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In modern advanced manufacturing processes, such
as three-dimensional printing of electronics, fine-
scale particles are added to a base fluid yielding
a modified fluid. For example, in three-dimensional
printing, particle-functionalized inks are created by
adding particles to freely flowing solvents forming a
mixture, which is then deposited onto a surface, which
upon curing yields desirable solid properties, such
as thermal conductivity, electrical permittivity and
magnetic permeability. However, wear at solid–fluid
interfaces within the machinery walls that deliver
such particle-laden fluids is typically attributed to the
fluid-induced shear stresses, which increase with the
volume fraction of added particles. The objective of
this work is to develop a rigorous strict upper bound for
the tolerable volume fraction of particles that can be
added, while remaining below a given stress threshold
at a fluid–solid interface. To illustrate the bound’s
utility, the expression is applied to a series of classical
flow regimes.

1. Introduction
Within the last decade, several industrialized countries
have stressed the importance of advanced manufacturing
to their economies. Many of these plans have highlighted
the development of additive manufacturing techniques,
such as three-dimensional printing. Specialized materials
and the precise design of their properties are key factors
in the processes. Specifically, particle-functionalized
materials play a central role in this field, for example
modifying inks by adding particles to freely flowing

2018 The Author(s) Published by the Royal Society. All rights reserved.

 on March 22, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2017.0332&domain=pdf&date_stamp=2018-03-21
mailto:zohdi@berkeley.edu
http://orcid.org/0000-0002-0844-3573
http://rspa.royalsocietypublishing.org/


2

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20170332

...................................................

base fluid

particle-laden fluid

added
particles

Figure 1. A particle-laden fluid.

solvents forming a mixture (figure 1), which is then deposited onto a surface and subsequently
cures. For example, functionalized ink materials (primarily for printed electronics) are comprised
of particles in a solvent/lubricant. Oftentimes, these inks are used to lay down electric circuit lines
or to have some other specific electromagnetic function on a surface. For example, applications
include optical coatings and photonics [1], MEMS applications [2–4] and biomedical devices [5].
In terms of processing techniques, we refer the reader to Sirringhaus et al. [6], Wang et al. [7],
Huang et al. [8], Choi et al. [9–12], Demko et al. [13,14] and Zohdi [15] for details.1 We remark
that functionalized, particle-laden inks are now very important in bioprinting applications, nano-
structure laden materials that can be used for sensing, as well as bioinspired, tough composites
for purely mechanical applications.

In the majority of the mentioned cases, the associated manufacturing processes employ flow
regimes that are laminar and Newtonian. Wear at solid–fluid interfaces within the machinery
walls that carry such particle-laden fluids is attributed to the fluid-induced shear stresses, which
increase with the volume fraction of added particles. The objective of this work is to develop a
strict upper bound in the tolerable volume fraction of particles that can be added while remaining
below a given stress threshold at a fluid–solid interface.

(a) Strict lower bounds on the effective viscosity
One of the first models for the effective viscosity of such fluids was developed in 1906 by Einstein
[18], but is only accurate at extremely low volume fractions of particles (�1%). It reads as

μ∗ = μf(1 + 2.5νp), (1.1)

where μ∗ is the effective viscosity, μf is the viscosity of the fluid and νp is the volume fraction
of particles. A more accurate approximation, in fact a strict, rigorous, lower bound (accurate
up to approximately νp ≈ 15%, which is sufficient for many applications of interest) can be
derived from the well-known Hashin & Shtrikman [19–21] bounds in solid mechanics, which is
discussed next.

The literature on methods to estimate the overall effective solid properties of heterogeneous
materials dates back at least to Maxwell [22,23] and Lord Rayleigh [24], with a notable
contribution being the Hashin–Shtrikman bounds [19–21]. Specifically, for linearized elasticity
applications, for isotropic materials with isotropic effective (mechanical) responses, the

1For reviews of optical coatings and photonics, see Nakanishi et al. [1] and Maier & Atwater [16], for catalysts, see Haruta [17]
and for MEMS applications, see Fuller et al. [2].
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Hashin–Shtrikman bounds (for a two-phase material) are as follows for the effective bulk
modulus (κ∗)

κ∗,− def= κ1 + ν2

1/(κ2 − κ1) + 3(1 − ν2)/(3κ1 + 4μ1)
≤ κ∗

≤ κ2 + 1 − ν2

1/(κ1 − κ2) + 3ν2/(3κ2 + 4μ2)
def= κ∗,+ (1.2)

and for the effective shear modulus (G∗)

