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On the sensitivity of homogenized material responses
at in�nitesimal and �nite strains
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SUMMARY

On a practical level, when computing macroscopic or homogenized mechanical responses of materials possess-
ing heterogeneous irregular microstructure, one can only test �nite-sized samples. The macroscopic responses
computed from various equal �nite-sized samples exhibit deviations from one another. Consequently, any use
of such data afterwards contains a degree of uncertainty. For example, certain classes of �nite deformation
response functions such as compressible Neo-Hookean functions, compressible Mooney–Rivlin functions, and
others, employ predetermined linear elastic coe�cients in parts of their representations. Therefore, they will
contain the mentioned uncertainties. In this work we study the magnitude of deviations between computed
homogenized linearly elastic responses among equal �nite sized, samples possessing random microstructure.
Afterwards, the sensitivity of �nite deformation response functions to such deviations is addressed. The
primary result is that deviations of the responses in the in�nitesimal range bound the resulting perturbed
response in the �nite deformation range from above. Copyright ? 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A primary research issue in the analysis of solid microheterogeneous materials is the determination
of ‘e�ective’ or ‘homogenized’ constitutive laws for use in macroscopic structural calculations. The
usual approach is to determine a relation between averages, E∗, de�ned through 〈b〉
 = E∗ : 〈U〉
.
Here, 〈 · 〉
 def= 1=|
|

∫

 d
, and b and U are the stress and strain �elds within a statistically repre-

sentative volume element (RVE) with volume |
|. If E∗ is assumed isotropic one may write

3�∗ def= 〈tr b=3〉

〈tr U=3〉
 and 2�∗ def=

√
〈b′〉
 : 〈b′〉

〈U′〉
 : 〈U′〉
 (1)

where tr b and tr U are the dilatational components of the stress and strain and where b′ and
U′ are the deviatoric stresses and strains. We note that even if the aggregate response is not
purely isotropic, one can always interpret the above expressions as generalizations of isotropic
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responses. In theory, an e�ective response will be invariant for a sample that is in�nitely large
compared to the microstructure. However, from a practical point of view, whether computationally
or experimentally, we can only test �nite-sized samples of material. Therefore, equal-sized �nite
samples will produce E∗’s that exhibit deviations from one another. Clearly, no single e�ective
response appears. Therefore, in the case of overall isotropic responses, we have uncertainties, such
as �∗±��∗ and �∗±��∗. The determination of the magnitude of such uncertainties is the subject
of this work. In particular, because of the widespread use of lightweight polymeric materials, the
determination of their accurate responses is necessary in many applications. In this work, our
interest is in the response of porous polyethelenes. Polyethelenes and related polymers have the
largest volume use of any plastic in the world. They are prepared by the catalytic polymerization
of ethelyene. Depending on the mode of polymerization, one can obtain a high-density (HDPE)
or a low-density (LDPE) polyethelene polymer. A common use of LDPEs is for lightweight
packaging. Such porous polyethelenes can readily be prepared and are characterized by excellent
low thermal conductivity, high strength-to-weight ratio, low water absorption, and high energy
absorption. These attributes have made such porous polyethelenes of special interest as insulation
boards for construction, protective packaging materials, insulated drinking cups, and 
oatation
devices. For more details on applications see the well-known text of Gibson and Ashby [1]. In
many manufacturing processes such materials are obtained by chemically treating a vulcanized
polymer, which results in a �ne distribution of pores or extremely soft inclusions, throughout the
material. Such porous polymeric materials are expected to undergo �nite deformations. Certain
classes of models to describe the mechanical responses of such materials are constructed from
the linearly elastic coe�cients. Therefore, if one is to construct an admissible e�ective �nite
deformation response function from the linearly elastic responses an uncertainty enters. Therefore,
we also study the e�ects of the perturbations when used in �nite deformation response functions,
with examples focusing on modelling compressible porous polyethelenes. A widely used class
of models are the compressible Neo-Hookean and compressible Mooney–Rivlin material response
functions.
The outline of the paper is as follows. In Section 2 a brief summary of the linear theory

of e�ective properties is given, and numerical tests are performed varying the ratio of sample
size to micro-particle=pore diameter. In Section 3 �nite deformation responses are developed that
employ material parameters obtained in Section 2 are given. In Section 4 the sensitivity of the
�nite deformation response to perturbations in the linearly elastic e�ective constants are developed.
Finally, in Section 5 a summary and concluding remarks are given.

