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Abstract
This work presents a review of the formulation for computer simulation based on the discrete element method to analyze
granular materials and a validation of the method using different types of tridimensional examples. The individual particulate
dynamics under the combined action of particle collisions, particle–surface contact and adhesive interactions is simulated
and aggregated to obtain global system behavior. The formulations to compute the forces and momentums developed at the
particles are explained in details. The environment and gravity forces are considered as well as the contact forces that occur due
the contact between particles and walls, like normal contact forces, frictional contact forces, damping and adhesive bond. The
rolling phenomenon is also taken into account and is presented using a standard formulation. A numerical algorithm adapted
from Zohdi is also presented. A few tridimensional examples of classical physics are selected to validate the formulations and
the numerical program developed and to provide an illustration of the applicability of the numerical integration scheme. For
this purpose, each analytical formulation is demonstrated to compare and analyze the numerical results with the analytical
one. At the end of this article, a few tridimensional examples of granular materials are simulated. This article contributes to
the study of granular materials including the rotation phenomenon using particle methods.

Keywords Particle method · DEM · Explicit solution · Rolling · Granular materials

1 Introduction

The Discrete Element Method (DEM), also called distinct
element method, is any of a family of numerical methods
for computing the motion and effect of a large number of
small particles. As one of the several applications, DEM is
a method capable of simulating the mechanical behavior of
granular materials, this being the focus of the present work.
The method is based on interactions between particles and
walls, i.e., as the elements move through time and space,
contact may happen between them.
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The introduction will be presented in two subsections.
One regarding the evolution of the DEM method and the
other with the specific objectives of the present work.

1.1 DEMmethod evolution

The DEM, also known as Particle Method, was created by
Peter Cundall for simulating the movement of blocky rocks
systems (see [1]) and adapted for granularmaterials in collab-
oration with Strack (see [2]), as a model for the study of the
mechanical behavior of rocks, based on the work of previous
researches like [3]. In 1958Deresiewicz idealized an analytic
model to represent the behavior of the spheres of different
sizes inside a volume, see [3]. The works of Wakabayashi in
1950 and Dantu in 1957 enabled the direct determination of
the contact between particles, see [4, 5]. In 1969 Josselin de
Jong described the stress distribution between the particles,
improving the contact force determination and the resulting
displacements and rotations, for each individual particle, see
[6]. In 1973 Serrano e Rodriguez-Ortiz developed the first
bidimensional numerical model for the arrangement of par-
ticles, more flexible in applications than the analytic model
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presented by Deresiewicz, see [7] (apud [2]). These authors
show the different configurations of loads, sizes and physical
properties of the particles, making possible the calculation of
the contact forces and the subsequent displacements.

Although there are various approaches to the method,
Soft-Sphere Discrete Element Method (SSDEM) and Hard-
Sphere Discrete Element Method (HSDEM) are two of these
that are briefly explained. They were selected for their rele-
vance in the modeling of granular particle dynamics.

The Hard-Sphere Discrete Element Method (HSDEM)
predicts grain collisions in advance, treating these as instanta-
neous, and occurring at a single point of contact. The contact
happens at the surface of the particles. This method is ideal
for highly kinetically active systems, where the time that a
particle takes to cover a distance is considerably larger than
the time of a collision. This theory presents good results for
dilute/ballistic regimes, but for situations where the defor-
mations of the grains have to be accounted for, this method
is not such a good choice (see [8, 9]). The authors in [8]
presented the implementation of the Hard-Sphere Discrete
Element Method (HSDEM) in this code, along with a dis-
cussion of the primitives (walls) that can be used to represent
various kinds of boundary conditions (crater floors, geome-
try of sampling tools, experimental conditions, etc.). Other
works on HSDEM are presented by Hong and McLennan in
[10], Huilin et al. in [11], Kosinski and Hoffmann in [12] and
Mitarai and Nakanishi in [13].

The modeling of physical phenomena where the deforma-
tion of the grains needs to be considered is usually handled
by the Soft Sphere Discrete Element Method or, as it is com-
monly referred, Molecular Dynamics (MD). Each particle
interacts with the other via a soft potential, therefore its
name. This method doesn’t predict the contacts in advance,
and so, requires smaller integration interval times, increas-
ing the computational simulation time. This computational
burden may be relieved by parallel implementation (see [8,
9]). The authors in [8] affirm that the implementation of
SSDEM allows for the modeling of the different contact
forces between particles in granular material, such as var-
ious kinds of friction, including rolling and twisting friction,
and the normal and tangential deformation of colliding parti-
cles. Other works regarding SSDEM are presented by Cleary
and Sawley in [14], Tsuji et al. in [15], Sànchez in [16] and
Tancredi et al. in [17].

Other different approaches have been used to perform
modeling of granular materials, see for example [18].

Since then, a great amount of advances regarding the
method have been developed in the literature, being possi-
ble to highlight the following works presented by Vu-Quoc
et al. in [19], Martin and Bouvard in [20], Oñate et al. in [21],
Zohdi and Wriggers in [22] and Zohdi in [23].

Also, based on the formulation of the particle method,
a great amount of advances have been developed in stud-

ies of granular materials, such as presented by Ghaboussi
and Barbosa in [24], Donzé in [25], De Saxce et al. in [26],
Kruggel-Emden et al. in [27], Obermayr et al. in [28], El
Shamy and Aldebhamid in [29] and Casas et al. in [30];
among other works in the study of soil mechanics.

Capable of representing the most diverse geometries and
physical phenomena, the Discrete Element Method (DEM)
is, however, relatively computationally intensive, which lim-
its either the length of a simulation or the number of particles.
This problem can be avoided by using parallel processing
capabilities to scale up the number of particles or the length
of the simulation. See [31] for more details.

An alternative to treating all particles separately is to aver-
age the physics across many particles and thereby treat the
material as a continuum. In the case of solid-like granular
behavior, the continuum approach usually treats the material
as elastic or elasto-plastic and models it with the finite ele-
mentmethod or amesh-freemethod, as developed byElaskar
et al. in [32]. In the case of liquid-like or gas-like granular
flow, the continuum approachmay treat thematerial as a fluid
and use computational fluid dynamics, see [33].

1.2 Proposed research

Having presented a brief introduction of the method and pre-
vious works on the field, the basic aim of this paper is to
present a complete review of the particlemethod and to apply
it to the study of granular materials. With this purpose, tridi-
mensional examples are presented to validate themethod and
analyze the performance of the algorithms presented in this
article. The numerical results of selected particles are pre-
sented in the Appendices.

The particles used in thiswork to simulate granularmateri-
als aremodeled by rigid spheres by using themodel proposed
by Hertz. Several mechanical forces are taken into account
in the dynamic equilibrium equation. The effect of rotation
on the movement of particles is also considered. The friction
force is calculated byCoulomb’s law and this is used to calcu-
late the spin effect. The purpose of the paper is to demonstrate
that these formulations are perfectly suited for the analy-
sis of granular materials. Classical analytical examples are
described in the literature to verify the efficiency of the algo-
rithm and formulations presented. The convergence criterion
is applied to the particle displacements, but also extended
to velocities and angular velocities. The convergence is
obtained when these three quantities reach the established
tolerance. Finally, more elaborate three-dimensional exam-
ples are shown to verify the efficiency of the algorithm and
the formulations presented in this research. Another study
on rotation in granular materials was proposed by Campello
in [34]. In his work, the formulation of Euler Rodrigues was
used. Here, a simpler Coulomb’s law will be applied. Also, a
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comparison between explicit and implicit integrationmethod
is presented.

2 Rolling phenomena on a particle

In this section, the rolling phenomena on a particle will
be presented. Initially, a brief review of rolling phenomena
is summarized taking into account the contribution of the
translation and rotation in motion. The fundamental relation
between force and acceleration is given by Newton’s second
law of motion and is defined in vector form as

mi r̈ i � mi v̇i � Ftot
i

(
r1, r2, . . . , rNp

)
, (1)

where mi represents the mass, r i is the position vector, vi
and v̇i are the velocity and acceleration of the center of mass
of the i th particle, respectively, and Ftot

i represents all forces
acting on particle i . These forces will be presented in Sect. 3.

The linear moment (Gi ) is obtained from Eq. (1) by inte-
grating over the time. So,

∫ t2

t1
Ftot
i

(
r1, r2, . . . , rNp

)
dt

�
∫ t2

t1
midvi

⇒ Gi (t1) +
∫ t2

t1
Ftot
i

(
r1, r2, . . . , rNp

)
dt � Gi (t2),

(2)

where

Gi (t1) � (mivi )|t1
Gi (t2) � (mivi )|t2 . (3)

Clearly, if Ftot
i � 0, then Gi (t1) � Gi (t2) and the linear

momentum is said to be conserved.
An important quantity of interest is the velocity on the

surface of the particles denoted by vP
i , which have a potential

contact point with other particles or surfaces, represented by
the point P in Fig. 1, and is defined by

vP
i � vi + vri � vi + ωi × r i→c, (4)

where r i→c is the vector that connects the center of particle
to the contacting point with another particle or wall, ωi is
the angular velocity and vri � ωi × r i→c is the velocity at
particle’s surface generated by the rotation. See Fig. 1 for a
geometrical representation.

A related quantity is the angular momentum (H i ). About
the origin

H i
def� r i × Gi � r i × mvi . (5)

Tangent contact plane

Fig. 1 Geometrical representation of rotation contribution

Deriving the Eq. (5) as a function of time, results in

dH i

dt
� d

dt
(r i × mvi ) ⇒ Ḣ i � d r i

dt
× mvi + r i × m

dvi

dt
.

(6)

Note that d r i
dt × vi � vi × vi � 0 and replacing in (6), it

leads to

Ḣ i � r i × Ftot
i . (7)

The total moments M tot
i generated by interaction forces,

such as contact forces, rolling resistance, etc., is defined by

M tot
i � r i × Ftot

i . (8)

So, the Eq. (7) can be rewritten as

Ḣ i � M tot
i . (9)

The Eq. (5) can also be written as

H i � m
(
r i→c × vri

) � m(r i→c × ωi × r i→c)

� m
∥∥
∥r2i→c

∥∥
∥ · ωi � Īi,s · ωi , (10)

where Īi,s is the inertial momentum. For spheres,

Īi,s � 2

5
mi R

2
i , (11)

where Ri is the radius of the sphere. So, the Eq. (9) leads to

Ḣ i � d

dt

(
Īi,s · ωi

) � M tot
i . (12)

3 Active forces on a particle

In this section the acting forces on a particle are presented.
The resultant force acting on a particle is composed by sev-
eral contributions, as the normal contact force, the frictional
contact force based on a Coulomb’s friction law, the damping
force, the particle-to-wall contact force, the adhesive bonding
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force, the environmental force and the gravity force. These
forces are very important to describe the particle’s motion
along the analysis time. All of them will be explained in
details along this section.

The kinematics of the particle is presented by Zohdi
in [35]. However, a short presentation is done including
the contribution of the rolling effect. Basically, a group of
non-intersecting particles (i � 1, 2, . . . , Np) is considered,
where Np is the number of particles. Theobjects in the system
are assumed sufficiently large (in a sphere form) and conse-
quently, the effects of their rotation relative to their center
of mass are very important for their general movement and
need to be considered.

According to the Euler’s laws, at every time instant t , the
following equations of motion for the i th particle in system
must hold:

mi r̈ i � Ftot
i

(
r1, r2, . . . , rNp

)

� Fcon
i + F f r ic

i + Fwall
i + Fbond

i + Fdamp
i + Fenv

i + Fgrav
i

Īi,s · ωi � M tot
i �

Nci∑

j�1

r i→c × F f r ic
i j (13)

which Ftot
i is decomposed into the sum of forces, where Fcon

i
are the normal contact forces inter particle generated by con-
tactwith other particles,F f r ic

i are the sliding frictional forces,
Fwall
i are the wall forces generated by contact with constrain-

ing surfaces (having contact, friction and damping),Fbond
i are

the adhesive bonding forces with other particles and wall,
Fdamp
i are the damping forces arising from the surrounding

interstitial environment that occurs from potentially viscous
media, interstitial fluids or surfactants, Fenv

i is the environ-
ment force coming into play as force opposing the motion of
the particle due to the surrounding environment (i.e., damp-
ing from interstitial fluid or even smaller-scale particles or
solvents) and Fgrav

i is the gravity force. The second expres-
sion in Eq. (13) is needed for the description of the active
forces.

3.1 Normal contact forces developed in a contact
particle-to-particle

The particle-to-particle contact forces formulation was pre-
sented by Zohdi in [35, 36].

This formulation consists of determining the normal con-
tact force contributions from the surrounding particles (Nci )
in contact, see Fig. 2. The particle-to-particle contact forces
are defined by

Fcon
i �

Nci∑

j�1

Fcon
i j , (14)

Fig. 2 Normal contact and friction forces induced by neighboring par-
ticles in contact (Reproduced with permission from [36])

based on separation distance between particles in contact.
Generally,

Fcon
i j � F(∥∥r i − r j

∥∥, Ri , R j ,material parameters
)
,

(15)

where Ri and R j are the radii of particles i and j , respectively.

To obtain the expression (15) a simple relation is assumed,
i.e., the contact force is proportional to the relative normal-
ized proximity of particles i and j in contact, detected by the
distance between centers being less than the sum of the radii.
The geometric interpretation is shown in Fig. 3. Then,

I f
(∥∥r i − r j

∥
∥ ≤ Ri + R j

) ⇒ activate contact . (16)

The overlap is defined by

δi j
def� ∣∣∥∥r i − r j

∥∥− (
Ri + R j

)∣∣. (17)

So, theEq. (17) can also bewritten in the followingmanner

{
I f

∥∥r i − r j
∥∥− (

Ri + R j
) ≤ 0 ⇒ δi j

def� ∣∣∥∥r i − r j
∥∥− (

Ri + R j
)∣∣

I f
∥∥r i − r j

∥∥− (
Ri + R j

)
> 0 ⇒ δi j � 0

.

