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a b s t r a c t 

As 3D printing has matured, the use of more complex materials has increased. In partic- 

ular, particle-functionalized inks are now relatively wide-spread. Because of the desire to 

have faster throughput for industrial-scale printing, electrically-driven flow of such mate- 

rials is being pursued. In many cases, such fluids consist of an electrically-neutral base 

solvent with embedded charged particles. As one increases the volume fraction of parti- 

cles, two effects effects arise: (1) an increase in effective overall viscosity fluid and (2) an 

increase in the induced electrical force that can be applied. In the present analysis, the 

governing equations for the required pressure gradient in a pipe to move the fluid with a 

constant flow rate are derived. A key nondimensional scaling ratio governing the relative 

contribution of electrical and viscous fluid forces to the system behavior is also identified. 

Numerical examples are provided to illustrate the results. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In a variety of industries involving printed electronics, new types of particle-laden materials are being developed and

utilized. In the development of such materials, the basic philosophy is to select material combinations to produce desired

aggregate responses upon deposition onto a substrate. Oftentimes, such materials start in a fluidized form comprised of par-

ticles in a solvent, forming a viscous “ink”. However, because of the increasing demands for faster throughput and industrial-

scale printing of complex particle-laden materials, the determination of accurate pumping pressures needed to move such

fluids through delivery piping systems is critical ( Fig. 1 ). 

One approach to increase the throughput is to utilize electrical fields to drive the flows whenever possible, which is

often referred to as electrical injet printing or electrohydrodynamic printing. This is particularly useful for fluids that con-

tain electromagnetically-sensitive particles. “Electrical fluids” are typically functionalized by embedding charged or elec-

trically sensitive particles in a neutral fluid. Because of 3D-printing, there has been an increased interest in this class of

materials because of so-called electrically-functionalized inks (“e-inks”), driven by the printed electronics industry. Electri-

cal inkjet printing is particularly attractive due to its high throughput, however, this comes with increases in the overall

viscosity of the fluid. Electrohydrodynamic printing has also been proposed to increase the resolution beyond the limits

of inkjet printing, achieving a line resolution as small as 700 nm ( Park et al., 20 08, 20 07 ). There are a variety of related

high-throughput industrial techniques, and we refer the reader to the surveys found in Martin (2009 , 2011) , as well as the

works of Ahmad, Rasekh, and Edirisinghe (2010) , Samarasinghe, Pastoriza-Santos, Edirisinghe, Reece, and Liz-Marzan (2006) ,
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Fig. 1. Flow of a particle-laden through a pipe in the presence of an applied electric field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Choi et al. (2010a) , Choi, Stassi, Pisano, and Zohdi (2010b) , Choi et al. (2012) , Choi, Pisano, and I. (2013) and Demko, Cheng,

and Pisano (2010) and Demko, Choi, Zohdi, and Pisano (2012) . 

The main objective of this work is to develop a relatively simple model for the pressure gradients needed to move fluids

containing charged particles as a function of (1) the applied electric field, (2) the volume fraction of added particles, (3)

the pipe radius, (4) the volumetric flow rate, (5) the fluid-induced intensity of the shear stress at the pipe wall and (6)

the base fluid viscosity. As mentioned previously, this has become increasingly more important to 3D printing industry,

which is attempting to rapidly print complex electrical inks (“e-inks”), where the embedded particles endow the cured

printed materials with overall (mechanical, electrical, thermal, magnetic, etc.) properties that the pure solvent (particle-

free ink) alone does not possess. An overall objective of the analysis is to develop semianalytical expressions that can help

guide analysts who are designing manufacturing systems involving particle-laden e-inks. Theoretically speaking, one could 

attempt a large-scale CFD analysis, however, for accurate direct numerical simulation of particle-laden continua, the spatial

discretization grids must be extremely fine, with several thousand numerical unknowns needed per particle length-scale.