G∗,− def= G1 + ν2

1/(G2 − G1) + 6(1 − ν2)(κ1 + 2G1)/5G1(3κ1 + 4G1)
≤ G∗

≤ G2 + (1 − ν2)
1/(G1 − G2) + 6ν2(κ2 + 2G2)/5G2(3κ2 + 4G2)

def= G∗,+, (1.3)

where κ1 (usually the matrix material) and κ2 (usually the particulate material) are the bulk
moduli, and G1 and G2 are the shear moduli of the respective phases (κ2 ≥ κ1 and G2 ≥ G1),
and where ν2 is the second phase volume fraction. Such bounds are the tightest possible on
isotropic effective responses, with isotropic two-phase microstructures, where only the volume
fractions and phase contrasts of the constituents are known (see [21] for a discussion on the
optimality of such bounds). Note that no geometric or statistical information is required for
the bounds. For an authoritative review of the general theory of random heterogeneous media
see Torquato [25]. For more mathematical homogenization aspects, see Jikov et al. [26], while
for solid-mechanics inclined accounts of the subject see Hashin [21], Mura [27] or Markov [28].
To represent rigid particles in an incompressible fluid, one can take the limit of the particle
phase becoming rigid, i.e. the bulk and shear moduli tending towards infinity, κ2 = κp → ∞ and
G2 = μp → ∞, signifying that the particles are much stiffer than the interstitial fluid (assigning
the elastic shear modulus G1 to the fluid viscosity μf), while simultaneously specifying that the
interstitial fluid is incompressible, i.e. κ1/G1 = κf/μf → ∞ (with G1 being finite). This yields, for
the lower Hashin–Shtrikman bound2

μ∗,− = μf

(
1 + 2.5

νp

1 − νp

)
. (1.4)

Equation (1.4) represents the tightest known lower bound on the effective viscosity of a two-phase
material comprised of rigid particles in a surrounding incompressible fluid. We refer the reader
to Sevostianov & Kachanov [29] and Kachanov & Abedian [30] for in depth reviews. The bound
recaptures the Einstein result in the νp → 0 limit, but is a rigorous lower bound at significant
νp. This rigorous lower bound is extremely accurate up to approximately 15% volume fraction.
These bounds have been tested in the numerical analysis literature repeatedly, for example,
against direct finite-element calculations found in Zohdi & Wriggers [31], Ghosh [32] and Ghosh
& Dimiduk [33]. This is discussed further later in the paper.

Remark. It is critical to emphasize that we assume that not only the base fluid is Newtonian,
but also that particle-base fluid combination behaves in Newtonian manner.

(b) Subsequent strict upper bounds on the tolerable particle volume fraction
Consider the following Newtonian relation:

τ = 2μ∗D(v), (1.5)

where τ is the viscous stress, μ∗ is the effective viscosity and D = 1
2 (∇v + (∇v)T). There is a large

number of classical velocity fields (examples will be given shortly) which are independent of the

2The upper bound yields no valuable information; i.e. μ∗,+ → ∞.
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viscosity of the fluid (when the volumetric flow rate is controlled)

v 
= v(μ∗). (1.6)

Thus, if we employ a lower bound on μ∗, we obtain

μ∗,−‖2D(v)‖ ≤ μ∗‖2D(v)‖ = ‖τ‖ = τ crit, (1.7)

where τ crit is a preset critical shear stress threshold which one does not wish to exceed. Thus,

μ∗,− ≤ τ crit

‖2D(v)‖ , (1.8)

or explicitly

μ∗,− = μf

(
1 + 2.5

νp

1 − νp

)
≤ τ crit

‖2D(v)‖ , (1.9)

or compactly

νp ≤ τ crit − μf‖2D(v)‖
τ crit + (3/2)μf‖2D(v)‖ . (1.10)

This provides a strict upper bound on the volume fraction of particles that can be added while
respecting a critical shear stress. To illustrate the use of this expression, three classical examples
are considered:3

— flow through two infinite stationary plates (channel/planar Poiseuille flow),
— flow through two infinite plates with additional motion of one plate (Couette flow) and
— flow through a pipe of radius R.

2. Application: flow through two infinite stationary plates
(channel/Poiseuille flow)

Referring to figure 2, assuming fully developed, steady, Newtonian flow, with the control variable
being the constant volumetric flow rate Q(t) = Qo, between two very wide (width = w) plates
separated by a distance a, the classical solution can be written as

v(y) = 6Qo

aw

(
y
a

−
(y

a

)2
)

. (2.1)

The shear stress becomes

τ = μ∗ ∂v(y)
∂y

= μ∗
(

6Qo

aw

(
1
a

− 2y
a2

))
. (2.2)

At the walls, y = a and y = 0 ∣∣∣∣∂v(y)
∂y

∣∣∣∣ = 6Qo

a2w
. (2.3)

Now using equation (1.10) (where ‖2D(v)‖ is replaced by |∂v/∂y|) yields

νp ≤ τ crit − μf(6Qo/a2w)
τ crit + μf(9Qo/a2w)