(18)

The first expression in Eq. (18) corresponds to “activate
contact” and the second one to “no contact”.

Accordingly, consider the following general relationship

Fcon
i j ∝ Kpi j

∣
∣Ei j

∣
∣Pp Ac

i jni j , (19)

where 0 < Kpi j < ∞ is a particle-to-particle contact com-
pliance constant, Pp is a material parameter, Ac

i j is a contact
area parameter, Ei j is normalized/nondimensional (strain-
like) deformation metric obtained by

Ei j �
∣∣∣
∣∣

∥∥r i − r j
∥∥− (

Ri + R j
)

(
Ri + R j

)

∣∣∣
∣∣
� δi j(

Ri + R j
) (20)
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Fig. 3 Geometrical constrain

Fig. 4 An approximation of the contact area parameter for two particles
in contact (adapted from [36])

and ni j is the normalized normal contact vector defined by

ni j � r i − r j∥∥r i − r j
∥∥ � − r j − r i∥∥r j − r j

∥∥ . (21)

It is important to mention the following relationship

n j i � r j − r j∥∥r j − r j
∥∥ � − r i − r j∥∥r i − r j

∥∥ � −ni j . (22)

3.1.1 Contact area discretization

An approximation was suggested by Zohdi in [35] for the
common contact radius ai j and for the contact area Ac

i j
defined by

Ac
i j � πa2i j , (23)

see Fig. 4 for a geometrical representation.
The contact area Ac

i j can be calculated by solving these
following equations

a2i j + L2
i � R2

i

a2i j + L2
j � R2

j

Li + L j � ∥∥r i − r j
∥∥, (24)

where Li is the distance from the center of particle i and
the common contact interpenetration line and L j is the dis-
tance from the center of particle j and the common contact
interpenetration line, where the extent of interpenetration is
δi j defined in Eq. (17). With Eq. (23) and first equation in
(24), the above equations yield expression ai j , which yields
an expression for the contact area parameter

Ac
i j � πa2i j � π

(
R2
i − L2

i

)
. (25)

The value of Li can be calculated using equations in (24).
So, these expressions can be rewritten as:

L j � ∥
∥r i − r j

∥
∥− Li

L2
j − L2

i � R2
j − R2

i . (26)

Substituting the first equation in the second one

(∥∥r i − r j
∥∥− Li

)2 − L2
i � R2

j − R2
i . (27)

Simplifying

∥∥∥r i − r2j

∥∥∥ + L2
i − 2Li

∥∥r i − r j
∥∥− L2

i � R2
j − R2

i . (28)

Again

∥∥∥r i − r2j

∥∥∥− 2Li
∥∥r i − r j

∥∥ � R2
j − R2

i . (29)

Dividing (29) by
∥∥r i − r j

∥∥

∥∥r i − r j
∥∥− 2Li � R2

j − R2
i∥

∥r i − r j
∥
∥ . (30)

Then

Li � 1

2

(
∥∥r i − r j

∥∥− R2
j − R2

i∥∥r i − r j
∥∥

)

. (31)
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Fig. 5 Geometrical
interpretation for contact
particle-to-wall and
particle-to-particle

3.1.2 Normal contact force based in Hertz theory of elastic
contact

Alternative models for the normal contact pressure, defined
in Eq. (15), have been presented in the literature. Especially
the model proposed by Hertz, see [37] for details in its for-
mulation:

Fcon
i j � 4

3

(
R∗)1/2E∗δ

3/2
i j ni j , (32)

which has the general form Fcon
i j � Kpi j

∣∣δi j
∣∣Ppni j , where

R∗ � Ri R j

Ri + R j
� 1

1
Ri

+ 1
R j

(33)

and

E∗ � Ei E j

E j
(
1 − v2i

)
+ Ei

(
1 − v2j

) � 1
(
1−v2i

)

Ei
+

(
1−v2j

)

E j

. (34)

In the above equations Ei and E j are the Young’s mod-
ulus of the particles i and j , respectively, and νi and ν j are
the Poisson coefficient of the particles i and j , respectively.
Note that in the Hertz’s formulation the contact area Ac

i j has
already been incorporated in the relation above. The contact
area Ac

i j of this model is equal to:

Ac
i j � πa2i j � πR∗δi j , (35)

where ai j � √
R∗δi j . For more details, see [37].

3.2 Frictional contact forces

A contact particle-to-wall or particle-to-particle can be geo-
metrically represented as shown in Fig. 5. In this figure, vi
and v j are the velocities of center of mass of the particles i
and j , respectively, and ωi and ω j are the angular velocities
of center of mass of the particles i and j , respectively.

Assuming that the particles are idealized rigid, i.e., any
deformations arising from the contact are neither permanent

nor significantwhen compared to the particle dimensions, the
velocities at the contact point (P) for each spherical particle
can thus now be written as:

vP
i � vi + ωi × (

Rin j i
)

vP
j � v j + ω j × (

R jni j
)
. (36)

The particle-to-particle frictional contact forces are
defined by:

F f r ic
i �

Nci∑

j�1

F f r ic
i j . (37)

The contact dissipation can be incorporated by tracking
the relative velocity of the particles in contact. Observing
the velocities in Fig. 5 is possible to determine the relative
velocity as shown in Fig. 6.

In Fig. 6, vP
i and vP

j are the velocities at the contact point
P of i th and j th particle, respectively. The relative velocity
at the contact point can be determined as:

vrel � vP
j − vP

i . (38)

The tangential velocity at the contact point in each particle
is obtained by subtracting away the normal component of the
velocity:

{
vP
i,τ � vP

i − (
vP
i · ni j

)
ni j

vP
j,τ � vP

j −
(
vP
j · ni j

)
ni j

. (39)

The tangential relative velocity at the contact point is cal-
culated by:

vrel,τ � vrel − (
vrel · ni j

)
ni j � vP

j,τ − vP
i,τ . (40)
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Fig. 6 Geometrical
interpretation of velocities of the
particles at the contact point P

Using the relative velocity at the contact point, the tangen-
tial slip direction can be characterized by a unit vector τ i j as
follows:

(41)

τ i j � vrel − (
vrel · ni j

)
ni j∥∥vrel − (

vrel · ni j
)
ni j
∥∥

� vP
j,τ − vP

i,τ∥∥
∥vP

j,τ − vP
i,τ

∥∥
∥

� vrel,τ∥∥vrel,τ
∥∥ .

In frictional contact mechanics, two kinds of situation
need to be taken into account. One is called “stick case”
and other “slip case”. Frictional stick is modeled via the fol-
lowing procedures. Initially the static friction threshold is
checked by the following equation:

K f
∥
∥∥vP

j,τ − vP
i,τ

∥
∥∥Ac

i j�t, (42)

against μs

∥∥
∥Fcon

i j

∥∥
∥, where K f is a tangential contact friction

compliance constant,
∥
∥∥vP

j,τ − vP
i,τ

∥
∥∥ is the relative tangen-

tial velocity at the contact point, �t is the time step used
in the numerical discretization (to be presented later) and
μs is the static friction coefficient. The stick case occurs

when the Eq. (42) is less than μs

∥∥∥Fcon
i j

∥∥∥, otherwise, the slip
case occurs. The stick step can be considered a more rig-
orous and difficult step, because first no slip is assumed,
generating the no-slip contact forces, by solving an entire
multibody/multisurface contact problem.

So, the frictional contact force developed in each particle
can be obtained in the following manner:

I F K f
∥∥∥vP

j,τ − vP
i,τ

∥∥∥Ac
i j�t < μs

∥∥∥Fcon
i j

∥∥∥

T HEN F f r ic
i j � K f

∥∥
∥vP

j,τ − vP
i,τ

∥∥
∥Ac

i j�tτ i j (“stickcase”)

ELSE I F F f r ic
i j � μd

∥∥
∥Fcon

i j

∥∥
∥τ i j (“sli pcase”),

(43)

where τ i j is defined in (41) and μd is the dynamic friction
coefficient.

3.3 Damping forces

Phenomenological particle contact dissipation can be incor-
porated by tracking the relative velocity of the particles in
contact. The damping force is obtained by:

Fdamp
i �

Nci∑

j�1

Fdamp
i j . (44)

A simple model to calculate it is given by:

Fdamp
i j � cd Ac

i j

(
vP
j,n − vP

i,n

)
, (45)

where cd is a damping coefficient that represents the contact
dissipation, vP

i,n is the normal velocity at the contact point

of the i th particle and vP
j,n is the normal velocity at the con-

tact point of the j th particle. It is important to mention that(
vP
j,n − vP

i,n

)
is the normal component of the relative veloc-

ity vrel , i.e.,

vrel,n � (
vrel · ni j

)
ni j �

(
vP
j,n − vP

i,n

)
. (46)
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So, the Eq. (45) can be rewritten as:

Fdamp
i j � cd Ac

i jvrel,n . (47)

3.3.1 Damping force based in Hertz theory of elastic contact

The damping force can be also modeled via a standard
Hertzian contact model for intersecting spheres (see [37]).
This theory assumes that the contact area between the parti-
cles is small with respect to the dimensions of each particle
and with respect to the relative radii of curvature of the
surfaces. If the particle-to-particle contact force exists, the
damping force is defined by:

Fdamp
i j � d δ̇i jni j , (48)

where d is a damping parameter defined as:

d � 2ξ∗√2E∗m∗(R∗δi j
)1/4ni j (49)

and δ̇i j is the rate of change of overlap, defined by:

δ̇i j �
(
vP
j − vP

i

)
· ni j � vrel · ni j . (50)

In Eq. (49), ξ∗ is a damping parameter that must be set,
R∗ is the effective radius defined in Eq. (33), E∗ is Young’s
modulus of the interacting particles defined in Eq. (34) and
m∗ is the effective mass given by:

m∗ � mim j

mi + m j
� 1

1
mi

+ 1
m j

. (51)

Note that the system can be qualified as follows: ξ∗ � 1
critical damped, ξ∗ > 1 is overdamped, ξ∗ < 1 is less than
critically damped and ξ∗ � 0 is no damping force, as in
an elastic collision. According to the literature review, espe-
cially the work presented by Zohdi in [35, 36], the damping
coefficient (ξ∗) is taken as an arbitrary value ranging from
zero to one, i.e. 0 ≤ ξ∗ ≤ 1. However, in this paper, it is
assumed that there will be a deformation in the less rigid ele-
ment, as a consequence of the contact between two bodies.
Therefore, a weighted value of this coefficient is considered,
such that:

ξ∗ � Eiξi + E jξ j

Ei + E j
. (52)

The Eq. (48) can be simplified as

Fdamp
i j � 2ξ∗√2E∗m∗(R∗δi j

)1/4(
vrel · ni j

)
ni j . (53)

Using the relationship vrel,n � (
vrel · ni j

)
ni j in Eq. (53),

results in

Fdamp
i j � 2ξ∗√2E∗m∗(R∗δi j

)1/4
vrel,n . (54)

This expression has the same format given in Eq. (47).

3.4 Particle-to-wall contact

Particle-to-wall contact is handled in an identical manner to
particle-to-particle contact, except that thewall displacement
is considered given (externally controlled) and independent
of the action with the particles. The amount of overlap of
the particle with the wall position dictates the contact force
intensity, see Fig. 7. In this paper, the walls are considered
rigid, being discretized by triangular elements. The choice
of triangular elements is to facilitate the modeling of irreg-
ular surfaces. A sophisticated search algorithm is used to
determine the vector correspondent to the minimal distance
between the particle and the wall. It is similar to the standard
formulations of three-dimensional contact mechanics. These
were intended to identify whether the contact was between
node-to-surface, node-to-edge or node-to-node. In this work,
as an analogy, the particle is considered as a slave node and
the walls as the master contact surfaces. Due to the com-
plexity of this algorithm and the fact that it is not the focus
of this work, it will not be presented here. For more details
regarding the contact between the slave node and the master
contact surfaces see [38, 39].

Therefore, the particle-to-wall force is obtained by

Fwall
i �

Nwi∑

w�1

(
Fwall,n
iw + Fwall, f

iw + Fdamp
iw

)
, (55)

where Nwi is the number of surrounding walls in contact and
Fwall,n
iw , Fwall, f

iw and Fdamp
iw are the normal, tangential and

damping wall forces generated by contact with constraining
surfaces, respectively.

Consider the following general relationship:

Fwall,n
iw ∝ Kwiw |Eiw|Pw Ac

iwniw, (56)

where 0 < Kwiw < ∞ is a wall-to-particle compliance con-
stant, Pw is a material constant,

Eiw �
∣∣∣∣
‖r i − rw‖ − Ri

Ri

∣∣∣∣ � δiw

Ri
(57)

and niw is the normalized normal contact vector defined by:

niw � r i − rw

‖r i − rw‖ � − r j − rw

‖r i − rw‖ . (58)
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Fig. 7 Geometrical constrain

For the generated friction, a continuous sliding is assumed.
So,

I F K f
∥∥
∥vP

w,τ − vP
i,τ

∥∥
∥Ac

iw�t < μs

∥∥
∥Fwall,n

iw

∥∥
∥

T HEN Fwall, f
iw � K f

∥
∥∥vP

w,τ − vP
i,τ

∥
∥∥Ac

iw�tτ iw (“stickcase”)

ELSE I F Fwall, f
iw � μd

∥∥
∥Fwall,n

iw

∥∥
∥τ iw

(
“sli pcase”′),

(59)

where

τ iw � vP
w,τ − vP

i,τ∥∥∥vP
w,τ − vP

i,τ

∥∥∥
. (60)

The tangential velocity at the contact point is obtained
through Eq. (39).