Furthermore, extremely fine time-discretization is required. Thus, for even a small system with several hundred-thousand

particles, a proper discretization would require several billion numerical unknowns (see, for example, Avci and Wriggers,

2012; Leonardi, Wittel, Mendoza, and Herrmann, 2014; Onate et al., 2014; Zohdi, 2014; Zohdi and Wriggers, 2008 ). Although

such simulations are possible in high-performance computing centers, their usefulness for rapid daily design analysis for

e-inks and related materials is minimal. Therefore, in this paper we seek to develop simplified approaches. This work presents

analytical calculations to predict the pressure required to pump a suspension of rigid, charged particles in an idealized non-

conducting fluid through a pipe of circular cross-section, under the assumption that the flow is uni-directional and fully

developed. It first arrives at an analytical modification of Poiseulle flow through a pipe. The analysis assumes the suspension

can simply treated as a homogenous fluid with an effective viscosity μ∗. This is a simplification, in order to develop useful

and practical analytical results, without having to resort to computationally-intensive numerical methods which seek to

calculate μ∗ from detailed accounting of the micro-scale hydrodynamic interactions between particles in a suspension. 

Remark. The upcoming analysis of a fluid seeded with charged particles exposed to an external electric field simplifies

the fundamental aspects of electrokinetic flows, with the objective being to develop simple scaling laws for such systems.

Readers interested in more detailed analyses can consult books such ( Probstein, 2003 ), specifically on electric double layers

and hydrodynamics of charged particles. In the present simplified analysis, the bulk mixture is charged (idealized as a

neutral fluid with embedded charged particles). Implicitly, in is assumed that the particles are on the order of 10 nm, since

charged mixtures with particles at length-scales larger than that are unlikely to sustain their charge. This is because the

counter-ions in the carrier fluid will be attracted to the surface of particles. This effect leads to the formation of thin electric

double layers shielding the charge of the particles. Therefore, the effective force felt by the particles due to an external field

will be significantly suppressed. Furthermore, we assume that the charged particles remain uniformly spaced, and that any

possible repulsive electrostatic force between the particles, does not have they enough time or strength to force the particles

to migrate towards the walls very quickly. It is also assumed that the electric force is proportional to the volume fraction

of particles, which is accurate at moderate volume fractions, but which is questionable at larger volume fractions, where

electrical interactions between particles should be resolved. 

2. Flow of an electrical-fluid through a pipe of radius R 

We consider a fluid that is capable of carrying an electrical charge. Taking an annular element and summing the pressure

and shear forces in the axial direction, along with uniform electrical body force, yields 

−∂P + 

1 ∂(rτ ) + f ∗e = 0 ⇒ 

1 ∂(rτ ) = 

∂P − f ∗e . (2.1) 

∂x r ∂r r ∂r ∂x 
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Integrating yields 

τ = 

r 

2 

(
∂ 

∂x 
− f ∗e 

)
+ 

C 1 
r 

= μ∗ ∂v 
∂r 

. (2.2)

Integrating again yields 

v (r ) = 

1 

μ∗

(
r 2 

4 

(
∂P 

∂x 
− f ∗e 

)
+ C 1 lnr 

)
+ C 2 . (2.3)

v (r = 0) must be finite, thus C 1 = 0 , and v (r = R ) = 0 yields 

v (r) = − R 

2 

4 μ∗

(
∂P 

∂x 
− f ∗e 

)(
1 −

(
r 

R 

)2 
)

(2.4)

Note that v (r) is a maximum where 

∂v 
∂r 

= 0 = 

R 

2 

4 μ∗

(
∂P 

∂x 
− f ∗e 

)
2 r 

R 

2 
, (2.5)

which is at r = 0 . Thus, 

v max = v (r = 0) = − R 

2 

4 μ∗

(
∂P 

∂x 
− f ∗e 

)
⇒ v (r) = v max 

(
1 −

(
r 

R 

)2 
)

(2.6)

If we assume that the flow rate is constant 

Q = Q o = 

∫ 
A 

v dA = 

πv max R 

2 

2 

⇒ v max = 

2 Q o 

πR 

2 
, (2.7)

and we obtain 

v (r) = 

2 Q o 

πR 

2 

(
1 −

(
r 

R 

)2 
)

(2.8)

The stress at becomes 

τ (r) = μ∗ ∂v (r) 

∂r 
= −4 μ∗Q o r 

πR 

4 
. (2.9)

The stress at the wall becomes 

τw 

= −τ (r = R ) = 

2 μ∗v max 

R 

= 

4 μ∗Q o 

πR 

3 
. (2.10)

We have the following observations: (a) Increasing μ∗ or Q o increases the stress at the wall ( τw 

) and (b) Decreasing R

increases the stress at the wall ( τw 

). In the remaining analysis, we will assume steady flow, the particles are not elongated

and that they are well distributed within the base fluid. 