2. QUANTIFYING PERTURBATION MAGNITUDES

When determining e�ective responses, the basic assumptions are (1) the RVE geometry is a scale
smaller than that of the macroscopic body (and the macroscopic external loading) such that it
can be considered as a ‘material point’ that can only ‘see’ uniform boundary loading and (2) the
length scales of the microconstituents are a scale smaller than the RVE geometry thus allowing
negligibly small 
uctuations of micro�elds in relation to the RVE length scale. A concise statement
of such size requirements placed on the RVE is 〈b : U〉
 = 〈b〉
 : 〈U〉
, where b and U are the stress
and strain tensor �elds within a statistically representative volume element (RVE) with volume
|
|. This is known as Hill’s condition (for example see Reference [2] or [3]). A special class
of �elds, referred to as ‘uniform’, that fall under Hill’s condition are those produced in bodies
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with applied boundary data of the following forms: (1) pure linear displacements in the form
u|@
 =E · x and (2) pure tractions in the form t|@
 =L · n; where E and L are constant strain
and stress tensors, respectively. If e�ective response, E∗, is assumed isotropic, then only one test
loading, containing non-zero dilatational (tr b and tr U) and deviatoric components (b′ and U′), is
necessary to determine the e�ective bulk and shear moduli (�∗ and �∗).

2.1. Some numerical experiments with the �nite element method

To model random porous microstructures, we considered a matrix containing very soft spherical
nonintersecting particles=pores randomly distributed throughout a cube of dimensions L×L×L.
The mechanical data �=1:5 GPa and �=1:0 GPa were used for the matrix material. For simplicity
we scaled down elasticity tensor’s eigenvalues (� and �) in the particles=pores to 1

100 of the matrix.
The dimensions of the particles=pores were controlled such that 2r=l=0:75 where l=L=N 1=3, and
where N is the number of particles=pores, and r is the radius of the particles=pores. This was done
to keep the particle=pore volume fraction constant, which, dictated by the particle=pore dimensions,
was approximately 22.5 per cent. The �nite element method was employed to numerically simulate
the response. The meshes employed were uniform, and repeatedly re�ned until no signi�cant
changes in the responses occurred. Mesh densities of approximately 9× 9× 9 trilinear �nite element
hexahedra per particle were the �nal ones used. During the computations, to increase the resolution
of the internal geometry, we applied a ‘ 25 ’ Gauss rule, i.e. a 2× 2× 2 Gauss rule if there was no
material discontinuity in the element, and a 5× 5× 5 rule if there is a discontinuity (Figure 2).
This process, which was not the subject of this work, has been studied more in detail in Reference
[4]. In these tests, the following sequence of particles=pores per sample was used: 2 (5184 DOF),
4 (10125 DOF), 8 (20577 DOF), 16 (41720 DOF), 32 (81000 DOF) and 64 (151959 DOF)
particles=pores (Figures 1 and 2). In order to get more reliable response data for each sample size,
the tests were performed �ve times and the responses averaged. Since the microstructures were
random, we tracked the isotropic quantities �∗ and �∗, as de�ned in Equation (1). We considered
the following test loading in the in�nitesimal deformation linearly elastic range:

 u1|@
u2|@

u3|@



 =


E11 E12 E13
E12 E22 E23
E31 E32 E33




︸ ︷︷ ︸
E


 x1x2
x3




(2)

where Eij =0:001; i; j=1; 2; 3, throughout the tests. For the e�ective bulk responses a di�erence
of approximately 6.7 per cent occurred between samples containing two particles and 64 particles
samples, while a 2.6 per cent di�erence occurred between the e�ective shear responses (Table I).
The following relations are the corresponding least-squares curve-�ts for samples containing 2–64
particles=pores:

