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Abstract A hybrid Lagrangian Voronoi–SPH scheme, with
an explicit weakly compressible formulation for both the
Voronoi and SPH sub-domains, has been developed. The
SPH discretization is substituted by Voronoi elements close
to solid boundaries, where SPH consistency and boundary
conditions implementation become problematic. A buffer
zone to couple the dynamics of both sub-domains is used.
This zone is formed by a set of particles where fields are
interpolated taking into account SPH particles and Voronoi
elements. A particle may move in or out of the buffer zone
depending on its proximity to a solid boundary. The accu-
racy of the coupled scheme is discussed by means of a set of
well-known verification benchmarks.

Keywords CFD · SPH · Voronoi · Coupling

1 Introduction

The smoothed particle hydrodynamics (SPH) method is
known for its flexibility to easilymodel complex physics [20]
and its outstanding conservation properties, but also due to its
limitations in discretization adaptivity, accuracy and imple-
mentation of boundary conditions, among others. Apart from
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performing modifications in the scheme to overcome these
limitations, which in any case penalize their conservation
properties, an alternative approach is to couple the scheme
with other methods, splitting the physical domain in disjunct
regions where either the SPH method or the coupled one is
applied.

Very recent examples have explored the coupling of SPH
and mesh-based finite volume method solvers [13,18,22]
with promising results. An additional appealing approach
is to couple SPH with another meshless method with some
improved characteristics. The fully Lagrangian version of
Voronoi particle hydrodynamics (VPH) [12] emerges as an
attractive option for this kind of coupling.

The fully Lagrangian VPH has been developed from the
Voronoi dynamics method created by Serrano et al. [25,26],
who developed a meshless scheme that is first-order con-
sistent for the first-order differential operators, regardless of
the geometrical distribution of the particles. The method was
conceived for molecular dynamics simulations, and entropy
evolution equation was part of the formalism.

The idea of a hybrid Lagrangian Voronoi–SPH scheme
was first proposed by Barcarolo et al. [4,5]. They used a
finite volume formulation for the Voronoi sub-domain and
Riemann-SPH for the SPH sub-domain. The coupling was
achieved by considering the SPH particles as Voronoi ones
when interacting with Voronoi particles, and vice versa.
This coupling does not preserve the order of both methods
when taken to the particle level, and some improvements are
required.

The present paper proposes a method in which VPH
is used for the Voronoi region and δ-SPH is used for the
SPH zone. A buffer zone to couple the dynamics of both
sub-domains is developed. This zone is formed by a set of
particles whose derivatives take into account both SPH and
Voronoi formulations. VPH is used for those regions close
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to the solid boundaries, in order to accurately implement the
solid boundary conditions.

The long-term applications thatmotivate present research,
such as 3D printing, are mostly referred to liquids. They can,
in practical terms, be accurately modeled as weakly com-
pressible barotropic fluids. This way, by neglecting entropy
influence, the pressure becomes a function only of density
in an equation of state. Under this assumption, the energy
equation becomes uncoupled, leading to the formalism and
structure of themethod being similar to SPH, thus facilitating
their coupling.

In the formulation developed herein, a Voronoi graph is
computed in every time step from the particle positions. The
resulting Voronoi cells allow us to associate to each particle a
certain volume, and considering theirmass, a derived density.

The paper presents first the continuousmodel and the cou-
pled schemes. The coupling strategy is then discussed. How
boundary conditions are implemented deserves a dedicated
analysis that follows next. The accuracy and conservation
properties of the scheme are discussed thereafter. Themethod
is then challenged with some verification cases and valida-
tion benchmarks. Conclusions and future lines of work are
enumerated to close the paper.

