[I:EHOOMK* —’ ¥
and
| = Ap*2k*(Ic —3) < 'A,u*
w21t T = 3) + (1= pyw)/2iF e — 3) + 1/2(\/TH e — 12| | pF (16)
Ap* .
m el = | 2| m [Erl=0

In other words, the normalized sensitivity of the energetic responses in the finite deformation range
is never greater than the normalized sensitivity in the infinitesimal range. The energy sensitivities
will attain the ratios Ap™*/u and Ax™/x, respectively, but at different extreme loading states.

4.2. Bounds on the perturbed Cauchy stresses

The corresponding second Piola—Kirchhoff stress tensor for the stored energy function employing
effective constants in Equation (6) is

S=2 (KI*IHC_mI + KSR Il - ©)
K* 12 1 —13 2K —2/3\ o1
—(IHC — !y — =L pean; S’ ) ¢ (17)
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The sensitivity of the Cauchy stresses can be obtained from the same transformation as between
S and o, ie. 6=(1/J)F-S-FT

ds 1. 0S ds 1. 0S
—=-F-— . F', —=_-F.-— .F' 18
okt J  ox* oot J o out (18)

Therefore, we have
* * * Jo * * * * oy *
o(k” +AK") —o(k" )= Ax", o(u +Ap") —o(u )= Au (19)
orc* ou*

When these quantities are normalized, for example by the appropriate Cauchy stress components,
they behave essentially in the same manner as the normalized energy sensitivities. In fact we have

% = (Ul — M) C™! (20)
and
% = ¢ (g P1= L Pet)
(1) (11152/3(1C1 ) - §11C11152/3C*1) 1)
After some straightforward algebra, we have (||| & (o : 6)!2):
(00/0K™)AK™ Ax*
|| )
o]l oKk
(22)
100 /o™ A _ ’Au*
o]l I
where
Jo || def oo x\ [ 0o % 172
and
0o def 0o oo 12
SELJyWAY X (Y LR Y L 24
o] = (Geas) « (5a)) @)

4.3. Examples

We now provide some quantitative examples. Consider a block of material where we specify
boundary displacements of the following form:

=6 -X=>F=I+Vyu=I1+¢ (25)
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Figure 9. Multiaxial loading (¢ = 0.5): the behaviour of the perturbations
(7w == Tw—p=» o—r=» To—p= ) With multiaxial loading.

The following normalized quantities are important to illustrate the theoretical results:

O (G sop LW A
- | A— | I A
Nw —x ‘AK*/K*| <L, Hw—p \A,u*/,u*| X
(26)
(@o/or" )Ax" | l(@o/ou™ A" |
gl el g ket el
o N . N

We now illustrate the behaviour of these quantities for three distinct loading cases: (1) multiaxial
loading, (2) tensile loading and (3) shear loading.

4.3.1. Multiaxial loading. Consider the following multiaxial loading:

Ui |60 1 1 1 Xl
Uuz | o0 =o |l 1 1 X2 (27)
Us|o0 1 1 1 X

It is easy to show that oc:fé =J =0, thus we restrict our view to oc>f%. The quantities of

interest in Box (26) are shown in Figure 9, and are less than unity as theoretically predicted.
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Figure 10. Tensile loading (¢ = 0.5): the behaviour of the perturbations
(7w = Tw—p= s No—r=» o—p= ) With multiaxial loading.

4.3.2. Tensile loading. Consider the following tensile loading:

Ui o0 1 0 0 Xl
UWlon | =A 01 0 X2 (28)
U3l o0 0 0 1 X;

For this case we have a=—1=J =0, thus we restrict our view to o>—1. The quantities of

interest in Box (26) are shown in Figure 10.

4.3.3. Shear loading. Consider the following shear loading:

Ui lon 0 1 1 X
Wl | =a |1 0 1 X (29)
Uz | o0 1 1 0 X3

For this case, we have a= — § or 1=J=0, thus we restrict our view to 1>o0> — §. The

quantities of interest in Box (26) are shown in Figure 11.

Remark. As the theoretical results assert, in all three loading cases the perturbations in the finite
deformation range are bounded by the perturbation ratio in the infinitesimal range.
5. CONCLUDING REMARKS

The widespread use of materials with heterogeneous microstructures in engineering applications
has made their accurate characterization important. Deviations in macroscopic responses, perhaps
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Figure 11. Shear loading (¢ = 0.5): the behaviour of the perturbations
(7w == Tw—p=» o—r=» To—p= ) With multiaxial loading.

produced from inaccurate material tests, can make large differences in the estimated performance
and service life of structures. This is particularly relevant for porous polymers, which are widely
used in modern engineering designs. In this work we were concerned with hyperelastic polyethe-
lenes. For simplicity, we used a specific class of compressible Mooney—Rivlin response func-
tions. It was shown that the perturbed response in the linear range bounds the resulting perturbed
response in the finite deformation range from above. An analyses for more sophisticated mod-
els, for example Ogden response functions, is quite more involved. The authors are investigating
whether the analysis presented here can be extended to obtain meaningful information for such
functions, since they too are influenced by uncertainties in the linear elastic constants.
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