The damping force is calculated by

Fdamp
iw � cd Ac

iwvrel,n . (61)

3.4.1 Material parameters based in Hertz theory of elastic
contact

The normal contact between a particle and a wall, based on
Hertzian model, is given by:

Fwall,n
iw � 4

3

(
R∗)1/2E∗δ3/2iw ni j , (62)

which has the general form Fwall,n
iw � Kpiw |δiw|Ppniw and

the damping force is calculated by:

Fdamp
i j � 2ξ∗√2E∗m∗(R∗δiw

)1/4
vrel,n . (63)

ξ∗ is a damping parameter defined inEq. (52) thatmust be set,
R∗ is the effective radius defined in Eq. (33), E∗ is Young’s
modulus of the interacting particles defined in Eq. (34) and
m∗ is the effective mass defined in Eq. (51). Considering
these relationships

Rw � R j � ∞, (64)

mw � m j � ∞, (65)

these parameters can be rewritten as:

R∗ � Ri (66)

E∗ � Ei Ew

Ew

(
1 − v2i

)
+ Ei

(
1 − v2w

) � 1
(
1−v2i

)

Ei
+ (1−v2w)

Ew

, (67)

m∗ � mi (68)

ξ∗ � Eiξi + Ewξw

Ei + Ew

. (69)

3.5 Adhesive bonding forces

The adhesive bonding force is obtained by:

Fbond
i �

Nci∑

j�1

(
Fbond,n
i j + Fbond,r

i j

)
, (70)

where Fbond,n
i j is the normal adhesive bonding force and

Fbond,r
i j is the rotational adhesive bonding force.
The particle-to-particle adhesive bonding relation is con-

sidered based on exceeding critical interpenetration distance.
A simple model can be defined as follows:

I F
∥∥r i − r j

∥∥ ≤ Ri + R j AND
∣∣Ei j

∣∣ ≥ E∗

T HEN Fbond,n
i j � Knb

i j

∣∣Ei j
∣∣Pp Ac

i jni j
E LSE I F Fbond,n

i j � 0

, (71)

where 0 ≤ Knb
i j is a bonding constant, Ei j is defined in (20),

E∗ is normalized deformation bonding and Pp is a material
parameter. It is important tomention that if

∥
∥r i − r j

∥
∥ ≤ Ri +

R j , contact occurs between the particles. So, if the particles
are in contact and

∣∣Ei j
∣∣ ≥ E∗, then an adhesive/attractive

normal bond is activated between the particles, as defined in
(43).

If the particles have an activated normal bond, then the
particles automatically have a rotational bond equivalent in
form to stick friction
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I F
∥∥r i − r j

∥∥ ≤ Ri + R j AND
∣∣Ei j

∣∣ ≥ E∗

T HEN Fbond,r
i j � Krb

i j

∥∥∥vP
j,τ − vP

i,τ

∥∥∥Ac
i j�tτ i j

E LSE I F Fbond,r
i j � 0

, (72)

where Krb
i j is a rotational bonding constant.

3.6 Environmental force

The environment force comes into play as force opposing the
motion of the particle due to the surrounding environment
(i.e., damping from interstitial fluid or even smaller-scale
particles or solvents between particles, such as binding
enhancers, surfactants and lubricants). A simple model to
account for this was defined by Reynolds (very lowReynolds
number “Stokesian” model) in the following manner:

Fenv
i � 6πceRi

(
ve − vi

)
, (73)

where ce is the dynamic viscosity of the air and ve is the
local average velocity of the external interstitial medium,
which onemay assume to be ve ≈ 0, for most applications of
interest in this work. The mechanics of the interstitial fluid is
unimportant in problems of interest here. However, for other
applications such as high-speed flow, the motion of the fluid
can be important, requiring more sophisticated drag laws.
See [40, 41].

3.7 Gravity force

The other force that needs to be taken into account is the
gravitational force, which acts in a downwards (−z direction)
and is given by:

Fgrav
i � −mi g ẑ, (74)

where g is the gravity acceleration and ẑ is the unit vector in
the z direction.

4 Time integration

In this section, the time integration scheme will be presented
to solve the equations described in Sect. 2. First, the inte-
gration of the translational contribution will be explained
and then, the same will be done for the integration of the
rolling contribution. Subsequently, an iterative implicit solu-
tion method will be presented, as well as the time integration
scheme for solution of the system’s dynamics.

Fig. 8 Trapezoidal time-stepping rule for velocity

4.1 Integration of the translational contribution

Based on the second Newton’s law, the translational compo-
nent of the center of mass can be written as:

M r̈cm � M v̇cm � Ftot , (75)

where M is the total systemmass, Ftot is the overall external
force acting on the system, vcm is the center of mass velocity
and rcm is the position vector of the center of mass of the
system, given by:

rcm
def�
∑Nci

i−1 mi r i
∑Nci

i−1 mi

� 1

M

Nci∑

i−1

mi r i . (76)

A trapezoidal time-stepping rule is used, see Fig. 8. Here,
a short explanation will be presented, however, the complete
formulation is described by Zohdi in [42].

Considering t the current time and�t the time increment,
at some intermediate moment in time, t ≤ t + φ�t ≤ t +�t
with 0 < φ ≤ 1, is possible to affirm:

v̇cm(t + φ�t) ≈ vcm(t + �t) − vcm(t)

�t

� 1

M
Ftot (t + φ�t)

≈ 1

M

[
φFtot (t + �t) + (1 − φ)Ftot (t)

]
,

(77)

leading to

(78)

vcm (t + �t)

≈ vcm (t) +
�t

M

[
φFtot (t + �t) + (1 − φ)Ftot (t)

]
.

For the position vector

(79)

ṙcm (t + φ�t) ≈ rcm (t + �t) − rcm (t)

�t
≈ vcm (t + φ�t)

≈ φvcm (t + �t) + (1 − φ) vcm (t) ,
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leading to

(80)

rcm (t + �t)

≈ rcm (t) + �t [φvcm (t + �t) + (1 − φ) vcm (t)] .

This equation can be rewritten as:

(81)

rcm (t + �t) ≈ rcm (t) + vcm (t)�t

+ φ (�t)2
[vcm (t + �t) − vcm (t)]

�t
.

Finally, can be consolidated into:

(82)

rcm (t + �t)

� rcm (t) + vcm (t)�t

+
φ (�t)2

M

[
φFtot (t + �t) + (1 − φ)Ftot (t)

]
.

Other formulations to update the position vector and the
velocity vector are presented by LeVeque in [43] These equa-
tions lead to a coupled system of equations, which are solved
using an adaptive iterative scheme, building on approaches
found in various form in [40, 44, 45].

4.2 Integration of the rolling phenomena

Solving the Eq. (12):

∫ t2

t1
dωi �

∫ t2

t1

1

Īi,s
M tot

i dt ⇒ ωi (t2) � ωi (t1) +
�t

Īi,s
M tot

i .

(83)

Then, based in Eq. (83), the time discretization is done by
the following equation:

ωi (t + �t)

� ωi (t)

+
�t

Īi,s

{
M tot

i (t) +
[
∅M tot

i (t + �t) − ∅M tot
i (t)

]}
,

(84)

where ∅ is a scalar value with range 0 < φ ≤ 1. It is impor-
tant to mention that when the parameter φ � 0 the system is
solved by explicit method and for 0 < φ ≤ 1 the system is
solved by implicit method. The Eq. (84) can be rewritten as

ωi (t + �t) � ωi (t)

+
�t

Īi,s

[
∅M tot

i (t + �t) + (1 − ∅)M tot
i (t)

]
.

(85)

The graphical interpretation of Eq. (84) is shown in Fig. 9.

Fig. 9 Time discretization

Based on the expression (8) the moment M tot
i can also be

calculated by

M tot
i �

Nci∑

j�1

r i→c × F f r ic
i j , (86)

where F f r ic
i j is the friction force between the particles i and

j that will be presented in Sect. 3.2. This force is applied at
the contact point P on the surface of particle i , see Fig. 1.

In this work the rolling is taken into account. Therefore,
the friction force is modeled by assuming that sliding and
rolling may occur between the contact pair, i.e., whether it
is pure sliding, sliding with rolling or pure rolling. At the
contact point P the friction occurs and its velocity must be
computed by using Eq. (4).

The rotation vector θ i of a i th particle is obtained by

(87)

ωi � dθ i

dt

⇒
∫ t2

t1
dθ i

�
∫ t2

t1
ωi dt

⇒ θ i (t2)

� θ i (t1) + ωi�t .

The time discretization is done by the following equation:

θ i (t + �t) � θ i (t) + �t{∅ωi (t + �t) + (1 − ∅)ωi (t)}.
(88)

Finally, for a point P ′ belonged to a particle in the initial

configuration placed r P
′

i→c

∣
∣∣
t�0

from its center, its current

position is defined by:

r P
′

i (t + �t) � r i (t + �t) + r P
′

i→c

∣∣∣
t�0

× θ i (t + �t). (89)

It is important to mention that, in this work, spheres are
used to model particles. Therefore, the contact point can be
easily found.
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4.3 Iterative implicit solutionmethod

Following the basic framework developed by Zohdi in [46,
47], the Eq. (82) can be rewritten in a slightly more stream-
lined for particle i

rL+1i � rLi + vL
i �t +

φ(�t)2

mi

[
φFtot,L+1

i + (1 − φ)Ftot,L
i

]
,

(90)

the same for Eq. (78)

vL+1
i � vL

i +
�t

mi

[
φFtot,L+1

i + (1 − φ)Ftot,L
i

]
, (91)

and the same for Eq. (85)

ωL+1
i � ωL

i +
�t

Īi,s

[
∅M tot,L+1

i + (1 − ∅)M tot,L
i

]
, (92)

where superscript L and L + 1 indicates the indices of the
current and the future time-step in the discretization respec-
tively. Basically, the superscript L is a time interval counter.
This is a generalized one-step scheme, with φ ∈ (0, 1], and
φ � 0 is the explicit Euler integration scheme, while φ � 1
is the fully implicit Euler integration scheme. The implicit
implementation of the position, velocity and angular velocity
updates, as is evident from Eqs. (78), (82) and (85), requires
an iterative solution for rL+1i , vL+1

i and ωL+1
i .

The set of equations represented by (90) to (92) can be
solved recursively by recasting the relation as

rL+1,Ki � rLi + vL
i �t

+
φ (�t)2

mi

[
φFtot,L+1,K−1

i + (1 − φ)Ftot,L
i

]
,

(93)

(94)v
L+1,K
i � vL

i +
�t

mi

[
φFtot,L+1,K−1

i + (1 − φ)Ftot,L
i

]
,

ω
L+1,K
i � ωL

i +
�t

Īi,s

[
∅M tot,L+1,K−1

i + (1 − ∅)M tot,L
i

]
,

(95)

where K � 1, 2, 3 . . . is the index of iteration with in time-
step L + 1. These equations can also be represented in the
following form

rL+1,Ki � Gr
(
rL+1,K−1
i

)
+Ri,r , (96)

v
L+1,K
i � Gv

(
v
L+1,K−1
i

)
+Ri,v, (97)

ω
L+1,K
i � Gω

(
ω
L+1,K−1
i

)
+Ri,ω, (98)

where

Ftot,L+1,K−1
i

def� Ftot,L+1,K−1
i

(
rL+1,K−1
1 , rL+1,K−1

2 , . . . , rL+1,K−1
Np

)
,

(99)

Ftot,L
i

def� Ftot,L
i

(
rL1 , rL2 , . . . , rLNp

)
, (100)

M tot,L+1,K−1
i

def� M tot,L+1,K−1
i

(
rL+1,K−1
1 , rL+1,K−1

2 , . . . , rL+1,K−1
Np

)
,

(101)

M tot,L
i

def� M tot,L
i

(
rL1 , rL2 , . . . , rLNp

)
, (102)

Gr

(
rL+1,K−1
i

)
� (φ�t)2

mi
Ftot,L+1,K−1
i , (103)

Ri,r � rLi + vL
i �t +

φ(�t)2

mi
(1 − φ)Ftot,L

i , (104)

Gv

(
v
L+1,K−1
i

)
� φ�t

mi
Ftot,L+1,K−1
i , (105)

Ri,v � vL
i +

�t

mi
(1 − φ)Ftot,L

i , (106)

Gω

(
ω
L+1,K−1
i

)
� φ�t

Īi,s
M tot,L+1,K−1

i , (107)

Ri,ω � ωL
i +

�t

Īi,s
(1 − φ)M tot,L

i . (108)

The terms Ri,r , Ri,v and Ri,ω are remainder terms that
do not depend on the solution. The convergence of such a
scheme is dependent on the behavior of Gr , Gv and Gω. The
form of the error function is presented below

�
L+1,K
i,r

def� rL+1,Ki − rL+1i (109)

�
L+1,K
i,v

def� v
L+1,K
i − vL+1

i . (110)

�
L+1,K
i,ω

def� ω
L+1,K
i − ωL+1

i . (111)

Based on the formulations presented by Zohdi in [36],
a sufficient condition for convergence is the existence of a
contraction mapping

(112)

∥∥∥rL+1,Ki − rL+1i

∥∥∥ �
∥∥∥Gr

(
rL+1,K−1
i

)
− Gr

(
rL+1i

)∥∥∥

≤ ηL+1,K
r

∥∥∥rL+1,K−1
i − rL+1i

∥∥∥

∥
∥∥vL+1,K

i − vL+1
i

∥
∥∥ �

∥
∥∥Gv

(
v
L+1,K−1
i

)
− Gv

(
vL+1
i

)∥∥∥

≤ ηL+1,K
v

∥∥∥vL+1,K−1
i − vL+1

i

∥∥∥ ,

(113)

∥∥∥ωL+1,K
i − ωL+1

i

∥∥∥ �
∥∥∥Gω

(
ω
L+1,K−1
i

)
− Gω

(
ωL+1
i

)∥∥∥

≤ ηL+1,K
ω

∥∥
∥ωL+1,K−1

i − ωL+1
i

∥∥
∥ ,

(114)
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Fig. 10 Iterations within the
time step

where 0 ≤ η
L+1,K
r < 1, 0 ≤ ηL+1,K

v < 1 and 0 ≤ ηL+1,K
ω <

1 for each iteration K . Then �
L+1,K
i,r → 0, �

L+1,K
i,v → 0

and �
L+1,K
i,ω → 0 for any arbitrary starting value rL+1,K�0

i ,

v
L+1,K�0
i and ω

L+1,K�0
i , as K → ∞, which is a contraction

condition that is sufficient, but not necessary, for conver-

gence. The convergence of Eq. (93) is scaled by ηr ∝ (φ�t)2

mi
(see Eq. (103)), the convergence of Eq. (94) is scaled by
ηv ∝ φ�t

mi
(see Eq. (105)) and the convergence of Eq. (95)

is scaled by ηω ∝ φ�t
Īi,s

(see Eq. (107)). Therefore, the con-

traction constant of Gr and Gv is directly dependent on the
magnitude of the interaction forces (‖Fi‖), inversely pro-
portional to the masses mi and directly proportional to �t .
The contraction constant of Gω is directly dependent on the
magnitude of the interactionmoments (‖M i‖), inversely pro-
portional to themoment ofmass Īi,s and directly proportional
to �t . Thus, decreasing the time-step size improves the con-
vergence.