W =0:0001530N−0:0127; �2 = 0:953

�∗=0:8779N−0:0198; �2 = 0:965

�∗=0:7841N−0:00702; �2 = 0:912

(3)

where �2 = 1:0 is a perfect curve �t (Figures 3–5).
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Figure 1. A series of test samples with increasingly more particles=pores, but with the volume fraction �xed.

Figure 2. High mesh densities and oversampling to capture the micro-geometry.

Table I. Perturbation magnitudes for various quantities as a function of
pore=particle number in the sample. Note that N is the number of pores=

particles and WN −W64
def
= (
∫


∇u : E : ∇u d
)N − (∫



∇u : E : ∇u d
)64.

N WN −W64 �∗N − �∗64 def= ��∗ �∗N − �∗64
�∗64

�∗N − �∗64 def= ��∗ �∗N − �∗64
�∗64

2 0.072 ×10−5 0.055 0.067 0.020 0.026
4 0.046 ×10−5 0.040 0.049 0.011 0.014
8 0.038 ×10−5 0.033 0.041 0.008 0.010
16 0.015 ×10−5 0.013 0.016 0.004 0.002
32 0.002 ×10−5 0.002 0.002 0.001 0.001

Further tests were then carried out for a �xed sample size containing 20 randomly distributed
particles=pores. This sample size selection was based upon the somewhat ad hoc fact that for three
successive enlargements of samples, i.e. 16; 32 and 64 particle samples, the responses di�ered
from one another on average by less than 1 per cent in the previous tests. We simulated 100
samples, each time with a di�erent random distribution of 20 non-intersecting softer particles=pores

Copyright ? 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 16:657–670
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Figure 3. The values of e�ective bulk responses of the system for samples containing various numbers
of particles=pores. Five tests were performed per sample size and averaged.

Figure 4. The values of e�ective shear responses of the system for samples containing various numbers
of particles=pores. Five tests were performed per sample size and averaged.
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Figure 5. The values of e�ective energetic responses of the system for samples containing various numbers
of particles=pores. Five tests were performed per sample size and averaged.

Table II. Results of 100 material tests for randomly distributed particulate microstructures.

Quantity Average Max–Min Stan. dev.∫


∇u : E: ∇u d
(GPa) 0:16634× 10−4 0:0049× 10−4 0:9596× 10−7

�∗ (GPa) 0.8249 0.025 0:5565× 10−2
�∗ (GPa) 0.7674 0.023 0:4315× 10−2

(Table II). The loading was the same as in Equation (2) with the full matrix combined loading,
Eij =0:001; i; j=1; 2; 3. Consistent with the previous tests, the mesh densities used were 9× 9× 9
trilinear �nite element hexahedra per particle resulting in a total 24× 24× 24 mesh (46 875 dof per
test). The results are shown in Figures 6–8. We observe that the ratio of the maximum–minimum
deviations to the average for the e�ective bulk and shear responses, as well as the strain energy,
all were approximately 3 per cent for the 20 particle samples. Each 20 particle �nite element
test in this paper was carried out in no more than minute on a single RISC 6000 workstation.
Therefore, 100 of such tests lasted approximately two hours.

Remark. Before, continuing, we note that theoretical issues pertaining to size e�ects in �nite-sized
samples, in particular a posteriori bounds, have been discussed in depth in a series of papers
stemming from the materials group at the Ecole Polytechnique in Lausanne: Huet [5; 6], Hazanov
and Huet [7] and Hazanov and Amieur [8], as well as in a recent paper of our own, Zohdi and
Wriggers [9].
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Figure 6. The values of e�ective bulk responses for 100 samples each containing
a di�erent distribution of random particles=pores.