. (2.4)

3. Application: flow through two infinite plates with additional motion
of one plate (Couette flow)

Referring to figure 3, assuming fully developed, steady, Newtonian flow, with constant volumetric
flow rate Q(t) = Qo, between two very wide (width = w) plates separated by a distance a, with the

3We remark that such an expression can find uses in biological flow regimes where wall shear stress is attributed to a variety
of secondary effects associated with atherosclerosis [34].
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Figure 2. Flow through two very wide plates.
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Figure 3. Flow through two very wide plates, with the top plate in motion.

top plate moving with a horizontal velocity of V , the classical solution can be written as

v(y) = V
a

y − 6
(V

2
− Qo

aw

) (
y
a

−
(y

a

)2
)

. (3.1)

The shear stress becomes

τ = μ∗ ∂v(y)
∂y

= μ∗
(V

a
− 6

(V
2

− Qo

aw

)(
1
a

− 2y
a2

))
. (3.2)

At the walls, y = a ∣∣∣∣∂v(y)
∂y

∣∣∣∣ =
∣∣∣∣Va + 6

( V
2a

− Qo

a2w

)∣∣∣∣ (3.3)

and y = 0 ∣∣∣∣∂v(y)
∂y

∣∣∣∣ =
∣∣∣∣Va − 6

( V
2a

− Qo

a2w

)∣∣∣∣ . (3.4)

Now using equation (1.10) (where ‖2D(v)‖ is replaced by |∂v/∂y|) yields, for y = a,

νp ≤ τ crit − μf|V/a + 6(V/2a − Qo/a2w)|
τ crit + (3/2)μf|V/a + 6(V/2a − Qo/a2w)| , (3.5)

while for y = 0,

νp ≤ τ crit − μf|V/a − 6(V/2a − Qo/a2w)|
τ crit + (3/2)μf|V/a − 6(V/2a − Qo/a2w)| . (3.6)

(a) Special case: flow between two concentric cylinders
A special case of the previous example is the flow between two concentric cylinders (with a gap
of a), where the interior cylinder is rotating with angular velocity ω and the outer cylinder being
stationary (figure 4). Assuming steady flow and no angular dependence of the solution (angular
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R

w

Figure 4. Flow between two concentric cylinders.

symmetry), the solution collapses to simply

v(y) = V
a

y, (3.7)

where V = Rω, where R is the radius of the inner cylinder and ω is its angular velocity. The shear
stress becomes

τ = μ∗ ∂v(y)
∂y

= μ∗V
a

. (3.8)

At the walls

∣∣∣∣∂v(y)
∂y

∣∣∣∣ =
∣∣∣∣Va

∣∣∣∣ . (3.9)

Now using equation (1.10) (where ‖2D(v)‖ is replaced by |∂v/∂y|) yields

νp ≤ τ crit − μf|V/a|
τ crit + (3/2)μf|V/a| . (3.10)

4. Flow through a pipe of radius R
Referring to figure 5, we consider a pipe with radius R and a circular cross-sectional area of
A = πR2. Assuming fully developed, steady, Newtonian flow, with constant volumetric flow rate
Q(t) = Qo, one obtains

v(r) = 2Qo

A

(
1 −

( r
R

)2
)

. (4.1)

The stress becomes

τ (r) = μ∗ ∂v(r)
∂r

= −4μ∗Qor
πR4 . (4.2)

Using equation (1.10) yields (where ‖2D(v)‖ is replaced by |∂v/∂r|), for r = R,

νp ≤ τ crit − μf(4Qo/πR3)
τ crit + μf(6Qo/πR3)

. (4.3)
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x

r

Figure 5. Flow through a pipe.

5. Comparative analysis with a commonly used estimate
A widely used effective viscosity estimate is that of Oliver & Ward [35] which, although not a
rigorous bound, is much better agreement with experimental data up to νp = 0.30 (see [29,30] for
extensive reviews). It reads as

μ∗ ≈ μ∗e = μf

1 − 2.5νp
. (5.1)

Repeating the analysis with this expression (equation (5.1) instead of (1.4)), we start with

τ = 2μ∗D(v) ⇒ μ∗‖2D(v)‖ ≤ μ∗‖2D(v)‖ = ‖τ‖ = τ crit (5.2)

and inserting

μ∗e = μf

1 − 2.5νp
≈ τ crit

‖2D(v)‖ (5.3)

yields

νe
p ≈ 2

5

(
1 − μf‖2D(v)‖

τ crit

)
. (5.4)

This provides an estimate on the volume fraction of particles that can be added, while respecting
a critical shear stress limit. As the basis of this expression is the effective property estimate, which
is accurate for up to νp = 0.30 [29,30], we can assume a subsequent high level of fidelity for the
volume fraction estimates. To compare the estimate to the rigorous lower bound we define two

predicted effective viscosities, one from the bound (def=μ∗−) and the other from the Oliver & Ward