An approach to maximize the time-step sizes to decrease
overall computing time and keep the numerical solution’s
accuracy was proposed by Zohdi in [46]. This proposal
takes into account only the position vector’s errors. Here,
the velocity vector’s errors are also considered. Basically,
these following expressions are assumed:

ηL+1,K
r ≈ Sr (�t)2 (115)

ηL+1,K
v ≈ Sv�t, (116)

ηL+1,K
ω ≈ Sω�t, (117)

where Sr , Sv and Sω are constants. The error resulted within
an iteration is according to

[
Sr (�tr )

2
]K

�
L+1,0
i,r � �

L+1,K
i,r (118)

(Sv�tv)
K�

L+1,0
i,v � �

L+1,K
i,v . (119)

(Sω�tω)K�
L+1,0
i,ω � �

L+1,K
i,ω . (120)

where �
L+1,0
i,r � rL+1,K�1

i − rLi , �
L+1,0
i,v � v

L+1,K�1
i − vL

i

and �
L+1,0
i,ω � ω

L+1,K�1
i − ωL

i . These above equations can
be rewritten as

�tr � 1

S
1
2
r

(
�

L+1,K
i,r

�
L+1,0
i,r

) 1
2K

, (121)

�tv � 1

Sv

(
�

L+1,K
i,v

�
L+1,0
i,v

) 1
K

, (122)

�tω � 1

Sω

(
�

L+1,K
i,ω

�
L+1,0
i,ω

) 1
K

. (123)

According to Zohdi in [36], at the end of the time-
step iteration, �

L+1,K
i,r � T OLr , �

L+1,K
i,v � T OLv and

�
L+1,K
i,ω � T OLω, where T OLr , T OLv and T OLω are

tolerances for the position and velocity vectors, respectively.
So, assuming that Sr , Sv and Sω are constants, a new smaller
step size can be defined as

�ttol � �t · min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎢
⎢
⎣

(
T OLr
�

L+1,0
i,r

) 1
2Kd

(
�

L+1,K
i,r

�
L+1,0
i,r

) 1
2K

⎤

⎥⎥
⎥
⎦

︸ ︷︷ ︸
�def �K ,r

;

⎡

⎢⎢
⎢
⎣

(
T OLv

�
L+1,0
i,v

) 1
2Kd

(
�

L+1,K
i,v

�
L+1,0
i,v

) 1
2K

⎤

⎥⎥
⎥
⎦

︸ ︷︷ ︸
�def �K ,v

;

⎡

⎢⎢
⎢
⎣

(
T OLω

�
L+1,0
i,ω

) 1
2Kd

(
�

L+1,K
i,ω

�
L+1,0
i,ω

) 1
2K

⎤

⎥⎥
⎥
⎦

︸ ︷︷ ︸
�def �K ,ω

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� �t · min
(
�K ,r ;�K ,v ;�K ,ω

)

︸ ︷︷ ︸
�K

� �t · �K , (124)

where Kd is the number of desired iterations. According to
Zohdi in [36], the expression in (124) can also be used for
time-step enlargement, if convergence is met in less than Kd

iterations, usually chosen to be between 5 to 10 iterations.
A geometrical interpretation about the iteration within the

time step (parameter K ) is shown in Fig. 10.

4.4 Time integration scheme for solution
of the system’s dynamics

The numerical solution scheme is shown on Table 1. This
numerical algorithm is adapted from [35, 36].Here the rolling
phenomenon is taken into account.
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Table 1 Algorithm: Numerical solution scheme

Iterative implicit solution method

Step 1 Start a global fixed iteration and set the iteration counter K � 0.

Store the variables: rLi

(
rL+1,0i

)
, vL

i

(
v
L+1,0
i

)
, θ L

i

(
θ
L+1,0
i

)
and ωL

i

(
ω
L+1,0
i

)
.

Compute the total force: Ftot,L
i

(
rLi , vL

i ,ωL
i

)
.

Compute the total momentum: M tot,L
i

(
rLi , vL

i ,ωL
i

)

Update the iteration counter K � K + 1.

Step 2 Make a loop from i � 1 to i � Np and compute for each particle i :

Resultant load vectors Ftot,L+1,K−1
i

(
rL+1,K−1
i , v

L+1,K−1
i ,ω

L+1,K−1
i

)
,

Resultant momentum vector Mtot,L+1,K−1
i

(
rL+1,K−1
i , v

L+1,K−1
i ,ω

L+1,K−1
i

)
,

Position vector rL+1,Ki � Gr
(
rL+1,K−1
i

)
+Ri,r � rLi + vL

i �t + φ(�t)2

mi

[
φFtot,L+1,K−1

i + (1 − φ)Ftot,L
i

]
,

Velocity vector v
L+1,K
i � Gv

(
v
L+1,K−1
i

)
+Ri,v � vL

i + �t
mi

[
φFtot,L+1,K−1

i + (1 − φ)Ftot,L
i

]
,

Angular velocity vector: ωL+1,K
i � ωL

i + �t
Īi,s

[
∅M tot,L+1,K−1

i + (1 − ∅)M tot,L
i

]
,

Rotation vector: θ L+1,K
i � θ L

i + �t
[
∅ω

L+1,K−1
i + (1 − ∅)ωL

i

]
.

Step 3 Measure normalized error quantities:

� K ,r
def�
∑Np

i�1

∥
∥∥rL+1,Ki − rL+1,K−1

i

∥
∥∥

∑Np
i�1

∥∥
∥rL+1,Ki − rLi

∥∥
∥

� K ,v
def�
∑Np

i�1

∥
∥∥vL+1,K

i − v
L+1,K−1
i

∥
∥∥

∑Np
i�1

∥∥
∥vL+1,K

i − vL
i

∥∥
∥

� K ,ω
def�
∑Np

i�1

∥
∥∥ωL+1,K

i − ω
L+1,K−1
i

∥
∥∥

∑Np
i�1

∥∥
∥ωL+1,K

i − ωL
i

∥∥
∥

Zk,r
def� � K ,r

T OLr
Zk,v

def� � K ,v

T OLv

Zk,ω
def� � K ,ω

T OLω

�K ,r
def�
(
T OLr
� 0,r

) 1
2Kd

(
� K ,r
� 0,r

) 1
2K

�K ,v
def�
(
T OLv

� 0,v

) 1
2Kd

(
� K ,v

� 0,v

) 1
2K

�K ,ω
def�
(
T OLω

� 0,ω

) 1
2Kd

(
� K ,ω

� 0,ω

) 1
2K

Step 4 IF
(
Zk,r ≤ 1 AND Zk,v ≤ 1 AND Zk,ω ≤ 1

)
AND K ≤ Kd

THEN Increment time: t � t + �t ,
Construct the next time step: (�t)new � �K (�t)old , where �K � min

[
�K ,r ,�K ,v,�K ,ω

]
,

Select the minimum size: �t � min
[
(�t)lim , (�t)new

]
,

Go to step 1

ELSE go to step 5

Step 5 IF
(
Zk,r > 1 OR Zk,v > 1 OR Zk,ω > 1

)
AND K < Kd

THEN Update the iteration counter: K � K + 1,
Go to step 2

ELSE go to step 6

Step 6 IF
(
Zk,r > 1 OR Zk,v > 1 OR Zk,ω > 1

)
AND K � Kd

THEN Construct a next time step: (�t)new � �K (�t)old , where �K � min
[
�K ,r ,�K ,v,�K ,ω

]
,

Select the minimum size: �t � min
[
(�t)lim , (�t)new

]
,

Restart at time t : Set rL+1,0i � rLi , v
L+1,0
i � vL

i and ω
L+1,0
i � ωL

i ,
Go to step 1

ELSE Set a larger number for the variable Kd ,
Restart at time t : Set rL+1,0i � rLi , v

L+1,0
i � vL

i and ω
L+1,0
i � ωL

i ,
Go to step 1

5 Contact search procedures

The efficiency of a program is measured directly by its
computational cost. Therefore, it is fundamental that every
calculation programhas in its code an optimization algorithm
that can solve any model, requiring the least calculation time
possible. In particle method, the process that has a greater

computational cost is the detection of the contact between
particles. This occurs because it is necessary to check for
contact of each particle against all the other particles and
walls in the system,making themodeling of large scale prob-
lems difficult. Problems simulated by the discrete element
method usually involve a large number of particles in pos-
sible contact. For each time increment, usually very small,
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one must check all these contact possibilities and calculate
the respective forces involved in this phenomenon, which
requires a high computational cost. The imminent problem is
the spent time on this search. To minimize, as much as possi-
ble, the analysis time in multi-scale problems, it is necessary
to develop an efficient contact search algorithm. Basically, in
this work, the solution foundwas to divide the tridimensional
domain in several subspaces. Each particle will be addressed
to a corresponding subspace based on its current position. In
this way, for the currently analyzed particle, only the parti-
cles belonging to its subdomain and the adjacent ones will be
selected to make the contact verification. Thus, the contact
search for each individual particle involves a significantly
reduced number of particles to be considered. This reduction
decreases decisively the analysis time.

A method for contact detection developed and used in
this research is based on the following considerations: (1) a
volume defined by a hexahedron will be created to limit the
possible coordinates for the particles and walls during the
analysis, i.e., the analysis only proceeds if all particles and
walls have their coordinates located inside the admissible
zone. This domain corresponds to a viable zone and it will
be divided into squares (2D) or cubes (3D) with size equal
to the diameter of the smallest particle, as shown in Fig. 11;
(2) the maximum number of particles allowed per cube shall
be established; and (3) a vector called volume_matri x will
be generated with dimension equal to the total number of
cubes necessary to make up the domain times the number
of particles allowed by each cube (this vector will store the
quantity and identity of the particles contained in each cube).
The condition for a particle to belong to a cube is that the
particle’s center is located inside it. Subsequently, starting
from the coordinates of the centers of the particles (x, y, z),
the coordinates of the cube (l,m, n) containing it will be
calculated, as shown in the following equation

l � current coord x − min coord allowedx
dimension of the cube

, (125)

filling the vector volume_matri x . The Eq. (125) regards
the x direction and an analogous expression can be used to
calculate the parameters m and n. In addition, a vector of
size equal to the total number of particles will be created and
filled, which will store their location, i.e., the number of the
cube containing each particle.

As mentioned, the optimization process is applied in the
algorithm for contact detection. For this, one must calculate
the dimensions of the subdomain for contact search. This
subdomainwill correspond to the cube containing the particle
i under study and the neighboring cubes that contain the
particles in possible contact, as shown in Fig. 12. For plane
problems, this subdomain is composed by at least 9 squares
and for spatial problems by 27 cubes.

Fig. 11 3D domain’s division and the corresponding number of cubes
in the domain’s discretization

To obtain the dimensions of the subdomain one must cal-
culate a delta value, as shown in equation below

delta � particle′s diameter i + particle′s highest diameter

2 ∗ dimension of the cube
.

(126)

Once delta is calculated, the cubes that will compose the
subdomain for contact verification are selected. This subdo-
main contains the cubes with indices comprised by the inter-
vals [(l − delta), (l + delta)], [(m − delta), (m + delta)]
and [(n − delta), (n + delta)], as illustrated in Fig. 12.

The general mapping is performed only once, after each
time increment (or after a defined time). If there is a position
update in any of the particles and it exceeds the limits of the
cube that contains it, the particle will be removed from this
initial cube and placed in the cube corresponding to the cur-
rent position, as a consequence, the vector volume_matri x
is updated.

For each particle i , the number of the cube containing it
is determined. Then, the neighboring cubes are selected, see
Fig. 12 for a graphical interpretation. All particles contained
in these cubes are selected to verify the contact with the
analyzed particle.