2 Governing equations

The scope of this research covers monophasic free-surface
incompressible viscous flow. In order to model incompress-
ibility, the fluid is assumed to be barotropic and weakly
compressible. This second hypothesis is generally used
within the SPH method in order to avoid the solution of a
Poisson equation for the pressure field, and in order to use
an explicit time integration for the discrete equations. Under
these hypotheses, the Navier–Stokes equations read:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dρ

dt
+ ρ ∇ · u = 0,

ρ
du
dt

= ρ g − ∇ p + ∇ · (2μD) + ∇ (λ (∇ · u)) ,

dr
dt

= u, p = c20 (ρ − ρ0),

(1)

where, d/dt is the Lagrangian derivative, p the pressure,
c0 the constant sound velocity, ρ the fluid density, and ρ0
the reference density. The flow velocity, u, is defined as the
material derivative of a fluid material point at the position r .
D is the rate of deformation tensor, D = (∇u + ∇uT)/2.

In the weakly compressible regime, the compressible vis-
cosity term is negligible for the flows studied in this work
(see, e.g., [17] and [9]) and it is not further considered. Under
these conditions, and with the additional hypothesis of con-
stant dynamic viscosity, the momentum equation becomes:

ρ
du
dt

= ρ g − ∇ p + μ∇2 u. (2)

Boundary conditions will be discussed specifically when dis-
cussing the numerical methods.

3 Method

3.1 δ-SPH scheme

For the SPH sub-domain, the δ-SPH scheme proposed by
Antuono et al. [1,2] is adopted to compute the numerical
solution. The evolution equations of a generic i-th fluid par-
ticle read:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dρa
dt

= −ρa
∑

b

(ub − ua) · ∇aWab Vb

+ δ hab c0
∑

b ψab
(rb−ra)·∇aWab

‖rb−ra‖2 Vb
dua
dt

= ga − 1

ρa

∑

b

(pb + pa)∇aWab Vb

+ ν
ρ0
ρa

∑
b πab ∇aWab Vb

dra
dt

= ua, pa = c20 (ρa − ρ0) + p0,

(
ha
h0

)d

= ρ0

ρa
,

(3)

where ρa, pa, ua and Va are, respectively, the density, the
pressure, the velocity and the volume of the a-th particle, ρ0
the reference density, p0 a background pressure, and ψab is
Cercos-Pita et al’s [7] artificial diffusive term. The symbol
∇a indicates the differentiation with respect to the position
of the a-th particle while ga denotes the body force acting
on it. Finally, Wab is the kernel function. In this work, a C2
Wendland kernel with compact support of radius 2ha , where
ha is the smoothing length, has been used. The smoothing
length may vary slightly from the reference value h0 along
the simulation for each particle so that the number of neigh-
bors remains approximately constant. The sound speed, c0,
is set in order to guarantee density variations smaller than
0.01ρ0, and hab is defined as the average smoothing length
of particles a and b. The (dimensionless) parameter δ is set to
0.1 in all the simulations. In the present work, h0/�x = 2,
that corresponds to an average number of particles in the
kernel support of about 50.

3.2 Voronoi particle hydrodynamics (VPH)

3.2.1 General

In the Voronoi tessellation, a polyhedral volume, which
encompasses the space closer to every particle than to any
other, is assigned to that particle. Based on this partition of
the fluid domain, the governing Eq. (1) can be discretized.
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Fig. 1 Section of a Voronoi diagram for a set of particles marked with
asterisks. All the triangles in the dual Delaunay tessellation with vertex
in a are drawn with dashed lines. The vectors eab and cab needed to
calculate the derivative of the volume are also marked

The Voronoi scheme used in this paper has as a precursor the
one of Hess and Springel [12].

In this model, it is assumed that each particle conserves
mass. For this reason, the density of a generic particle a can
simply be estimated as:

ρa = ma

Va
, (4)

where ma and Va are, respectively, the mass and volume
assigned to particle a.