Figure 7. The values of e�ective shear responses for 100 samples each containing
a di�erent distribution of random particles=pores.
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Figure 8. The values of e�ective energy for 100 samples each containing a di�erent
distribution of random particles=pores.

3. A PERTURBATION ANALYSIS FOR A CLASS OF FINITE DEFORMATION
RESPONSE FUNCTIONS

We now address the issue of the sensitivity of �nite deformation response functions to the e�ective
property deviations observed in the previous tests. As will be seen, the primary result is that
deviations of the responses in the in�nitesimal range bound the resulting perturbed response in
the �nite deformation range from above. In the analysis to follow we choose a somewhat general
standard form for a stored energy function, W

W = K1(IC − 3) + K2(IIC − 3)︸ ︷︷ ︸
incompressible part

+
�
2
(
√
IIIC − 1)2︸ ︷︷ ︸

compressible part

(4)

where the �rst and second invariants of the right Cauchy–Green tensor, C def= FT ·F, IC and IIC, have
been scaled by the square-root of the third invariant (J def= det F=

√
IIIC), IC = ICIII

−1=3 = IC J−2=3,
and IIC = IICIII−2=3 = IIC J−4=3, to insure that they contribute nothing to the compressible part of
the response. The symbol F def= @x=@X is the deformation gradient, where x=X+ u is the current
position of a material point, X is the reference con�guration, and u is the displacement of a point
at X. We recall the relation

S=2
@W
@C

(5)
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where S=F−1 · b · F−TJ is the second Piola–Kircho� stress, where b is the Cauchy stress. Any
stored energy function must obey �ve criteria: (1) C=I⇔F=I⇔(IC= IIC=3; IIIC=1)⇔W =0,
where (IC; IIC; IIIC) are the principle invariants of C; (2) W¿0; (3) W →∞⇔ det F→ 0 or
det F→∞; (4) S= 0 for C= I and (5) the material constants in a �nite deformation material law
must be adjusted so that they give hyperelastic responses with known Lame constants, � (= � −
2�=3) and �, when perturbed around the undeformed con�guration (see Reference [10] for more
details). By satisfying conditions (1)–(5) for an admissible response function, we obtain the
condition K1 + K2 = �=2. Therefore, we have in the general case

W =K1(IC − 3) +
(�
2
− K1

)
(IIC − 3) + �2 (

√
IIIC − 1)2 (6)

In the examples to follow, we consider a convex combination decomposition

K1
2
+
K2
2
=�

�
2
+ (1− �)�

2
=
�
2
; 06�61 (7)

We remark that the special case where �=1 implies that K1 = �=2 and K2 = 0, and is denoted as
a Compressible Neo-Hookean material

W =
�
2
(IC − 3) + �2 (

√
IIIC − 1)2 (8)

Now consider a �nite deformation stored energy function, such as in Equation (6), that employs
the e�ective linear elastic constants, those given in Equation (1), for its material values

W =K∗1 (IC − 3) + K∗2 (IIC − 3) +
�∗
2
(
√
IIIC − 1)2 (9)

We refer to this expression as the e�ective stored energy function.

4. BOUNDS ON THE SENSITIVITY TO COEFFICIENT PERTURBATION

Our now interest is in the sensitivity of the e�ective response functions to perturbations in the
coe�cients �∗ and �∗.