Finally, after the optimization algorithm is finished and all
contacts are defined, the calculation of the forces acting on
each particle is executed.
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Fig. 12 Subdomain’s definition.
The subdomain for each particle
corresponds to the red square on
the figure

The same procedures are made for the contacts between
particles and walls. Basically, in each time step, each particle
will belong to a specific cube and this will have associated
vectors that will store the probable particles and walls that
can come in contact with the studied particle. Updating all
information per cube is done instantly during the process.
Themost important procedures are described in the algorithm
presented in Table 14 in Appendix D.

Another important fact to be mentioned is the importance
of using parallel processing. This can be used both to update
the information for the contact search algorithm and for the
analysis processing. Parallel processing demonstrated a sig-
nificant reduction in analysis time.

The contact between a particle and wall can be calculated
in two ways. The first is to consider the contact between flat
surfaces and the other through smooth surfaces. Contact with
flat surfaces requires much knowledge about spatial geom-
etry to find the contact point at the intersection between the
wall and the particle’s surface. This onewas used in all exam-
ples in this article. Contact with smooth surfaces requires
using the NURBS method. The two ways of calculating the
contact point would require a standalone article and therefore
will not be presented in this work.

Also, information onparallel processing and spatial geom-
etry will not be presented, since they are not the purpose of
this paper. For more information see [8, 9].

6 Validation problems

The basic aim of this section is to apply all theories and
algorithms presented in this paper to simulate some known
classical physics examples. With this, it is possible to under-
stand the concepts and magnitude of the parameters involved
in these formulations and to verify if the proposed algorithm
works correctly. In all examples the numerical and analytical
solutions will be compared.

In this section, three examples are presented. The first one
refers to an oblique impact between a sphere and a flat sur-
face. It allows the validation of the efficiency of Coulomb’s
friction law and its influence on the angular velocities after
impact. The second example refers to the slipping and rolling
of a sphere on an inclined plane.And the last example is a spe-
cific case of the second one, i.e., the slipping and rolling of a
sphere on a horizontal plane.All examples test theCoulomb’s
friction law and are intended to compare the analytical and
numerical results in terms of displacements, velocities and
angular velocities.

6.1 Oblique impact of elastoplastic spheres

This section consists of a study of an oblique impact of elasto-
plastic spheres as shown in Fig. 13. The analytical solution
is presented in detail in Appendix A.

For example, consider a solid sphere with radii R �
0.05m with an impact angle θi � 45◦, the initial impact
speed vi � √

2m/s and particle spinωi � 0, the normal coef-
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Fig. 13 Diagram of the oblique impact of a sphere with a plane surface
(Reproduced with permission from [48])

ficient of restitution en � 1 and the impulse ratio f � 0.05.
Here the impulse ratio is considered to be the same as the
friction coefficient. The tangential coefficient of restitution
is calculated from (146):

eτ � 1 − 0.05
(1 + 1.00)

tan(45◦)
� 0.9. (127)

The rebound rotational angular velocity is calculated by
Eq. (153):

ωr � 0 − 5 · 0.05 · (1 + 1) · √
2 · cos(45◦)

2 · 0.05 � −5 rad/s .

(128)

The tangential component of the impact velocity at the
contact patch is calculated by

vP
i,τ � vi,τ + Rωi � √

2 · sin(45◦) + 0.05 · 0 � 1m/s .

(129)

The tangential component of the rebound surface velocity
at the contact patch is calculated by Eq. (159):

vP
r ,τ � 1 − 7

2
· 0.05 · (1 + 1) · √

2 · cos(45◦) � 0.65m/s .

(130)

The tangential component of the rebound velocity can be
calculated by Eq. (154):

vr ,τ � vP
r ,τ − Rωr � 0.65 − 0.05 · (−5) � 0.9m/s . (131)

The rebound angle θr is calculated by Eq. (164):

tan(θr ) � −0.9

1
tan

(
45◦) � −0.9 ⇒ θr ≈ −41.987

◦
.

(132)

The rebound velocity is calculated by

vr � vr ,τ

sin(θr )
� 0.9

sin
(
41.987◦) ≈ 1.345m/s . (133)

And the normal component of the rebound velocity can
be calculated by

vr ,n � vr cos(θr ) � 1.345 · cos
(
41.987

◦) ≈ 1.000m/s .

(134)

Basically, in this analytical example, a perfect oblique
impact was considered between a solid sphere with radii
R � 0.05m with a rigid wall with impact velocity vi �
(1;−1; 0)m/s and impact spin ωi � (0; 0; 0) rad/s. The ana-
lytical solution, as presented before, leads to the rebound
velocity vr � (0.9; 1; 0)m/s and rebound spin ωr �
(0; 0;−5) rad/s.

This problem was also simulated by using the DEM for-
mulation presented in this article despite the contact model
being based on the Hertzian formulation. For this purpose,
the following values are considered: radii of the sphere
R � 0.05m, initial velocity vi � (1;−1; 0)m/s, initial spin
ωi � (0; 0; 0) rad/s, specific mass ρ � 5000 kg/m3, elastic-
ity modulus of the sphere E � 108 N/m2, Poisson coefficient
ν � 0.25, static friction coefficient μs � 0.05, dynamic
friction coefficient μd � 0.05, friction constant parameter
K f � 1015, maximum permissible iterations Kd � 10,
fully implicit Euler integration scheme (∅ � 1), tolerances
T OLr � 10−3, T OLv � 10−3, T OLw � 10−3 and no
contributions of external forces, like gravity, damping, bond-
ing and environment effects (i.e., all respectively parameters
were considered to be zero). It is clear that the geometry of
this problem does not need to be given, since it can be eas-
ily adopted. To develop a quick simulation, the suggestion is
that the sphere should be located next to the wall, practically
an instant before the impact. The numerical simulation was
done for three sizes of time increment, i.e., �t � 10−4 s,
�t � 10−5 s and �t � 10−6 s. After simulation, all numer-
ical results lie to the same analytical results. The maximum
iteration in each time increment was K � 3. The numer-
ical results for the increment of time �t � 10−4 s gives
a rebound velocity vr � (0.9; 1; 0)m/s and rebound spin
ωr � (0; 0;−5) rad/s.

6.2 Slipping and rolling of a sphere on an inclined
plane

This section consists of a study of slipping and rolling
of a sphere on an inclined plane as shown in Fig. 14. The
analytical solution is presented in detail in Appendix B.
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Fig. 14 Diagram of a particle slipping and rolling on an inclined plane

Tomake a comparison between the analytical and numeri-
cal solution, an appropriated example is needed.Consider, for
the initial configuration, a solid spherewith radii R � 0.25m
placed on an inclined plane with angle tan(θ) � 0.75. At
this time, only a point of the sphere is in contact with the
wall. The initial velocity is v(0) � (−6.08;−4.56; 0)m/s
and initial spin is ω(0) � (0; 0; 16) rad/s.

For the numerical simulation, consider the following addi-
tional values: specific mass ρ � 5000 kg/m3, elasticity
modulus of the sphere E � 109 N/m2, Poisson coefficient

ν � 0.25, static friction coefficient μs � 0.20, dynamic
friction coefficient μd � 0.20, friction constant parameter
K f � 1015,maximumpermissible iterations Kd � 10, grav-
ity acceleration g � (0;−10; 0)m/s2, time increment �t �
10−3 s, fully implicit Euler integration scheme (∅ � 1), tol-
erances T OLr � 10−3, T OLv � 10−3 and T OLw � 10−3

and no additional contributions of external forces, like damp-
ing, bonding and environment effects (i.e., all respectively
parameters were considered to be zero). It is clear that the
additional information of geometry is not necessary to be
presented. The maximum iteration in each time increment
was K � 3.

The analysis is performed for 5 s. The numerical and
analytical results in terms of displacements, velocities and
angular velocities are shown in Fig. 15. These values corre-
spond to the respective normof the vector in direction parallel
to the inclined plane.

For example, at time t � 3.002 s, the analytical
results lie to displacement r � (−34.113;−25.585; 0)m,
velocity v � (−16.647;−12.485; 0)m/s and spin
ω � (0; 0; 64.032) rad/s and the numerical results lie
to displacement r � (−34.119;−25.589; 0)m, veloc-
ity v � (−16.628;−12.525; 0)m/s and spin ω �
(0; 0; 63.945) rad/s. Comparing the results in terms of dis-
placement, velocity and angular velocity, it is possible to
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Fig. 15 Time histories of the particle’s displacement, velocity and spin
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Fig. 16 Diagram of a sphere with a horizontal surface

affirm that the displacement obtained by numerical simu-
lation is 100.02% of the analytical result, the velocity is
100.04% of the analytical one and the angular velocity is
99.86% of the analytical result. It is important to mention
that the analytical solution will not be exactly the same as
the results obtained by numerical simulations. One reason
is that the Coulomb law is a function of the normal force
and it is variable during the process, i.e., in Hertz model the
normal force is a function of penetration and the stick and
slip conditions are changing during the contact. The pos-
sibility of alternation between the stick and the slip case
is expected from the physical point of view, especially at
the contact point. So, always, when the stick case occurs at
some moment, the skating will happen. It is inherent to the
Coulomb’s law. Hence, there will be micro-slips that will
dissipate a little more energy than anticipated in analytical
models.

6.3 Slipping and rolling of a sphere on a horizontal
surface

The analytical solution for slipping and rolling of a sphere on
a horizontal plane is a particular case of the previous section.
Basically, the angle of the surface must be considered to
be zero, i.e., θ � 0

◦
. The same example was studied by

Campello in [34] and will be presented here to be one more
classical problem to validate particles programs (Fig. 16).

Consider, for the initial configuration, a solid sphere with
radii R � 0.20m placed on a horizontal plane. At this time,
only a point of the sphere is in contact with the wall. The
initial velocity is v(0) � (2.355; 0; 0)m/s and initial spin is
ω(0) � (0; 0;−127.03) rad/s.

For the numerical simulation, consider the following addi-
tional values: specific mass ρ � 5000 kg/m3, elasticity
modulus of the sphere E � 1010 N/m2, Poisson coefficient
ν � 0.25, static friction coefficient μs � 0.25, dynamic
friction coefficient μd � 0.25, friction constant parameter
K f � 1015, maximum permissible iterations Kd � 10,
gravity acceleration g � (0;−9.81; 0)m/s2, time incre-
ment �t � 10−4 s, fully implicit Euler integration scheme
(∅ � 1), tolerances T OLr � 10−3, T OLv � 10−3 and
T OLw � 10−3 and no additional contributions of exter-

nal forces, like damping, bonding and environment effects
(i.e., all respectively parameters were considered to be zero).
Again, additional information of geometry is not needed. The
maximum iteration in each time increment was K � 3.

The analysis is performed for 5 s. The numerical and
analytical results in terms of displacements, velocities and
angular velocities are shown in Fig. 17. These values corre-
spond to the respective normof the vector in direction parallel
to the inclined plane.

For example, at time t � 3 s, the analytical results
lie to displacement r � (17.939; 0; 0)m, velocity v �
(8.941; 0; 0)m/s and spin ω � (0; 0;−44.705) rad/s
and the numerical results lie to displacement r �
(17.982; ; 0)m, velocity v � (8.941; 0; 0)m/s and spin ω �
(0; 0;−44.705) rad/s. Comparing the results in terms of dis-
placement, velocity and angular velocity, is possible to affirm
that the displacement obtained by numerical simulation is
100.24% of the analytical result, the velocity is 100.00% of
the analytical one and the angular velocity is 100.00% of the
analytical result.

Observing the velocity and spin in Fig. 17, it is possible to
conclude that the horizontal line corresponds to the stick case.
So, in that time the relative velocity at the contact point goes
to zero and as consequence, the friction force also goes to
zero, see Eq. (181). The corresponding time of the beginning
of stick case can be determined substituting the equations
from (178) to (182) into (168). Considering that this problem
has the motion in only one direction, the Eq. (178) can be
rewritten as

v0 +
1

m
�t f + ω0R +

R2

I
�t f � 0. (135)

From above equation the corresponding time to start the
stick case is calculated by

(136)

�t � − (v0 + ω0R)

f
(

1
m + R2

I

)

� −2 (v0 + ω0R)

7µg

� −2 [2.355 + (−127.03) · 0.2]
7 · 0.25 · 9.81

� 2.685 s.

At t � 0 s the velocity at contact point is vP � 2.355 +
(−127.03) · 0.2 � −23.051m/s. Since the friction force is
opposed to the direction of this velocity, the magnitude of vP
will decrease progressively until it reaches zero. When this
occurs, the relative motion between the contact point P and
the flat surface stops, meaning that sliding no longer occurs
and the particle starts to have pure rolling.
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Fig. 17 Time histories of the particle’s displacement, velocity and spin

7 Numerical simulation

The main objective of this section is to present three numer-
ical examples of granular materials to apply the algorithm
studied in this work. The first example consists of studying
the drop of 180 particles in a container. The second and third
examples consist of a simulation of an unloading of granular
materials from one upper container to the other lower. The
difference between these two examples lies in the geometry
of the upper container and the number of particles used to dis-
cretize the granular material. The second and third examples
have 40 and 3100 particles, respectively.

7.1 Example 1: Free falling granular material

The basic aim of this section is to analyze the efficiency of
the numerical algorithm to solve particles problems. This
specific example consists to model the mechanical behavior
of granular materials when they are thrown into a dumpster,
see Fig. 18. In this model, the walls are assumed to be rigid.
The geometry of this problem is presented in Fig. 19.

This model consists of 180 particles placed as shown in
Fig. 19. All particle parameters are presented in Table 2. The
materials properties of the walls are the same as the particles.