Since density evolves with this rule, the continuity equa-
tion in (1) is not integrated in time. Regarding the pressure
gradient in the momentum equation, the gradient estimate of
Serrano and Español [26] is used:

(∇ p)a ≈ 1

Va

∑

b �=a

Aab

[

(pa + pb)
eab
2

+ (pb − pa)
cab
rab

]

,

(5)

where eab is the unit vector from particles a to b, with posi-
tions ra, rb (see Fig. 1):

eab := rb − ra
|rb − ra | . (6)

It is stressed here that the notation eab, with the vector
pointing from a to b, is used in order to keep Hess and
Springel’s [12]’s notation. However, in the SPH formula-
tion, when a vector subindex is ab, it implies it is obtained
by subtracting the value in particle a from that in particle b.

In formula (5), Aab is the area, in the Voronoi diagram, of
the face between particles a and b. The vector cab is defined
as going from the midpoint between a and b to the centroid
of the face between such particles.

Serrano and Español [26] demonstrated that the gradient
formula (5) is first-order accuracy independently of the dis-
tribution of the particles.

With regard to the viscous term, it has been formulated
[see Eq. (2)] as the Laplacian of the velocity field. In order to
discretize it, the Laplacian of each component of the veloc-
ity field will be treated independently, something valid for
Cartesian coordinates. This way, and following Hess and
Springel’s [12] estimate for the Laplacian of a scalar field,

(
∇2ui

)

a
≈ 1

Va

∫

Va
∇2 uidV

= 1

Va

∑

b �=a

∫

Aab

∇ui · dA, (7)

where the divergence theorem has been used.
Thedot product inside the integral is the directional deriva-

tive of the i-th component of the velocity across the normal of
each of the faces of the element a. This directional derivative
can be approximated in first order as (uib − uia)/rab, leading
to the following estimate for the velocity Laplacian:

(
∇2u

)

a
≈ − 1

Va

∑

b �=a

uab
rab

Aab, (8)

where the vector notation for the Laplacian is recovered. The
order of this formula is not clearly established in the litera-
ture. Serrano [25] used it to simulate a shear stationary flow,
showing that the schemes display extra dissipation when
particles are in disordered configurations while it renders
accurate results for orderly ones. For an extensive discussion
on the properties of the Laplacian operator in Voronoi and
Delaunay tessellations, the reader is referred to Duque et al.
[10] and references therein.

3.3 Coupling

A hybrid Voronoi–SPH scheme has been developed. A
fully Lagrangian formulation for the Voronoi and SPH sub-
domains is considered. A buffer zone to couple the dynamics
of both sub-domains is used. This zone is formed by a set of
particles whose fields take into account both SPH particles
and Voronoi elements. A particle may move in or out of the
buffer zone depending on its proximity to a solid boundary.

How the purely SPH,Voronoi and buffer zones are defined
is shown in the sketch present in Fig. 2. The Voronoi zone is
defined adjacent to the solid boundaries. Its width is such that
particles outside the Voronoi zone will be at distance larger
than 2 hmax, with hmax being the largest h, of the closest solid
boundary, so that no SPH particle will have any interaction
with the solid boundaries.
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Fig. 2 Sketch with definition of Voronoi, SPH and buffer zones

Fig. 3 Example of particle in the buffer zone. Voronoi (with tessella-
tion diagram), buffer and SPH zones are shown in the figure

Regarding the buffer zone, a particle a is assumed to
belong to the buffer zone if and only if it may simultaneously
have Voronoi and SPH particles inside the SPH kernel sup-
port of radius 2 hmax with center at such particle. For instance,
the particle a in Figs. 2 and 3 belongs to the buffer zone.