3. Pressure gradients 

The previous expressions allow us to correlate the pressure applied to a volume of particle-laden to allow it to move as a

constant flow rate. By performing a force balance, we have in the positive x-direction (assuming steady flow, no acceleration)

(−(P + �P ) + P ) πR 

2 − τw 

2 πR �x + f ∗e πR 

2 �x = 0 , (3.1)

where x is the coordinate along the length of the pipe and �x is the differential length, leading to 

−�P = μ∗ 4 Q o 

π2 R 

5 
2 πR �x − f ∗e �x = 0 , → −�P 

�x 
= −∂P 

∂x 
= 

8 μ∗Q o 

πR 

4 
− f ∗e , (3.2)

where we used the expression for v max and where the effective viscosity is a function of the volume fraction of particles,

μ∗ = μ∗(νp ) . An explicit relation for μ∗( νp ) will be given shortly. Solving for the pressure gradient yields 

−�P 

�x 
= −∂P 

∂x 
= 

8 μ∗

πR 

4 ︸ ︷︷ ︸ 
C 

Q o − f ∗e 
def = CQ o − f ∗e . (3.3)

If we fix the flow rate Q o , the multiplier C and f ∗e identify the pressure gradient needed to achieve a flow rate Q o . For small

pipes this can be a problem, as indicated by the R 4 term in the denominator. 
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4. Decomposition of the electrical force 

One can integrate the total electromotive force per unit volume as 

f ∗e 
def = 〈 f e (x ) 〉 V def = 

1 

V 

∫ 
V 

f e d V = 

1 

V 

(∫ 
V f 

f e − f d V + 

∫ 
V p 

f e −p d V 

)
= ν f 〈 f e − f 〉 � f 

+ νp 〈 f e −p 〉 �p 
. (4.1)

Decomposing the electrical force into the electric field, E and the charge per unit volume, λ, yields 

f ∗e = ν f 〈 λ f E〉 � f 
+ νp 〈 λp E〉 �p 

. (4.2) 

Assuming that the base fluid carries no charge, that the electric field E is uniform and that the charge in each particle is

uniform yields 

f ∗e = νp 〈 λp E〉 �p 
= νp λp E. (4.3) 

Thus, we have 

−∂P 

∂x 
= 

8 μ∗

πR 

4 ︸ ︷︷ ︸ 
C 

Q o − f ∗e 
def = CQ o − νp λp E. (4.4) 

The ratio of the electrical force to the viscous force is 

	
def = 

πR 

4 νp λp E 

8 μ∗Q o 
. (4.5) 

The effective viscosity is a function of νp , which we discuss next. 

5. Models for effective properties of particle-laden fluids 

A key component of the analysis requires the characterization of the effective properties of a particle-laden fluid as a

function of the volume fraction of particles and the baseline (interstitial) fluid properties. The density of the particle-laden

fluid is actually an “effective density”, since it actually is a mixture of materials (particles and interstitial fluid). Effective

properties are defined through volume averages. For example, the effective density of the mixture is 

ρ∗ def = 〈 ρ(x ) 〉 V def = 

1 

V 

∫ 
V 

ρ(x ) d V = 

1 

V 

(∫ 
V f 

ρ f d V + 

∫ 
V p 

ρp d V 

)
= ν f ρ f + νp ρp (5.1) 

where ν f and νp are the volume fractions of the fluid and particles, respectively. The volume fractions have to sum to unity:

ν f + νp = 1 ⇒ ν f = 1 − νp . Similar approaches can be used to calculate various types of properties, such as the effective

viscosity. However, to calculate it is somewhat more complicated, since it requires one to estimate the interaction between

the constituents. There are a number of models which provide expressions for the effective viscosity of the fluid containing

particles. One of the first models for the effective viscosity of such fluids was developed in 1906 by Einstein (1906) . It reads

as 

μ∗ = μ f (1 + 2 . 5 νp ) , (5.2) 

where μ∗ is the effective viscosity, μf is the viscosity of the fluid and νp is the volume fraction of particles. This expression

is accurate only for low volume fractions of particles. A more accurate approximation, in fact a strict, rigorous, lower bound

(accurate up to approximately νp = 20% , which is sufficient for most applications of interest) can be derived from the well-

known Hashin and Shtrikman bounds ( Hashin and Shtrikman, 1962, 1963 , and Hashin, 1983 ) bounds in solid mechanics.