Fig. 18 Example 1: problem definition

This example was simulated for three different values
for the parameter ∅, i.e., referring to the explicit (∅ ≈ 0),
semi-implicit (∅ � 0.5) and fully implicit Euler integration
scheme (∅ � 1). After the numerical simulation some equi-
librium configurations are shown in Fig. 20. All particles are
completely stopped at time t � 1.52 s.

In this specific example, all particles are located very
close to each other, so there aren’t much free spaces for
mobility. The numerical analysis demonstrated that the final
results obtained for each integration parameter ∅ are exactly
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Fig. 19 Geometrical dimensions of the problem definition

Table 2 Numerical parameters of example 1

Particles

Particles radii R � 0.2m

Specific mass ρ � 7850 kg/m3

Elasticity modulus of the spheres E � 109 N/m2

Poisson coefficient ν � 0.25

Static friction coefficient μs � 0.20

Dynamic friction coefficient μd � 0.20

Friction constant parameter K f � 1015

Damping coefficient ξ � 0.90

Normalized deformation E∗ � 0.04

Bonding constant Knb
i j � 106

Rotational bonding constant Krb
i j � 103

Material parameter Pp � 2.0.

Analysis parameters

Maximum permissible iterations Kd � 8

Gravity acceleration g � (0; 0;−9.81) m/s2

Time increment �t � 5 · 10−6 s

Euler integration scheme ∅ ≈ 0;∅ � 0.5 and ∅ � 1

Tolerances T OLr � 10−3, T OLv � 10−3, T OLw � 10−3

Dynamic viscosity of the air ce � 0.00265

Local average velocity of the external interstitial medium is ve � 0

the same. Regarding the numerical computing time, it is
noticed that the explicit method is considerably faster than
the implicit one. It was verified that the explicit method
solved the problemwith an analysis time approximately 40%
smaller than the implicit one and 17% smaller than the semi-
implicit method. In this case, it is better to use the explicit
method because it is faster and the results are basically the
same. The numerical results (regarding positions, velocities
and angular velocities) of two selected particles are presented
in Tables 5, 6 and 7, respectively, in the Appendix C.1.

7.2 Example 2: Unloading granular material
discretized by 40 particles

The interesting issue of this section is to provide a simple 3D
example to make a comparison of an implicit and explicit

time integration scheme and see what is most efficient and if
the results are the same. For this purpose, a simple example of
forty particles is presented as shown in Fig. 21. The particle
distribution is shown in Fig. 22.

This example, unlike the previous one, allows the particles
to move with greater freedom, being able to actually verify
if there is a difference between the integration schemes. To
make this comparison, the numerical analysis is performed
for 8 s of simulation equivalent to the real time. The parti-
cles and analysis parameters are presented in Table 3. The
materials properties of the walls are the same as the particles.

Three different values for integration parameters are
used to simulate this problem, i.e., referring to the explicit
(∅ ≈ 0), semi-implicit (∅ � 0.5) and fully implicit Euler
integration scheme (∅ � 1).

First, the obtained results will be analyzed to verify if
they are the same when different values for the parameter
∅ are used. The numerical results are compared for three
different times (2, 4, 8 s). Theparticle configurations for each
integration parameter are illustrated in Fig. 23.

For each defined time and for each integration parame-
ter (∅) the current configuration is given, see Fig. 23. Notice
that three particles are selected and highlightedwith different
colors to compare their position at each time. Observing the
configurations of the particles, it is noticed that the results are
not the same when different values of∅ are used. By observ-
ing the kinematic of the particles in the upper container, one
notices that its movement is restricted by the sidewalls. In
this way, the movement of these particles are practically the
same when they are inside the upper container. However,
when they are practically outside the upper container, there
are small variations in the values of displacements, velocities
and angular velocities for different values of ∅, which sig-
nificantly modify the forces acting on the particles when they
are located outside the upper container, since there is freedom
of movement. So, it is possible to conclude that, in general,
the results can be changed when different values are used for
the parameter ∅, especially in tridimensional problems.

Analyzing the numerical computing time, it is noticed that
the explicit method is considerably faster than the implicit
one. It was verified that the explicit method solved the prob-
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Fig. 20 Equilibrium configuration during the numerical simulation. a Time t � 0 s, b time t � 0.64 s, c time t � 0.1.52 s, d time t � 0 s, e time t
� 0.64 s, f time t � 1.52 s

Fig. 21 Example 2: problem
definition

lem with an analysis time approximately 41% smaller than
the implicit one and 25% smaller than the semi-implicit
method. However, it is difficult to say which method results
in values closer to the real phenomenon, since all results

obtained correspond to behaviors consistent with physical
reality.

The numerical results (regarding positions, velocities and
angular velocities) of the three selected particles are pre-
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Fig. 22 Example 2: particles
distribution

(a)

(b)

Table 3 Numerical parameters of example 2

Particles

Particles radii R � 0.2m

Specific mass ρ � 2500 kg/m3

Elasticity modulus of the spheres E � 109 N/m2

Poisson coefficient ν � 0.25

Static friction coefficient μs � 0.20

Dynamic friction coefficient μd � 0.20

Friction constant parameter K f � 1015

Damping coefficient ξ � 0.90

Normalized deformation E∗ � 0.04

Bonding constant Knb
i j � 106

Rotational bonding constant Krb
i j � 103

Material parameter Pp � 2.0.

Analysis parameters

Maximum permissible iterations Kd � 10

Gravity acceleration g � (0; 0;−9.81)m/s2

Time increment �t � 5 · 10−6 s

Euler integration scheme (∅ ≈ 0;∅ � 0.5 and ∅ � 1)

Tolerances T OLr � 10−3, T OLv � 10−3, T OLw � 10−3

Dynamic viscosity of the air ce � 0.00265

Local average velocity of the external interstitial medium is ve � 0

sented in Tables 8, 9 and 10, respectively, in the Appendix
C.2. All velocities and angular velocities vectors have zero
value components at time t � 0 s.

7.3 Example 3: unloading granular material
discretized by 3100 particles

This example represents a discharge of a granular material
from a dump bucket of a truck into another dump bucket
(lower one), see Fig. 24 for geometrical representation. In
this model, the walls are assumed to be rigid. This example
contains 3100 particles in the upper container.

The geometry of the lower bucket corresponds to
2.20m(width)×6.30(length)×2.00(height) and the upper
bucket corresponds to 2.10m(width) × 6.00m(length) ×

1.76m(height). The discretized granular material is sand.
The sand was discretized by 3100 particles. The particle dis-
tribution in the yz-plane is shown in Fig. 25.

The particle distribution in the xz-plane is shown in
Fig. 26.

The particles and analysis parameters are presented in
Table 4. The material properties of the walls are the same
as the particles.

In this example a fully implicit Euler integration scheme
is used. The authors opted to use the implicit method, since
it finds a solution by solving an equation involving both the
current state of the system and the later one and thus, is more
stable than the explicit method, see [49]. Some equilibrium
configurations are shown in Fig. 27.

It is important to mention that the analysis time for this
problem was initially very high. The analysis resulted in a
processing time greater than 6months of analysis if any treat-
ment of optimization is done. To avoid this problem, it was
verified that the contact search algorithm must be optimized,
and consequently, the processwould not consumemuch com-
putational time in the search for algorithms to verify the
contact suffered by the particles. Then a complex study of
search solutions for these multiscale problems was started.
A basic notion of the contact search optimization was pre-
sented in Sect. 5. Currently, the numerical analysis for a time
of 15 s is done in an acceptable time and can finish this analy-
sis in less than 1 week using a standard computer, depending
on the velocities of the particles and the increment of time
used. In our case, the time increment is of around 10−6 s.

Figure 28 illustrates some equilibrium configurations in
the side view.

Figure 29 illustrates some equilibrium configurations in
the front view.

The numerical results (regarding positions, velocities and
angular velocities) of two selected particles are presented in
Tables 11, 12 and 13, respectively, in the Appendix C.3.

8 Conclusions

The main purpose of this paper was to review the formula-
tions of the Discrete Element Method (DEM) and apply it to
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Fig. 23 Example 2: problem
definition. a t � 2 s and ∅ ∼� 0,
b t � 2 s and ∅ ∼� 0.5, c t � 2 s
and ∅ ∼� 1, d t � 4 s and ∅ ∼� 0,
e t � 4 s and ∅ ∼� 0.5, f t � 4 s
and ∅ ∼� 1, g t � 8 s and ∅ ∼� 0,
h t � 8 s and ∅ ∼� 0.5, i t � 8 s
and ∅ ∼� 1

Fig. 24 Example 3: problem
definition
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Fig. 25 Example 3: yz-plane
view. a Particles on plane yz. b
View plane yz

(a) (b)

Fig. 26 Example 3: xz-plane
view

Table 4 Numerical parameters of example 3

Particles

Particles radii R � 0.1m

Specific mass ρ � 2500 kg/m3

Elasticity modulus of the spheres E � 109 N/m2

Poisson coefficient ν � 0.25

Static friction coefficient μs � 0.20

Dynamic friction coefficient μd � 0.20

Friction constant parameter K f � 1015

Damping coefficient ξ � 0.90

Normalized deformation E∗ � 0.04

Bonding constant Knb
i j � 106

Rotational bonding constant Krb
i j � 103

Material parameter Pp � 2.0.

Analysis parameters

Maximum permissible iterations Kd � 8

Gravity acceleration g � (0; 0;−9.81)m/s2

Time increment �t � 5 · 10−6 s

Fully implicit Euler integration scheme (∅ � 1)

Tolerances T OLr � 10−3, T OLv � 10−3, T OLw � 10−3

Dynamic viscosity of the air ce � 0.00265

Local average velocity of the external interstitial medium is ve � 0

model granular materials. This work reviewed the researches
developed in the DEM field and explained the rolling phe-
nomenausing theCoulomb’s friction law, the forces actingon
a particle (normal contact, friction, damping, adhesive bond-
ing, environmental and gravity), the time integration scheme
to solve DEM and the contact search algorithm. These topics
were important to be explained because they are the funda-
mentals of the method. So, it is important to make a brief
discussion about them.

The influence of the rotation is also included in the physi-
cal phenomena studied. The rotation is important to describe
correctly the motion of the particles. Without the rotation,
only the translation is not able to describe some physical
phenomena.

Many forces in the procedures are investigated and
included in the numerical model. Concerning the friction
law presented in this paper, the authors concluded that the
friction law works perfectly for higher values of the friction
constant parameter K f . The friction is also very important to
calculate the angular velocities, as verified during the study
made in the validation problems.

The strongly multiphysics models are solved iteratively
within each time-step using a staggering scheme, proposed
by Zohdi in [35], which employs temporal adaptation to con-
trol the error. A comparative study was carried out between
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Fig. 27 Equilibrium configuration during the numerical simulation. a t � 1.28 s, b t � 2.52 s, c t � 7.64 s, d t � 10.40 s, e t � 11.96 s, f t � 15.00 s

Fig. 28 Equilibrium configuration (side view). a t � 1.28 s, b t � 7.64 s, c t � 11.96 s, d t � 15.00 s
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Fig. 29 Equilibrium configuration (front view). a t � 1.28 s, b t � 7.64 s, c t � 11.96 s, d t � 15.00 s

the explicit and implicit method and it was verified that the
explicit method is faster than the implicit one, when the same
time increments are used. It was also verified that the numer-
ical results can be changed when different values of φ are
used, especially in three-dimensional problems.

During these investigations, this paper also presented
some standard examples of classical mechanics to validate
all theories shown and consequently, the numerical program
by comparing the numerical results with the analytical one.

The authors concluded that all theories and algorithms
presented in this paper, work numerically perfectly and can
correctly simulate the phenomena of multi-contact between
particles, representing in a real form the physical phenomena.

Basically, the new contributions of this work, besides
reviewing all theories, were to make a validation of the
method andpresent 3Dnumerical examples to show the capa-
bility of the algorithm.
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Appendix A: Analytical solution for oblique
impacts of elastoplastic spheres

This example considers an oblique impact of a sphere with
a target wall in the y−z plane, see Fig. 13. The current for-
mulation presented here was developed by Wu et al. in [48]
and will be explained here in more details. The spins around
the y and z axes and its corresponding moment impulses
are ignored. Is supposed that the sphere approaches the wall
with an initial translational velocity vi and angular veloc-
ity ωi at an impact angle θi . After interaction with the wall,
the sphere rebounds with a rebound translational velocity vr
and rebound angular velocity ωr . Note that vi and vr are the
velocities of the sphere center. The corresponding transla-
tional velocities at the contact patch are denoted by vP

i and
vP
r . Consider the normal and tangential coefficients of resti-
tution defined by

en � −vr ,n

vi,n
(137)

eτ � vr ,τ

vi,τ
. (138)

where vi,n and vr ,n are the normal components of the impact
speed and rebound speed, respectively, and vi,τ and vr ,τ are
the corresponding tangential velocity components. It should
be noted that it is necessary to introduce the negative sign
in Eq. (137) since the normal component of the velocity
reverses its direction after the impact, i.e., vr ,n has the oppo-
site direction of vr ,n and the normal coefficient of restitution
is usually quoted as a positive value. The tangential coeffi-
cient of restitution can be negative because, with initial spin,
under certain conditions the sphere can bounce backwards,
see [50, 51]. The coefficients en and eτ can be used to repre-
sent the recovery of translational kinetic energy in the normal
and tangential directions, respectively.

The correlation between the tangential and normal inter-
actions during the impact can be characterized by an impulse
ratio, which is defined as

f � Pτ

Pn
� ∫ Fτdt

∫ Fndt
, (139)

where Pn and Pτ are the normal and tangential impulses,
respectively, and Fn and Fτ are the normal and tangential
components of the contact force. It is clear that the impulse
ratio f is different to the interface friction coefficient μ. It
may or may not be equal to μ, see [52].