The SPH zone is defined as the rest of the fluid domain.
For the particles outside the buffer zone, the fields are

interpolated with the scheme corresponding to the sub-
domain type. Therefore, the value of a certain field A at a
particle a when it is in the buffer will be defined as:

Aa := ωa ASPH
a + (1 − ωa) A

Vor
a , (9)

where ASPH
a is the field value obtained through the SPH inter-

polation, AVor
a is the field value obtained with the Voronoi

interpolation and ω is a weight defined so that the coupling
is C1. We must stress that this condition is a first best guess,
inspired by the h2 order of the SPH interpolation studied in
detailed by Quinlan et al. [24]. However, other alternatives
are of course possible. To this aim, the value Aa should tend
to AVor

a as the particle gets close to the Voronoi zone and
should tend to ASPH

a as the particle gets close to the SPH
zone. A factor r is defined using the distance da between the
particle a and the closest solid wall:

ra := da − 2 hmax

2 hmax
, (10)

and ωa is the output of a third-grade polynomial in ra which
allows to have the required C1 class for the coupling scheme
(9):

ωa := r2a (3 − 2 ra). (11)

However, density is computed directly from the Voronoi cell
while in SPH is obtained integrating in time the continuity
equation. It was observed that coupling directly both values
led to rougher transitions due to the different nature of their
origin. Therefore, the VPH scheme estimates the density rate
of change in the buffer zone following Eq. (12), so the cou-
pling is applied on the time derivatives and the resulting value
is used to evolve the density in time.

dρ

dt

∣
∣
∣
∣
a

= −ρa(∇ · v)a

≈ ρa

Va

∑

b �=a

Aab(va − vb) ·
[
eab
2

+ cab
rab

]

. (12)

3.4 Boundary conditions (BCs)

3.4.1 Grid

The range of interaction of a particle is finite in both SPH
and Voronoi schemes. For this reason, it is convenient to
split the fluid domain in cells such that the interaction range
of the particles belonging to one cell will be restricted to that
cell plus the neighboring ones. To achieve this, the cells of
that grid must have as length 2hmax in the case of SPH and
2max(rab) for the Voronoi scheme. This way, in order to
find neighboring particles, it will only be necessary to search
them in your own cell and in the neighboring ones.

3.4.2 Solid boundaries

In present coupled scheme, interaction with solid boundaries
only takes place for Voronoi particles, and therefore, solid
BCs refer only to Voronoi particles. The solid boundary is
discretized in present scheme as a polygonal line (see Fig.4).
The main challenge for imposing BCs lies on achieving that
the solid boundary becomes the actual boundary of well-
definedVoronoi elements. Therefore, a prior step to imposing
BCs on Voronoi cells is to construct and adequate Voronoi
tessellation. For the time being, let us assume that there is a
Voronoi tessellation that fulfills the referred conditions.

In order to show how BCs are imposed, a sample element
adjacent to a boundary, and whose center is particle a, is dis-
played in Fig. 4. For each boundary segment in the element
a (the same label is used for the element and its center), a
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Fig. 4 Section of a Voronoi diagram close to a solid boundary

reflected point ag of center a with respect to that segment is
created. This point is necessary to guarantee that the domain
boundary is covered by the edges of tessellation elements.
Unlike ghost particles in SPH, these reflected points are used
only to create the Voronoi tessellation, but do not play any
role in themathematical treatment of the flowfields. Once the
solid boundaries become part of the perimeter of the Voronoi
cells, the BCs can be enforced directly in the Voronoi differ-
ential operators (5, 8) by extrapolating the known physical
properties at the boundaries to ag:

1. No-slip BC: the flow velocity tends to the boundary
velocity uB as a fluid element gets close to the boundary.
To achieve this:

uag = 2 uB − ua . (13)

2. Free slip BC: the normal velocity tends to the bound-
ary normal velocity as a fluid element gets close to the
boundary. To achieve this, Eq. (13) is projected on the
exterior normal en :

uag · en = (2 uB − ua) · en, (14)

while the tangential component remains unaltered:

uag · eτ = ua · eτ . (15)

3. Following [16], the pressure field pg is mirrored on the
ghost particles to enforce the following Neumann con-
dition at the boundary (resulting from projecting, on the
boundary normal, the pressure gradient obtained from the
momentum equation):

∂p

∂en
= ρ

[

g · en − duB

dt
· en + ν ∇2u · en

]

, (16)

with the last term being generally negligible. Pressure at
the ghost particle is obtained by linear extrapolation:

Fig. 5 Voronoi free-surface particle detection and edge definition

pga = pa + ∂p

∂en
· (rga − ra). (17)

3.4.3 Free surface

There is not special treatment for SPH regarding the free sur-
face. The free-surface boundary conditions (kinematic and
free-stress) are a direct consequence of the Lagrangian and
explicit nature of the scheme.