Specifically, for linearized elasticity applications, for isotropic materials with isotropic effective (mechanical) responses, the 

Hashin–Shtrikman bounds (for a two-phase material) are as follows for the effective bulk modulus ( κ∗) 

κ∗, − def = κ1 + 

ν2 

1 
κ2 −κ1 

+ 

3(1 −ν2 ) 
3 κ1 +4 μ1 

≤ κ∗ ≤ κ2 + 

1 − ν2 

1 
κ1 −κ2 

+ 

3 ν2 

3 κ2 +4 μ2 

def = κ∗, + 
(5.3) 

and for the effective shear modulus ( G 

∗) 

G 

∗, − def = G 1 + 

ν2 

1 
G 2 −G 1 

+ 

6(1 −ν2 )(κ1 +2 G 1 ) 
5 G 1 (3 κ1 +4 G 1 ) 

≤ G 

∗ ≤ G 2 + 

(1 − ν2 ) 
1 

G 1 −G 2 
+ 

6 ν2 (κ2 +2 G 2 ) 
5 G 2 (3 κ2 +4 G 2 ) 

def = G 

∗, + , (5.4) 

where κ1 (usually the matrix material) and κ2 (usually the particulate material) are the bulk moduli and G 1 and G 2 are

the shear moduli of the respective phases ( κ2 ≥κ1 and G 2 ≥ G 1 ), and where ν2 is the second phase volume fraction. Such

bounds are the tightest possible on isotropic effective responses, with isotropic two phase microstructures, where only the

volume fractions and phase contrasts of the constituents are known (see Hashin, 1983 for a discussion on the optimality of

such bounds). Note that no geometric or statistical information is required for the bounds. For an authoritative review of the

general theory of random heterogeneous media see Torquato (2002) . One can take the limit of the particle phase becoming
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Fig. 2. LEFT: the pressure gradient needed ( �P 
�x 

) as a function of volume fraction of νp with an electric field present. MIDDLE: the pressure gradient needed 

( �P 
�x 

) as a function of volume fraction of νp with no electric field present. RIGHT: the ratio of the electric force to the fluid forces ( 	). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rigid, i.e. the bulk and shear moduli tending towards infinity, κ2 = κp → ∞ and G 2 = μp → ∞ , signifying that the particles

are much stiffer than the interstitial fluid, while simultaneously specifying that the interstitial fluid is incompressible, i.e.

κ1 /G 1 = κ f /μ f → ∞ with G 1 being finite. This yields, 

μ∗ ≥ μ∗, − = μ f 

(
1 + 2 . 5 

νp 

1 − νp 

)
. (5.5)

Eq. (5.5) represents the tightest known lower bound on the effective viscosity of a two-phase material comprised of rigid

particles in a surrounding incompressible fluid. The bound recapture the Einstein result in the νp → 0 limit, but is a rigorous

lower bound at significant νp . This rigorous lower bound is extremely accurate up to approximately 20 % volume fraction.

These bounds have been tested in the numerical analysis literature repeatedly, for example against direct Finite Element

calculations found in Zohdi and Wriggers (2008) . We refer the reader to Kachanov and Abedian (2015) for more in depth

analysis on the effective viscosity of particle-laden fluids see Sevostianov and Kachanov (2012) for the analysis of the proper

application of the non-interaction and the “dilute limit” approximations and for detailed discussions on the isotropic and

anisotropic viscosity of suspensions containing particles of diverse shapes and orientations. It is important to emphasize

that ( Kachanov & Abedian, 2015 ) is accurate for up to 25–30 % in case of spherical particles. Furthermore, Kachanov and

Abedian (2015) covers other shapes, including, importantly, mixtures of diverse shapes. Of course, one can one employ

formulas such as in Kachanov and Abedian (2015) for more accuracy, however, because the Hashin–Strikman expression is

a strict lower bound, μ∗, − ≤ μ∗, we consequently generate a strict lower bound for the pressure gradient 

−∂P 

∂x 
≥ 8 μ∗, −

πR 

4 ︸ ︷︷ ︸ 
C −

Q o − f ∗e 
def = C −Q o − νp λp E (5.6)

and a strict upper bound on the ratio of the electrical force to the viscous force 