[35] estimate (def=μ∗e) and take their ratio

Φ
def= μ∗−

μ∗e = μf(1 + 2.5(νp/(1 − νp)))
μf/(1 − 2.5νp)

=
1 − νp − 3.75ν2

p

1 − νp
≤ 1, (5.5)

which is always less than unity for finite νp. Numerical results are shown in table 1. The agreement
is reasonable up to about νp ≈ 15%. The subsequent ratio of resulting predicted tolerable volume

fractions of the bound (def= ν−
p ) and the Oliver & Ward [35] estimate (def= νe

p) is

Γ
def=

ν−
p

νe
p

= (τ crit − μf‖2D(v)‖)/(τ crit + (3/2)μf‖2D(v)‖)
(2/5)(1 − μf‖2D(v)‖/τ crit)

= 5
2 + 3(μf‖2D(v)‖/τ crit)

≥ 1, (5.6)

which is always greater than unity, since τ crit ≥ μf‖2D(v)‖. Finally, in order to illustrate the use of
this estimate, again consider the three classical examples from before:

— flow through two infinite stationary plates (channel/planar Poiseuille flow), where
‖2D(v)‖ is replaced by |∂v(y)/∂y| = 6Qo/a2w, yielding

νe
p ≈ 2

5

(
1 − μf‖2D(v)‖

τ crit

)
= 2

5

(
1 − 6μfQo

a2wτ crit

)
. (5.7)
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Table 1. A comparison of the two predicted effective viscosities: from the bound (def= μ∗−) and the Oliver &Ward [35] estimate
(def=μ∗e).

νp Φ

0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.10 0.958
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.15 0.900
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.25 0.687
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.30 0.518
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

— flow through two infinite plates with additional motion of one plate (Couette flow),
where ‖2D(v)‖ is replaced by |∂v(y)/∂y| = |V/a|, yielding

νe
p ≈ 2

5

(
1 − μf‖2D(v)‖

τ crit

)
= 2

5

(
1 −

∣∣∣∣ μfV
aτ crit

∣∣∣∣
)

. (5.8)

— flow through a pipe of radius R, where ‖2D(v)‖ is replaced by |∂v/∂r| = 4Qor/πR4,
yielding, for r = R,

νe
p ≈ 2

5

(
1 − μf‖2D(v)‖

τ crit

)
= 2

5

(
1 − 4μfQo

πR3τ crit

)
. (5.9)

The preceding analysis simply provides a comparative example with one such effective viscosity
estimate, and could be repeated for others found in the literature. We emphasize that the objective
was to formulate a conservative upper-bound that can be used to safely design systems involving
particle-laden flows.

6. Conclusion
In this work, lower bounds from the field of particle-laden solid mechanics were adopted to
generate a lower bound on the effective viscosity of a Newtonian base fluid with embedded rigid
particles. This expression was then in turn used to generate a strict upper bound in the tolerable
volume fraction of particles that can be added, while respecting a critical stress threshold at a
fluid–solid interface. The derived expression, equation (1.10), is simple to use, and was applied
to some classical problems, for illustration purposes. The expression should be quite useful in
the analysis of fluid-induced shear stresses in advanced manufacturing processes [36], where
functionalizing particles are added to a base fluid, with viscosity μf, to produce a type a new
fluid, with effective viscosity, μ∗. In addition to the industrial examples that were discussed in
the Introduction, we further mention that electromagnetic fluids are typically functionalized by
embedding charged or electromagnetically sensitive particles in a neutral fluid. Such fluids date
back, at least, to Winslow [37,38] in 1947. While the most widely used class of such fluids are
electrorheological fluids, which are comprised of extremely fine suspensions of charged particles
(on the order of 1–5 µ) in an electrically neutral fluid, there has been a renewed interest in this
class of materials because of so-called e-inks (electrically functionalized inks) driven by printed
electronics. Electrical inkjet printing is attractive due to its high throughput. This, of course,
comes with increases in the Reynolds number, which in turn will lead to potentially turbulent
flow. Currently, patterning with inkjet printing is limited to a resolution of around 20–50 µm with
current printers [39] with higher resolution possible by adding complexity to the substrate prior
to printing [7]. Electrohydrodynamic printing has also been proposed to increase the resolution
beyond the limits of inkjet printing, achieving a line resolution as small as 700 nm [40]. There are
a variety of related high-throughput industrial deposition techniques, and we refer the reader
to the surveys of the state of the art found in Martin [41,42], as well as the extensive works of
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Choi and co-workers [9–12] and Demko et al. [13], and the extension of equation (1.10) to those
regimes is under current investigation by the author.
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