For Voronoi elements, a specific treatment is proposed.
In order to detect whether a Voronoi element a is bounded
by a free surface, the angle between the lines connecting the
center of element a with the center of neighbor elements
is explored. If for any set of three particles (see left panel
of Fig. 5), this angle is greater than 90◦ and any neighboring
particle is already a free-surface one, then a is labeled as free-
surface and treated as such. To this aim, a virtual particle afs

is created at a distance la0 in the bisector which has led to the
free-surface detection (see right panel of Fig. 5). This virtual
particle is then considered for the Voronoi tessellation. The
distance la0 is defined as follows:

la0 = V 1/d
a0 , Va0 = ma/ρ0, (18)

with d being the dimensionality of the problem.
Defining the particle this way induces the creation of an

edge for element a in between a and afs after the subse-
quent tessellation (see right panel of Fig. 5), which leads to
the volume of element a being close to Va0. Since mass is
conserved, the density of such element ρa will be close to
ρ0 and therefore the pressure at the free-surface elements
will be zero. This approach approximately fulfills the free-
surface dynamic boundary condition, with the kinematic one
is implicitly satisfied by the Lagrangian nature of the scheme.

3.4.4 Voronoi free-surface particle close a solid boundary

When a free-surface SPH particle approaches a solid bound-
ary it is treated as a Voronoi particle, consistently with the
approach discussed in Sect. 3.3. In order to detect free surface
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Fig. 6 Voronoi free-surface particle approaching a solid boundary

particles, the criterion discussed in Sect. 3.4.3 is evaluated for
all particles within cell domains that contain at least one free-
surface particle in the previous time step. In order to include
the angle covered by the boundary, the reflected point ag is
included as part of the neighbors.

However, particles already on the free surface are free to
collide with or get detached from a boundary. In this case
no reflected point ag is included in the free-surface criterion,
leaving that region open to place a virtual free-surface parti-
cle afs. Then, the distance Ra0, defined in previous section,
and the distance between the particle and its mirrored ghost
particle are monitored (see left panel of Fig. 6).When the lat-
ter is smaller than the former (see right panel of Fig. 6), the
particle is assumed to be in contact with the boundary and
the solid boundary condition implementation discussed in
Sect. 3.4.2 is applied. This approach provides a smooth tran-
sition between free surface and solid boundary conditions.

3.5 Shifting algorithms

As particles move, the resulting Voronoi cells tend to get dis-
torted. Furthermore, a Voronoi diagram can have multiple
generating particle configurations, which reflects the exis-
tence of glass modes that results in a progressive drift of the
particles away from the center of mass of their cell. In order
to balance these effects that reduce the precision of the differ-
ential operators, a shifting algorithm inspired by the Lloyd’s
method [14] can be used in the Voronoi sub-domain, similar
to Springel [28]. When applied, the distance di between the
particle and the cell center of mass sa is monitorized, shifting
the particle if exceeds certain given threshold according to
Eq. (19).

r∗
a = ra +

⎧
⎪⎨

⎪⎩

0 for di
η �xa

< 0.9,

(sa − ra)
di−0.9η �xa
0.2η �xa

for 0.9 ≤ di
η �xa

< 1.1,

sa − ra for 1.1 ≤ di
η �xa

,

(19)

where η is the coefficient that defines the reference threshold,
typically set to η = 0.25.

4 Implementation

4.1 Code

The code key routines are written in C++, and the main time-
stepping program is implemented in MATLAB. The code
has been tested in 2D but is designed to work also in 3D.
Parallelization has not been yet undertaken. The Voronoi tes-
sellation requires 20%of the computation time.Apart from it,
the performance of the code is similar to that of any standard
serial SPH model.