4.1. Bounds on the perturbed stored energy

In either the compressible Neo-Hookean and compressible Mooney–Rivlin case, since the stored
energy function is linear in the material coe�cients, we have

W (�∗ +��∗)−W (�∗)= @W
@�∗︸︷︷︸

bulk sensitivity

��∗ def= ��∗ (10)

and

W (�∗ +��∗)−W (�∗)= @W
@�∗︸︷︷︸

shear sensitivity

��∗ def= ��∗ (11)
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In order to make meaningful comparisons of the sensitivity at various loading intensities, we
normalize by the stored energy:

��∗ =
��∗
W
; ��∗ =

��∗
W

(12)

We note that the normalized sensitivities, �, are well de�ned at zero strain

lim
W;�→0

�
W
¡∞ (13)

because the numerator and denominator tend to zero at the same rate. One can prove this using
L’Hopital’s rule of limits for inde�nite forms such as limx; y→0 x=y.
The sensitivities to perturbations in the coe�cients, �∗ and �∗ are

@W
@�∗ =

1
2
(
√
IIIC − 1)2;

@W
@�∗ =

�
2
(IC − 3) + 1− �2 (IIC − 3) (14)

From straightforward algebraic manipulations we have

|��∗ |=
∣∣∣∣∣ ��∗=2�∗(√IIIC − 1)2
�=2(IC − 3) + (1− �)=2(IIC − 3) + �∗=2�∗(

√
IIIC − 1)2

∣∣∣∣∣6
∣∣∣∣��∗�∗

∣∣∣∣
Lim
IIIC→0

|��∗ |=0; Lim
IIIC→∞

|��∗ |=
∣∣∣∣��∗�∗

∣∣∣∣
(15)

and

|��∗ |=
∣∣∣∣∣ ��∗=2�∗(IC − 3)
��∗=2�∗(IC − 3) + ((1− �)�∗)=2�∗(IIC − 3) + 1=2(

√
IIIC − 1)2

∣∣∣∣∣6
∣∣∣∣��∗�∗

∣∣∣∣
Lim
IIIC→0

|��∗ |=
∣∣∣∣��∗�∗

∣∣∣∣ ; Lim
IIIC→∞

|��∗ |=0
(16)

In other words, the normalized sensitivity of the energetic responses in the �nite deformation range
is never greater than the normalized sensitivity in the in�nitesimal range. The energy sensitivities
will attain the ratios ��∗=� and ��∗=�, respectively, but at di�erent extreme loading states.

4.2. Bounds on the perturbed Cauchy stresses

The corresponding second Piola–Kirchho� stress tensor for the stored energy function employing
e�ective constants in Equation (6) is

S = 2

(
K∗1 III−1=3C I + K∗2 III−2=3C (ICI − C)

+
(
�∗
2
(IIIC − III 1=2C )−

K∗1
3
ICIII

−1=3
C − 2K∗2

3
IIC III

−2=3
C

)
C−1

)
(17)
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The sensitivity of the Cauchy stresses can be obtained from the same transformation as between
S and b, i.e. b=(1=J )F · S · FT

@b
@�∗ =

1
J
F · @S
@�∗ · FT; @b

@�∗ =
1
J
F · @S
@�∗ · FT (18)

Therefore, we have

b(�∗ +��∗)− b(�∗)= @b
@�∗��

∗; b(�∗ +��∗)− b(�∗)= @b
@�∗��

∗ (19)

When these quantities are normalized, for example by the appropriate Cauchy stress components,
they behave essentially in the same manner as the normalized energy sensitivities. In fact we have

@S
@�∗ =(IIIC − III

1=2
C )C

−1 (20)

and

@S
@�∗ = �

(
III−1=3C I − 1

3 IC III
−1=3
C C−1

)
+(1− �)

(
III−2=3C (ICI − C)− 2

3 IIC III
−2=3
C C−1

)
(21)

After some straightforward algebra, we have (‖b‖ def= (b : b)1=2):