According to Newton’s second law, Pn and Pτ can be
expressed in terms of the incident and rebound velocities as

Pn � m
(
vr ,n − vi,n

)
(140)

Pτ � m
(
vr ,τ − vi,τ

)
, (141)

where m is the mass of the particle. Substituting (140) and
(141) into Eq. (139) leads to

f �
(
vr ,τ − vi,τ

)

(
vr ,n − vi,n

) . (142)

This equation can be rewritten as

f vi,n

(
vr ,n

vi,n
− 1

)
� vi,τ

(
vr ,τ

vi,τ
− 1

)
. (143)

Using (137) and (138) in Eq. (143):

f vi,n(−en − 1) � vi,τ (eτ − 1). (144)

Simplifying:

f
vi,n

vi,τ
(−en − 1) � eτ − 1. (145)

Rewriting (145) and considering vi,n
/
vi,τ

� 1/
tan(θi )

,
results in

eτ � 1 − f
(1 + en)

tan(θi )
. (146)

Similarly, a rotational impulse Pω can be defined by

Pω � I (ωr − ωi ), (147)

where I is the moment of inertia of the sphere, and ωi

and ωr are the initial and rebound rotational angular veloc-
ities, respectively. According to the conservation of angular
momentum about point P as shown in Fig. 13, is correct to
write

Hω � RPτ , (148)

where R is the radius of the sphere.
Substituting (141) and (147) in (148):

I (ωr − ωi ) � Rm
(
vr ,τ − vi,τ

)
. (149)

The Eq. (149) can be rewritten as

ωr � ωi − Rm

I

(
vi,τ − vr ,τ

)
. (150)

For a solid sphere, I � 2mR2/
5. Hence,

(151)

ωr � ωi − 5

2R

(
vi,τ − vr ,τ

)

� ωi − 5vi,τ
2R

(
1 − vr ,τ

vi,τ

)

� ωi − 5vi,τ
2R

(1 − eτ ) .
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Substituting (146) into (151):

ωr � ωi − 5 f (1 + en)vi,τ
2R tan(θi )

. (152)

Considering vi,n � vi,τ
/
tan(θi )

, the Eq. (152) can be
rewritten as

ωr � ωi − 5 f (1 + en)vi,n
2R

. (153)

The tangential component of the rebound surface velocity
at the contact patch, vP

r ,τ , can be expressed as

vP
r ,τ � vr ,τ + Rωr . (154)

Substituting (153) into (154)

vP
r ,τ � vr ,τ + Rωi − 5

2
f (1 + en)vi,n . (155)

Substituting (138) into (155), results in

vP
r ,τ � eτ vi,τ + Rωi − 5

2
f (1 + en)vi,n . (156)

Substituting (146) into (156), gives

vP
r ,τ �

[
1 − f (1 + en)

vi,n

vi,τ

]
vi,τ + Rωi − 5

2
f (1 + en)vi,n

(157)

Simplifying,

vP
r ,τ � vi,τ + Rωi − f (1 + en)vi,n − 5

2
f (1 + en)vi,n .

(158)

Considering vP
i,τ � vi,τ+Rωi , theEq. (158) can bewritten

as

vP
r ,τ � vP

i,τ − 7

2
f (1 + en)vi,n (159)

From Eq. (146) is clear that (1 − eτ )vi,τ � f (1 + en)vi,n .
Hence, Eq. (159) can be rewritten as

vP
r ,τ � vP

i,τ − 7

2
(1 − eτ )vi,τ . (160)

The Eq. (160) can be rewritten as

eτ � 1 − 2vP
i,τ

7vi,τ
+
2vP

r ,τ

7vi,τ
. (161)

Considering vP
i,τ � vi,τ +Rωi , the Eq. (161) can be rewrit-

ten as

eτ � 1 − 2vi,τ
7vi,τ

− 2Rωi

7vi,τ
+
2vP

r ,τ

7vi,τ
. (162)

Hence,

eτ � 5

7
+
2vP

r ,τ

7vi,τ
− 2Rωi

7vi,τ
. (163)

From Fig. 13, the rebound angle θr can be obtained from

tan(θr ) � vr ,τ

vr ,n
� eτ vi,τ

−envi,n
� −eτ

en
tan(θi ). (164)

It can be seen from (146), (153), (159) and (160) that all
the kinematics of the rebounding sphere depend upon the
impact angle θi , the initial impact speed vi and particle spin
ωi , the normal coefficient of restitution en and the impulse
ratio f . In other words, for a given impact angle and impact
speed, the rebounding kinematics of the sphere can be deter-
mined once en and f are known (see [52, 53]). Many studies
have been carried out to investigate the normal coefficient of
restitution en during elastoplastic impacts, and the rebound
behavior of elastoplastic spheres during normal impacts is
well established in [37, 48, 54, 55]. The impulse ratio can be
determined by measuring the initial and rebound velocities
at the sphere center (see [52, 53, 56]). For more details see
[48].

Appendix B: Analytical solution for slipping
and rolling of a sphere on an inclined plane

This problem consists of a particle with radii R and mass
m slipping and rolling on an inclined surface with angle
θ , see Fig. 14. In the initial time, a particle is placed on
the surface with velocity v(0) and spin ω(0). Depending
on friction coefficient, initial velocity and angular velocity
the sphere may roll or slide on the inclined plane. The full
original formulation was developed by Aghamohammadia
and Aghamohammadib in [57] and will be shortly presented
here. It is important tomention that the formulation presented
in this article is adapted and simplified to consider that the
velocity of the sphere has the same direction as the unit vector
i .

The Newton’s equilibrium equation of motion for the
sphere is

m r̈ � mg sin(θ)i + f , (165)

where g is the gravity acceleration and f is the fric-
tion force. The local coordinate system is defined by
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i � (−cos(θ),−sin(θ), 0), j � (0, 0, 1) and k �
(−sin(θ), cos(θ), 0). Observing Eqs. (9) and (10), is easy
to demonstrate the following relation

M � I ω̇, (166)

where M is the momentum, I is the inertial momentum and
ω is the angular velocity. The moment of inertia of the sphere
with respect to its center is defined in (11). Looking at Fig. 14,
the momentum can be calculated by

M � I ω̇ � (−Rk) × f . (167)

Now, it is important to study the phenomena in two parts,
i.e., one considering the rolling of sphere and other consid-
ering the sliding of sphere.

Appendix B.1.: Rolling a sphere on an inclined plane

Rolling constraint demands the velocity of the sphere at the
contact point P to be zero. Then,

vP � v + ω × (−Rk) � 0. (168)

Differentiating the above equation with respect to time,
obtains

r̈ + ω̇ × (−Rk) � 0. (169)

Using (167) in the above equation, leads to

r̈ +

[
(−Rk) × f

2
5mR2

]

× (−Rk) � 0. (170)

Simplifying (170), results in

r̈ +
5

2m
f � 0 → f � −2m

5
r̈. (171)

Substituting (171) in (165), one obtains

m r̈ � mg sin(θ)i − 2m

5
r̈. (172)

The above equation can be rewritten as

r̈ � 5

7
g sin(θ)i . (173)

Substituting (173) in (171), gives

f � − 2

7
mg sin(θ)i . (174)

The sphere rolls on the inclined plane if f ≤ μmg cos(θ).
Then, the rolling occurs if

μ ≥ 2

7
tan(θ). (175)

Appendix B.2.: Sliding a sphere on an inclined plane

If the sphere slips, then the velocity at the contact point P is
not zero and the friction is

f � −μmg cos(θ)eP , (176)

where eP � vP
vP

is the unit vector along velocity at contact
point P . Using (165), the time evolution equation of vP is

mv̇P � mg sin(θ)[i − μ cot(θ)eP ]. (177)

Appendix B.3.: Exact solution

Let’s solve exactly the Newton’s equation. Integrating (165)
and (167) gives

r � r0 +
∫ t

0
vdt (178)

v � v0 + g sin(θ)�t i +
1

m

∫ t

0
dt f (179)

ω � ω0 +

(
− R

I
k
)

×
∫ t

0
dt f , (180)

where

f �
{ − 2

7mg sin(θ)i, i f vP � 0
−μmg cos(θ)eP , i f vP �� 0

, (181)

and

r̈ �
{ 5

7g sin(θ)i, i f vP � 0
g sin(θ)[i − μ cot(θ)eP ], i f vP �� 0

. (182)

Note that the velocity at the contact point vP is defined in
(168).

Appendix C.: Numerical results

Appendix C.1. Numerical results of example 1

See Tables 5, 6 and 7.
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Table 5 Position vectors of two
selected particles through time
(∅ � 1.0)

Particle t � 0 s t � 0.4 s t � 0.8 s t � 1.2 s t � 1.52 s

1

⎡

⎣
1.700
5.950
2.100

⎤

⎦

⎡

⎣
1.700
5.950
1.315

⎤

⎦

⎡

⎣
1.746
5.950
0.328

⎤

⎦

⎡

⎣
1.691
5.950
0.273

⎤

⎦

⎡

⎣
1.692
5.950
0.273

⎤

⎦

2

⎡

⎣
0.500
2.750
2.900

⎤

⎦

⎡

⎣
0.500
2.750
2.115

⎤

⎦

⎡

⎣
0.452
2.750
1.239

⎤

⎦

⎡

⎣
0.450
2.750
0.886

⎤

⎦

⎡

⎣
0.487
2.750
0.859

⎤

⎦

Table 6 Velocities vectors of
two selected particles through
time (∅ � 1.0)

Particle t � 0 s t � 0.4 s t � 0.8 s t � 1.2 s t � 1.52 s

1

⎡

⎣
0.000
0.000
0.000

⎤

⎦

⎡

⎣
0.000
0.000

−3.924

⎤

⎦

⎡

⎣
−0.011
0.000

−0.011

⎤

⎦

⎡

⎣
−0.003
0.000
0.006

⎤

⎦

⎡

⎣
0.000
0.000
0.000

⎤

⎦

2

⎡

⎣
0.000
0.000
0.000

⎤

⎦

⎡

⎣
0.000
0.000

−3.924

⎤

⎦

⎡

⎣
−0.256
0.000
0.393

⎤

⎦

⎡

⎣
0.884
0.000

−0.569

⎤

⎦

⎡

⎣
0.000
0.000
0.000

⎤

⎦

Table 7 Angular velocities
vectors of two selected particles
through time (∅ � 1.0)

Particle t � 0 s t � 0.4 s t � 0.8 s t � 1.2 s t � 1.52 s

1

⎡

⎣
0.000
0.000
0.000

⎤

⎦

⎡

⎣
0.000
0.000
0.000

⎤

⎦

⎡

⎣
0.000
0.253
0.000

⎤

⎦

⎡

⎣
0.000
0.008
0.000

⎤

⎦

⎡

⎣
0.000
0.000
0.000

⎤

⎦

2

⎡

⎣
0.000
0.000
0.000

⎤

⎦

⎡

⎣
0.000
0.000
0.000

⎤

⎦

⎡

⎣
0.000
2.099
0.000

⎤

⎦

⎡

⎣
0.000
3.265
0.000

⎤

⎦

⎡

⎣
0.000
0.000
0.000

⎤

⎦

Appendix C.2.: Numerical results of example 2

See Tables 8, 9 and 10.

Table 8 Position vectors of three selected particles through time

Particle φ t � 0 s t � 1 s t � 2 s t � 3 s t � 4 s t � 5 s t � 6 s t � 7 s t � 8 s

1 0.0

⎡

⎣
3.782
3.35
2.741

⎤

⎦

⎡

⎣
4.492
3.342
0.200

⎤

⎦

⎡

⎣
4.219
3.260
0.200

⎤

⎦

⎡

⎣
4.427
2.995
0.200

⎤

⎦

⎡

⎣
3.933
2.778
0.450

⎤

⎦

⎡

⎣
4.045
2.359
0.338

⎤

⎦

⎡

⎣
4.228
1.843
0.200

⎤

⎦

⎡

⎣
4.194
1.482
0.200

⎤

⎦

⎡

⎣
4.183
1.397
0.200

⎤

⎦

0.5

⎡

⎣
3.782
3.350
2.741

⎤

⎦

⎡

⎣
4.986
3.340
0.200

⎤

⎦

⎡

⎣
4.183
3.585
0.200

⎤

⎦

⎡

⎣
4.183
3.915
0.200

⎤

⎦

⎡

⎣
4.206
4.768
0.200

⎤

⎦

⎡

⎣
4.367
5.309
0.200

⎤

⎦

⎡

⎣
4.360
5.336
0.200

⎤

⎦

⎡

⎣
4.289
5.281
0.200

⎤

⎦

⎡

⎣
4.239
5.273
0.200

⎤

⎦

1.0

⎡

⎣
3.782
3.350
2.741

⎤

⎦

⎡

⎣
4.510
3.342
0.503

⎤

⎦

⎡

⎣
4.764
3.351
0.200

⎤

⎦

⎡

⎣
4.512
3.860
0.200

⎤

⎦

⎡

⎣
4.216
5.049
0.200

⎤

⎦

⎡

⎣
4.190
6.100
0.200

⎤

⎦

⎡

⎣
4.235
6.098
0.200

⎤

⎦

⎡

⎣
4.287
6.099
0.200

⎤

⎦

⎡

⎣
4.345
6.096
0.200

⎤

⎦

2 0.0

⎡

⎣
1.792
2.950
3.340

⎤

⎦

⎡

⎣
2.007
2.950
3.250

⎤

⎦

⎡

⎣
3.023
2.950
3.146

⎤

⎦

⎡

⎣
4.932
2.950
2.435

⎤

⎦

⎡

⎣
4.737
2.648
0.200

⎤

⎦

⎡

⎣
4.415
1.852
0.200

⎤

⎦

⎡

⎣
4.566
1.624
0.200

⎤

⎦

⎡

⎣
4.766
1.532
0.200

⎤

⎦

⎡

⎣
4.818
1.523
0.200

⎤

⎦

0.5

⎡

⎣
1.792
2.950
3.340

⎤

⎦

⎡

⎣
2.005
2.950
3.251

⎤

⎦

⎡

⎣
3.010
2.950
3.148

⎤

⎦

⎡

⎣
4.895
2.950
2.456

⎤

⎦

⎡

⎣
4.911
2.573
0.200

⎤

⎦

⎡

⎣
4.579
1.728
0.200

⎤

⎦

⎡

⎣
4.698
1.486
0.200

⎤

⎦

⎡

⎣
4.820
1.511
0.200

⎤

⎦

⎡

⎣
4.826
1.456
0.200

⎤

⎦

1.0

⎡

⎣
1.792
2.950
3.340

⎤

⎦

⎡

⎣
2.007
2.950
3.249

⎤

⎦

⎡

⎣
3.030
2.950
3.146

⎤

⎦

⎡

⎣
4.947
2.950
2.415

⎤

⎦

⎡

⎣
4.990
3.505
0.200

⎤

⎦

⎡

⎣
4.764
4.129
0.200

⎤

⎦

⎡

⎣
4.560
4.627
0.200

⎤

⎦

⎡

⎣
4.570
4.740
0.200

⎤

⎦

⎡

⎣
4.564
4.723
0.200

⎤

⎦
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Table 8 continued

Particle φ t � 0 s t � 1 s t � 2 s t � 3 s t � 4 s t � 5 s t � 6 s t � 7 s t � 8 s