4.2 Initialization

A physical domain, 
0 := 
(t = 0), and an initial density
field, ρ(x, t = 0), are supposed to be known, together with
a typical particle distance �x . A Cartesian grid is built in

0, keeping the minimum separation with the boundaries to
be approximately �x/2, and leading to a certain number of
particles, N . A Voronoi tessellation is carried out rendering
a vector of volumes, V. The mass of each particle is then
defined as ma = ρ(xa, 0) Va , and kept constant throughout
the whole simulation.

From this Cartesian configuration, a stabilization scheme
of the particle positions is executed, with the aim of finding
an initial static condition. A linear damping term is added
to the numerical model in order to accelerate the process of
reaching a static equilibrium, as proposed byMonaghan [19].
For this reason, the momentum equation in (3) is modified
to include the referred damping term, − ξ ua , while simulta-
neously removing the viscosity one:

dua
dt

= ga − 1

ρa

∑

b

(pb + pa)∇aWab Vb − ξ ua, (20)

where ξ�t = 0.05.
During the stabilization phase, the maximum velocity

and the total kinetic energy Ek are monitored. A charac-
teristic time of the problem t1 is defined. The stabilization
evolves till t/t1 ∼ 0.1 and from then on, the stabilization
continues until maxa |ua |/U < 0.01, En

k /E0 < 0.001, and
(En

k − En−1
k )/�t < 0.001E0/t1, withU being the character-

istic velocity of the problem, E0 a reference energy, and n the
time step index. Once this moment is reached, the particle
setup is considered in equilibrium and the simulation can be
launched. Some details of this phase are provided in some of
the verification cases later in the paper.

In simulationswith a free surface, the backgroundpressure
p0 of the equation of state in (3) is set to zero, while in
confined domain simulations, p0 := 0.05 ρ c20.
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4.3 Time-stepping

A leap frog predictor–corrector scheme is used in the simu-
lations. The positions of the particles are advanced in time
with an explicit second-order scheme, and both velocity (and
density for the SPH particles) are predicted and afterward
corrected [11,27]. The time step is affected by a CFL factor.

5 Verification

5.1 Hydrostatic equilibrium

This test case evaluates the ability of the presented numeri-
cal scheme to reach equilibrium from an unbalanced initial
condition. The same configuration than the one studied by
Colagrossi et al. [8] is analyzed here, consisting on a trape-
zoidal tank filled with fluid particles to a certain height and
all initialized with atmospheric pressure. Under the presence
of gravity, they should reach hydrostatic equilibrium if suf-
ficient damping exists to attenuate the oscillations due to the
elasticity of the fluid. The number of particles considered
is 3125, and ρ(x, t = 0) = ρ0. Figure 7 shows the result
obtained, with no noticeable difference in the pressure field
between the Voronoi and SPH sub-domains indicating that
the coupling is working adequately.

Figure 8 shows on the left panel the evolution of the kinetic
energy of the system of particles. As can be appreciated, the
inclusion of the linear damping terms quickly removes the
acoustic-related oscillations present in the flow, bringing it
rapidly to a static equilibrium.On the right panel, the pressure

Fig. 7 Left: sub-domains in a hydrostatic equilibrium simulation (red
VPH, magenta VPH-SPH coupling, blue SPH). Right: pressure field at
the same time. (Colour figure online)

Fig. 8 Left: kinetic energy evolution with and without linear damping
term; Right: particles’s pressure distribution

Fig. 9 Pressure field at hydrostatic equilibrium with a complex geom-
etry from Colagrossi et al. [8]

is plotted as a function of the vertical position for all the
particles in the fluid domain, showing reasonable agreement
with the hydrostatic incompressible exact solution.

The second complex geometry presented by Colagrossi
et al. [8] is also tested here, using 7400 particles in this
case. Concave boundaries required special treatment since
the Voronoi cells need to be trimmed. Figure 9 shows the
results obtained, confirming the capability of the current
numerical scheme to deal with more complex boundaries.