	 ≤ πR 

4 νp λp E 

8 μ∗, −Q o 
. (5.7)

6. Trends 

We plotted the pressure gradient as a function of νp , with the following parameters: 1 (a) viscosity, μ f = 0 . 01 Pa − s , (b)

fluid density: ρ f = 10 0 0 kg / m 

3 , (c) particle density: ρp = 50 0 0 kg / m 

3 , (d) flow rate: Q o = 0 . 0 0 0 0 01 m 

3 / s , (e) pipe radius:

R = 0 . 001 m , and (f) electric force: qE = 500 , 000 . At approximately 8 % volume fraction, the required pressure gradient to

maintain the specified Q o crosses from being negative (as it would be if there is no electric field). Approximately at this

volume fraction, no pressure gradient is needed. As a baseline for comparison, Fig. 2 shows the pressure gradient needed

with no electric field. This steadily increases with particle volume fraction (approximately 2.4 times the pressure gradient

is needed for a 35 % volume fraction fluid that for a pure baseline fluid (zero volume fraction). Due to the increase in the

particle volume fraction, the viscosity increases, thus decreasing the Reynolds number. The point of this example was not

to illustrate an all encompassing parameter set, but simply to show the explicit dependency of the pressure gradient on the

presence of secondary particles, with and without an electric field. Other parameter sets can be easily simulated. 

7. Summary and extensions 

In summary, as one increases the volume fraction of particles in an electrically-functionalized fluid, two effects effects

arise: (1) an increase in effective overall viscosity fluid and (2) an increase in the induced electrical force that can be applied.
1 For reference, the viscosity of water is μ f = 0 . 001 Pa − s and for honey, μ f = 1 Pa − s . 
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Fig. 3. LEFT: progressive blunting of the velocity profile with increasing q . MIDDLE: the pressure gradient needed ( �P 
�x 

) as a function of volume fractions 

of νp . RIGHT: the resulting Reynolds number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Because the presence of particles increases the overall viscosity of the fluid, the pressure gradients needed to pump such

fluids through pipes at a nominal flow rate can increase dramatically. The use of an electric field, if the particles are charged,

can dramatically decrease the pressure gradients needed to achieve a predetermined flow rate. This paper developed the

governing equations for the required pressure gradient in a pipe to move the fluid with a constant flow rate in the presence

of an electric field. A nondimensional ratio governing the relative contribution of electrical and viscous fluid forces to the

system behavior was identified and numerical examples are provided to illustrate the results. The nondimenional expression

explicitly correlates the dependency of the pressure gradient and the applied electric field to the particle volume fraction. To

obtain more detailed information, for example on the flow profile as a function of the input parameters, the model can be

extended further rather easily. For example, consider we again idealized pipe with a circular cross-section of area A = πR 2 ,

with a velocity profile given by a phenomenological extension: 

v = v max 

(
1 −

(
r 

R 

)q )
, (7.1) 

where q is now considered a variable. For fully developed laminar flow, q = 2 , while for increasing q one characterizes,

phenomenologically, progressively turbulent flow ( q ≥ 2). The shear stress is given by 

τ = μ∗ ∂v 
∂r 

= −μ∗v max q 

R 

(
r 

R 

)q −1 

, (7.2) 

where μ∗ is the effective viscosity of the particle-laden fluid. We assume that the overall flow rate is assumed constant,

thus Q = 

∫ 
A v dA = Q o . One can show that 

v max = 

Q o (q + 2) 

Aq 
= 

Q o (q + 2) 

πR 

2 q 
. (7.3) 

The stress at the wall becomes 

τw 

= −τ (r = R ) = 

μ∗v max q 

R 

= 

μ∗Q o (q + 2) 

πR 

3 
. (7.4) 

We observe that as q increases the stress at the wall ( τw 

) increases and that increasing q leads to an increasingly more

blunted flow profile. As before, by performing a force balance we have in the positive x-direction (assuming steady flow, no

acceleration) we obtain an expression for the pressure gradient yields 

−�P 

�x 
= −∂P 

∂x 
= 

2 μ∗(q + 2) 

πR 

4 ︸ ︷︷ ︸ 
C 

Q o − f ∗e 
def = CQ o − f ∗e . (7.5) 