‖(@b=@�∗)��∗‖
‖b‖ 6

∣∣∣∣��∗�∗
∣∣∣∣

‖(@b=@�∗)��∗‖
‖b‖ 6

∣∣∣∣��∗�∗
∣∣∣∣

(22)

where ∥∥∥∥ @b@�∗��∗
∥∥∥∥ def=

((
@b
@�∗��

∗
)
:
(
@b
@�∗��

∗
))1=2

(23)

and ∥∥∥∥ @b@�∗��∗
∥∥∥∥ def=

((
@b
@�∗��

∗
)
:
(
@b
@�∗��

∗
))1=2

(24)

4.3. Examples

We now provide some quantitative examples. Consider a block of material where we specify
boundary displacements of the following form:

u| @
 =E · X⇒F= I +∇X u= I + E (25)
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Figure 9. Multiaxial loading (� = 0:5): the behaviour of the perturbations
(�W−�∗ ; �W−�∗ ; ��−�∗ ; ��−�∗) with multiaxial loading.

The following normalized quantities are important to illustrate the theoretical results:

�W−�∗
def=

‖(@W=@�∗)��∗‖
W

|��∗=�∗| 61; �W−�∗
def=

‖(@W=@�∗)��∗‖
W

|��∗=�∗| 61

��−�∗
def=

‖(@b=@�∗)��∗‖
‖b‖

|��∗=�∗| 61; ��−�∗
def=

‖(@b=@�∗)��∗‖
‖b‖

|��∗=�∗| 61

(26)

We now illustrate the behaviour of these quantities for three distinct loading cases: (1) multiaxial
loading, (2) tensile loading and (3) shear loading.

4.3.1. Multiaxial loading. Consider the following multiaxial loading:


 u1|@
u2|@

u3|@



 = �


 1 1 1

1 1 1

1 1 1




 X1X2
X3


 (27)

It is easy to show that �=− 1
3 ⇒ J =0, thus we restrict our view to �¿− 1

3 . The quantities of
interest in Box (26) are shown in Figure 9, and are less than unity as theoretically predicted.
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Figure 10. Tensile loading (� = 0:5): the behaviour of the perturbations
(�W−�∗ ; �W−�∗ ; ��−�∗ ; ��−�∗) with multiaxial loading.

4.3.2. Tensile loading. Consider the following tensile loading:
 u1|@
u2|@

u3|@



= �


 1 0 0

0 1 0

0 0 1




 X1X2
X3


 (28)

For this case we have �=−1⇒ J =0, thus we restrict our view to �¿−1. The quantities of
interest in Box (26) are shown in Figure 10.

4.3.3. Shear loading. Consider the following shear loading:
 u1|@
u2|@

u3|@



= �


 0 1 1
1 0 1
1 1 0




 X1X2
X3


 (29)

For this case, we have �= − 1
2 or 1⇒ J =0, thus we restrict our view to 1¿�¿ − 1

2 . The
quantities of interest in Box (26) are shown in Figure 11.

Remark. As the theoretical results assert, in all three loading cases the perturbations in the �nite
deformation range are bounded by the perturbation ratio in the in�nitesimal range.

5. CONCLUDING REMARKS

The widespread use of materials with heterogeneous microstructures in engineering applications
has made their accurate characterization important. Deviations in macroscopic responses, perhaps
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Figure 11. Shear loading (� = 0:5): the behaviour of the perturbations
(�W−�∗ ; �W−�∗ ; ��−�∗ ; ��−�∗) with multiaxial loading.

produced from inaccurate material tests, can make large di�erences in the estimated performance
and service life of structures. This is particularly relevant for porous polymers, which are widely
used in modern engineering designs. In this work we were concerned with hyperelastic polyethe-
lenes. For simplicity, we used a speci�c class of compressible Mooney–Rivlin response func-
tions. It was shown that the perturbed response in the linear range bounds the resulting perturbed
response in the �nite deformation range from above. An analyses for more sophisticated mod-
els, for example Ogden response functions, is quite more involved. The authors are investigating
whether the analysis presented here can be extended to obtain meaningful information for such
functions, since they too are in
uenced by uncertainties in the linear elastic constants.
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