5.2 Sound wave

The propagation and ulterior reflection of a sound wave is
discussed next, aiming at investigating how pressure-driven
flows are treated by the coupled scheme. The case was first
used by Ott and Schnetter [23] to assess the accuracy of a
multiphase SPH implementation. In our case, a rectangular
domain, periodic in y, is considered. The particles are evenly
distributed and a small amplitude perturbation, �ρ(x), in
their density is set according to the following formula:

ρ(x) = ρ0 + �ρ(x)

= ρ0 + A ρ0 x2 exp

{

−
(
x − x0
W

)2
}

,

x ∈ (0, 2)

(21)

An initial horizontal velocity is given to the particles in order
to privilege one propagation direction against the other,

ux (x) = c0
�ρ(x)

ρ0
. (22)

In addition, an artificial viscosity μav = 1/8αρ0h0c0 is
included for numerical stability [15],wherewe takeα = 0.02
as widely used in SPH. 4k particles are used.

123



Comp. Part. Mech.

Fig. 10 2D sound wave propagation simulation. Pressure profiles

Fig. 11 Sound wave energy decay

A cross section of a 2D sound wave is shown as various
time steps in Fig. 10, where t∗ = tcs/L . Since x0 = 0.5L
is taken as the initial, position, t∗ = 1 corresponds to the
moment when the wave returns to the original position after
one reflection. The results show how the wave maintains its
shape reasonably well after its propagation, and reflection in
the Voronoi region adjacent to the lateral walls.

Figure 11 shows the energy decay, taken as the difference
with the initial value and made non-dimensional with the ini-
tial kinetic energy (�E ′ = (E−E0)/E0). The figure shows the
conversion between kinetic and elastic energy in the reflec-
tions, with an overall decay due to numerical dissipation. We
can define the kinetic energy Ek , and elastic energy Ec [3]:

Ek =
∑

a

0.5ma‖va‖2, (23)

Ec =
∑

a

[

mac
2
(

log

(
ρa

ρ0

)

+ ρ0

ρa
− 1

)

− ma p0
ρ0 − ρa

ρ0ρa

]

.

(24)

5.3 2D Couette flow

A plane Couette flow starting from either the exact solution
or starting from zero initial velocity is considered. 1 and 5.6k
particles have been used, respectively, and ρ(x, t = 0) = ρ0.
Regarding the first case, from its analytical solution we can
state that

Fig. 12 Detail of one Voronoi cell at different time steps with the sta-
tionary Couette flow

Fig. 13 Starting Couette velocity profile at τ = 0.1 under Re = 10

v = (Uy/a, 0) → r(t) = (x0 + tUy/a, y0),

r i (0) = (0, 0),
r j (0) = (−z, z), z ∈ [0, a],

}

→ r i (a/U ) = (0, 0),
r j (a/U ) = (0, z),

}

,

where (x0, y0) represent the initial positions, U the upper
wall velocity, and a the height of the channel. Therefore,
all the particles located at a −45◦ diagonal on the original
Cartesian arrangement become vertically aligned after t =
a/U , as can be observed in Fig. 12 where a detail of one
Voronoi cell at different time steps is shown. The cells deform
due to the different relative velocity recovering the original
shape.

The startingCouette flow allows us to test the performance
of the code under strong shear flows. The fluid is initialized
at rest, with the upper boundary located at y = a moving
horizontally with velocity U in the positive x direction and
the lower boundary at y = 0 moving with the same velocity
but opposite direction, like the case presented by Monaghan
[21]. Figure 13 shows the horizontal velocity profile along
the vertical direction, under Re = aU/ν = 10. The figure
compares the numerical results with the theoretical solution
given by Batchelor [6] and adapted to present boundary con-
ditions,

ux (t, y)

U
= −

(

1 − 2y

a

)

− 2

π

∞∑

j=1

1

j
sin( jπ ỹ) exp(− j2π2τ), (25)

where τ = tν/
[
ρ0(a/2)2

]
is a non-dimensional time based

on the mean lifetime of the transition to stationary state,
and ỹ indicates the distance to the closest boundary made
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non-dimensional with a/2. The agreement is reasonable but
small deviations from the exact solution are noticeable,which
suggest that the approximation to the viscous term requires
further assessment.