This generalization of the classical Poiseuille solution for fully developed flow in a pipe (assuming the velocity depends on

some undetermined power q instead of the standard parabolic dependence. We solve for q next. However, in general, q is a

function of the Reynolds number. This case will be considered next. As the Reynolds number increases, the velocity profile

will change from a quadratic ( q = 2 ) to a more blunted profile ( q > > 2), which represents, phenomenologically, turbulent

(inertia-dominated) behavior ( Fig. 3 ). The effect of a changing profile is described by representing q by a linear function of

the centerline Reynolds’ number ( R ec ) 

q = q (R ec ) = c 1 R ec + c 2 , (7.6) 

where R ec = 

ρ∗v max 2 R 
μ∗ and c 1 and c 2 are constants. Models of this type, linking the profile exponent ( q ) to the centerline

Reynolds’ number ( R ec ), are quite well-established, for example, see Hinze (1975) . Usually, 0 ≤ c 1 < < 1 and c 2 ≈ 2, and in

the limit we have, for c 1 = 0 and c 2 = 2 , laminar flow ( q = 2 ). For the general case, combining Eq. (7.3) with Eq. (7.6) and

the definition of the centerline Reynolds’ number, we obtain a quadratic relationship for q , 

q 2 − (γ ∗ + c 2 ) q − 2 γ ∗ = 0 , (7.7) 



T.I. Zohdi / International Journal of Engineering Science 123 (2018) 73–80 79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where γ ∗ = 

2 c 1 Q o ρ
∗

πRμ∗ , where ρ∗ is the effective density and μ∗ is the effective viscosity. This quadratic relationship can be

solved in closed form for q to yield 

2 

q (R ec ) = 

1 

2 

(
(γ ∗ + c 2 ) ±

√ 

(γ ∗ + c 2 ) 2 + 8 γ ∗
)
. (7.8)

The larger root is the physically correct choice (since the smaller root can become negative). We further observe that q (R ec )

is a function of R −1 and decreasing R increases q , for fixed Q o . Using the effective properties, we have an expression for the

velocity profile exponent 

q (R ec (μ
∗, ρ∗) , γ ∗) = 

1 

2 

(
(γ ∗ + c 2 ) ±

√ 

(γ ∗ + c 2 ) 2 + 8 γ ∗
)
. (7.9)

Consequently, the pressure gradient’s dependency on the volume fraction of particles can be written as 

−∂P 

∂x 
= 

2(μ f (1 + 2 . 5 

νp 

1 −νp 
))(q (R ec (μ∗, ρ∗) , γ ∗) + 2) 

πR 

4 
Q o − νp λp E 

def = C ∗Q o − νp λp E, (7.10)

where C ∗ = C ∗(Q o ) . For a fixed flow rate, Q o , increasing the volume fraction of particles ( νp ) requires a corresponding in-

crease in the pressure differential. Explicitly, the Reynolds number is 

R ec = 

v max Dρ∗

μ∗ = 

2 Q o (q + 2) 

πRq 

((1 − νp ) ρ f + νp ρp ) 

μ f (1 + 2 . 5 

νp 

1 −νp 
) 

. (7.11)

Fig. 3 shows the dependency of the Reynolds number on the volume fraction, using the previous simulation parameters and

profile constants: c 1 = 0 . 01 and c 2 = 2 . For the case considered, for increasing volume fraction, the profile changes (blunts)

moderately to approximately q = c 1 R ec + c 2 ≈ 3 , then decreases due to the increased effective viscosity. However, while

these models can provide macroscopic quantitative and qualitative information, more detailed microscale information on

the flow requires complex spatio-temporal discretization resolving multiparticle particle-fluid interaction. Such particle-fluid

systems are strongly coupled, due to the drag forces induced by the fluid onto the particles and vice-versa. For exam-

ple, in Zohdi (2014) , a flexible and robust solution strategy was developed to resolve coupled systems comprised of large

groups of flowing charged particles embedded within a continuous fluid, based on numerical iterative schemes to resolve

the coupling. The approach can be used in conjunction with computational fluid mechanics codes based on finite difference,

finite element, finite volume or discrete element discretization and is under further development to characterize electrically-

functionalized fluid systems is under by the author. 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.ijengsci.2017.11.003 . 
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