5.4 Lamb–Oseen vortex

This test case also represents a shear flow, in particular a
pure viscous diffusion process. Its analytic solution is pre-
sented byMaciá et al. [15], where two types of fluid domains
are considered for the numerical simulations: circular and
square. The theoretical velocity and density distributions are
assigned to the fluid particles as the initial conditions, leaving
them free to move afterward under the sole no-slip boundary
conditions on the enclosing walls.

v(x, y, t) = (u, v) = q
1 − e− r2

a2

r2
(−y, x), (26)

a(t)2 = a20 + 4νt, (27)

where q gives the intensity of the vortex, a is the effective
vortex core radius where the velocity is maximum, ν is the
kinematic viscosity, and r = ‖(x, y)‖ is themagnitude of the
position vector. Both circular and square configurations have
been simulated using the same input values thanMaciá et al.:
q = 0.5, a0 = 1, and Re = 2πq

ν
= 10. Roughly 12 and 16k

particles have been used, respectively, and ρ(x, t = 0) = ρ0.
Figures 14 and 15 show the resulting velocity fields,

displaying on their right the evolution of the calculated
maximum velocity together with the analytic solution. The
simulation results show a good agreement with the theoreti-
cal values.

Of particular relevance is the square domain case, since
particles move across the buffer changing their weight val-

Fig. 14 Left: Lamb–Oseen vortex velocity fields in a circular domain
at t = 1s; Right: Evolution of max ‖v‖ of a Lamb–Ossen vortex

Fig. 15 Left: Lamb–Oseen vortex velocity fields in a square domain
at t = 1s; Right: Evolution of max ‖v‖ of a Lamb–Ossen vortex

Fig. 16 Initial velocity field of two symmetric Lamb–Ossen vortices

Fig. 17 Particle configuration at different time steps with the two sym-
metric Lamb–Ossen vortices

ues. However, the velocities in this zone are relatively small,
making it difficult to extract conclusions.

An alternative case with two symmetric Lamb–Ossen vor-
tices has been simulated to visualize better this feature of the
coupled scheme, as shown in Fig. 16. The same values of
q, a0, and ρ are used, although the walls are closer to the vor-
tex centers in this case. The viscous dissipation is reduced
by applying the free slip BC at the walls and reducing the
viscosity to achieve Re = 2πq

ν
= 60, which facilitates the

movement of the particles.
Figure 17 shows the resulting particle distribution at var-

ious time steps. Each particle is colored based on its initial
vertical position, y0 = y(t = 0). It can be observed how
the mixing induced by the vortices leads to a movement of
particles into and away from the walls, crossing smoothly the
buffer zone. These results show how the coupled scheme is
also able to transport mass across the buffer.

6 Conclusions

A hybrid Lagrangian Voronoi–SPH scheme, with an explicit
weakly compressible formulation for both the Voronoi and
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SPH sub-domains, has been developed. The SPH discretiza-
tion is substituted by Voronoi elements close to solid
boundaries. A buffer zone to couple the dynamics of both
sub-domains is used. This zone is formed by a set of parti-
cles where fields are interpolated taking into account SPH
particles and Voronoi elements. The accuracy of the coupled
scheme is discussed by means of a set of well-known verifi-
cation and validation benchmarks.

The results showed that pressure gradient dominated
problems, such as hydrostatic conditions or sound wave
propagations, are well simulated by the method. However,
problems which are dominated by viscous diffusion render
less accurate results, suggesting that the approximation to
the second-order derivatives requires further assessment and
likely improvement.
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