3 0.0

⎡

⎣
0.200
3.350
3.499

⎤

⎦

⎡

⎣
0.200
3.350
3.186

⎤

⎦

⎡

⎣
0.455
3.350
3.055

⎤

⎦

⎡

⎣
1.395
3.350
2.961

⎤

⎦

⎡

⎣
3.028
3.350
2.798

⎤

⎦

⎡

⎣
5.255
3.350
1.163

⎤

⎦

⎡

⎣
5.162
3.858
0.200

⎤

⎦

⎡

⎣
5.080
4.188
0.200

⎤

⎦

⎡

⎣
5.033
4.300
0.200

⎤

⎦

0.5

⎡

⎣
0.200
3.350
3.499

⎤

⎦

⎡

⎣
0.200
3.350
3.186

⎤

⎦

⎡

⎣
0.460
3.350
3.055

⎤

⎦

⎡

⎣
1.405
3.350
2.960

⎤

⎦

⎡

⎣
3.043
3.350
2.796

⎤

⎦

⎡

⎣
5.247
3.350
1.134

⎤

⎦

⎡

⎣
5.063
3.754
0.200

⎤

⎦

⎡

⎣
4.955
4.109
0.200

⎤

⎦

⎡

⎣
5.012
4.170
0.200

⎤

⎦

1.0

⎡

⎣
0.200
3.350
3.499

⎤

⎦

⎡

⎣
0.200
3.350
3.186

⎤

⎦

⎡

⎣
0.453
3.350
3.056

⎤

⎦

⎡

⎣
1.391
3.350
2.962

⎤

⎦

⎡

⎣
3.023
3.350
2.798

⎤

⎦

⎡

⎣
5.249
3.349
1.176

⎤

⎦

⎡

⎣
5.295
3.600
0.277

⎤

⎦

⎡

⎣
4.931
3.766
0.200

⎤

⎦

⎡

⎣
4.901
3.734
0.200

⎤

⎦

Table 9 Velocities vectors of three selected particles through time

Particle φ t � 1 s t � 2 s t � 3 s t � 4 s t � 5 s t � 6 s t � 7 s t � 8 s

1 0.0

⎡

⎣
−3.050
−0.018
0.000

⎤

⎦

⎡

⎣
0.645

−0.262
0.000

⎤

⎦

⎡

⎣
−0.784
−0.060
0.000

⎤

⎦

⎡

⎣
−0.088
−0.423
0.0860

⎤

⎦

⎡

⎣
0.184

−0.481
−0.194

⎤

⎦

⎡

⎣
0.006

−0.404
0.000

⎤

⎦

⎡

⎣
−0.083
−0.334
0.000

⎤

⎦

⎡

⎣
0.001
0.028
0.000

⎤

⎦

0.5

⎡

⎣
−1.943
−0.041
0.0209

⎤

⎦

⎡

⎣
−0.003
0.414
0.000

⎤

⎦

⎡

⎣
−0.004
0.311
0.000

⎤

⎦

⎡

⎣
0.107
1.206
0.000

⎤

⎦

⎡

⎣
0.401
0.393
0.000

⎤

⎦

⎡

⎣
−0.072
−0.064
0.000

⎤

⎦

⎡

⎣
−0.063
−0.013
0.000

⎤

⎦

⎡

⎣
−0.036
−0.001
0.000

⎤

⎦

1.0

⎡

⎣
0.740

−0.010
−6.564

⎤

⎦

⎡

⎣
−0.281
0.061
0.000

⎤

⎦

⎡

⎣
−0.353
0.984
0.000

⎤

⎦

⎡

⎣
−0.276
1.219
0.000

⎤

⎦

⎡

⎣
0.062

−0.007
−0.044

⎤

⎦

⎡

⎣
0.040

−0.012
0.000

⎤

⎦

⎡

⎣
0.058

−0.003
0.000

⎤

⎦

⎡

⎣
0.058

−0.003
0.000

⎤

⎦

2 0.0

⎡

⎣
0.675
0.000

−0.077

⎤

⎦

⎡

⎣
1.379

−0.000
−0.138

⎤

⎦

⎡

⎣
2.503

−0.001
−3.330

⎤

⎦

⎡

⎣
−1.358
−0.738
0.000

⎤

⎦

⎡

⎣
−0.088
−0.691
0.000

⎤

⎦

⎡

⎣
0.256

−0.101
0.000

⎤

⎦

⎡

⎣
0.040

−0.022
0.000

⎤

⎦

⎡

⎣
0.044

−0.003
0.000

⎤

⎦

0.5

⎡

⎣
0.651
0.000

−0.080

⎤

⎦

⎡

⎣
1.369
0.000

−0.137

⎤

⎦

⎡

⎣
2.461
0.001

−3.282

⎤

⎦

⎡

⎣
−0.665
−1.022
0.000

⎤

⎦

⎡

⎣
−0.158
−1.007
0.000

⎤

⎦

⎡

⎣
0.138
0.050
0.000

⎤

⎦

⎡

⎣
0.001

−0.106
0.000

⎤

⎦

⎡

⎣
0.003

−0.039
0.000

⎤

⎦

1.0

⎡

⎣
0.680

−0.000
−0.091

⎤

⎦

⎡

⎣
1.385
0.000

−0.139

⎤

⎦

⎡

⎣
2.505
0.000

−3.389

⎤

⎦

⎡

⎣
−0.867
0.855
0.000

⎤

⎦

⎡

⎣
−0.207
0.587
0.000

⎤

⎦

⎡

⎣
−0.086
0.280

−0.001

⎤

⎦

⎡

⎣
0.033

−0.034
0.000

⎤

⎦

⎡

⎣
−0.026
−0.020
0.000

⎤

⎦

3 0.0

⎡

⎣
0.003

−0.001
−1.560

⎤

⎦

⎡

⎣
0.593
0.000

−0.059

⎤

⎦

⎡

⎣
1.286

−0.000
−0.129

⎤

⎦

⎡

⎣
1.980
0.000

−0.198

⎤

⎦

⎡

⎣
2.301

−0.000
−5.494

⎤

⎦

⎡

⎣
−0.153
0.395
0.000

⎤

⎦

⎡

⎣
0.008
0.248
0.000

⎤

⎦

⎡

⎣
−0.075
0.041
0.000

⎤

⎦

0.5

⎡

⎣
0.003

−0.001
−1.557

⎤

⎦

⎡

⎣
0.598
0.000

−0.060

⎤

⎦

⎡

⎣
1.291
0.000

−0.129

⎤

⎦

⎡

⎣
1.985
0.000

−0.199

⎤

⎦

⎡

⎣
2.262

−0.000
−5.546

⎤

⎦

⎡

⎣
−0.336
0.449
0.000

⎤

⎦

⎡

⎣
−0.006
0.065
0.000

⎤

⎦

⎡

⎣
0.082
0.053
0.000

⎤

⎦

1.0

⎡

⎣
0.003
0.000

−1.556

⎤

⎦

⎡

⎣
0.591

−0.000
−0.059

⎤

⎦

⎡

⎣
1.285
0.000

−0.129

⎤

⎦

⎡

⎣
1.979
0.000

−0.198

⎤

⎦

⎡

⎣
2.301

−0.001
−5.471

⎤

⎦

⎡

⎣
−0.242
0.224

−0.242

⎤

⎦

⎡

⎣
−0.068
−0.004
0.000

⎤

⎦

⎡

⎣
−0.027
−0.034
0.000

⎤

⎦

Table 10 Angular velocities vectors of three selected particles through time

Particle φ t � 1 s t � 2 s t � 3 s t � 4 s t � 5 s t � 6 s t � 7 s t � 8 s

1 0.0

⎡

⎣
0.092

−15.249
0.177

⎤

⎦

⎡

⎣
1.310
3.223
0.636

⎤

⎦

⎡

⎣
1.076

−2.019
0.214

⎤

⎦

⎡

⎣
3.025

−0.595
0.034

⎤

⎦

⎡

⎣
2.817
1.489

−0.559

⎤

⎦

⎡

⎣
2.021
0.032
0.285

⎤

⎦

⎡

⎣
1.668

−0.417
0.836

⎤

⎦

⎡

⎣
−0.103
0.005
0.232

⎤

⎦

0.5

⎡

⎣
−0.003
5.510
0.586

⎤

⎦

⎡

⎣
−2.068
−0.013
0.904

⎤

⎦

⎡

⎣
−1.613
−0.019
0.514

⎤

⎦

⎡

⎣
−6.031
0.535
2.192

⎤

⎦

⎡

⎣
−0.648
1.442
0.770

⎤

⎦

⎡

⎣
0.318

−0.361
0.712

⎤

⎦

⎡

⎣
0.067

−0.315
0.607

⎤

⎦

⎡

⎣
0.007

−0.182
0.323

⎤

⎦

1.0

⎡

⎣
0.102
3.712
0.453

⎤

⎦

⎡

⎣
−0.306
−1.405
1.331

⎤

⎦

⎡

⎣
−4.547
−1.898
1.155

⎤

⎦

⎡

⎣
−6.095
−1.378
0.345

⎤

⎦

⎡

⎣
−1.084
0.080
0.355

⎤

⎦

⎡

⎣
0.061
0.198

−0.188

⎤

⎦

⎡

⎣
0.016
0.289

−0.332

⎤

⎦

⎡

⎣
0.016
0.289

−0.332

⎤

⎦
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Table 10 continued

Particle φ t � 1 s t � 2 s t � 3 s t � 4 s t � 5 s t � 6 s t � 7 s t � 8 s

2 0.0

⎡

⎣
0.001

−3.262
−0.001

⎤

⎦

⎡

⎣
0.003

−6.929
−0.004

⎤

⎦

⎡

⎣
0.020

−4.942
−0.009

⎤

⎦

⎡

⎣
3.691

−6.792
1.388

⎤

⎦

⎡

⎣
3.455

−0.438
0.329

⎤

⎦

⎡

⎣
0.507
1.279
0.291

⎤

⎦

⎡

⎣
0.112
0.201
0.778

⎤

⎦

⎡

⎣
0.016
0.219
0.895

⎤

⎦

0.5

⎡

⎣
0.001

−3.181
0.000

⎤

⎦

⎡

⎣
0.005

−6.877
0.001

⎤

⎦

⎡

⎣
0.033

−5.124
−0.006

⎤

⎦

⎡

⎣
5.110

−3.326
2.946

⎤

⎦

⎡

⎣
4.223
0.691
1.838

⎤

⎦

⎡

⎣
−0.248
0.688
0.520

⎤

⎦

⎡

⎣
0.532
0.005
0.406

⎤

⎦

⎡

⎣
0.196
0.017
0.156

⎤

⎦

1.0

⎡

⎣
0.000

−3.149
−0.001

⎤

⎦

⎡

⎣
0.000

−6.960
−0.002

⎤

⎦

⎡

⎣
−0.001
−4.956
−0.001

⎤

⎦

⎡

⎣
−4.273
−4.338
1.105

⎤

⎦

⎡

⎣
−2.934
−1.037
1.772

⎤

⎦

⎡

⎣
−1.402
−0.428
0.550

⎤

⎦

⎡

⎣
0.171
0.166
0.052

⎤

⎦

⎡

⎣
0.101

−0.132
0.260

⎤

⎦

3 0.0

⎡

⎣
0.035

−7.104
−0.006

⎤

⎦

⎡

⎣
0.016
2.978
0.159

⎤

⎦

⎡

⎣
0.016
6.464
0.159

⎤

⎦

⎡

⎣
0.016
9.950
0.159

⎤

⎦

⎡

⎣
0.017
11.564
0.158

⎤

⎦

⎡

⎣
−1.975
−0.766
−0.772

⎤

⎦

⎡

⎣
−1.238
0.039

−0.113

⎤

⎦

⎡

⎣
−0.206
−0.373
0.023

⎤

⎦

0.5

⎡

⎣
0.003

−7.108
0.000

⎤

⎦

⎡

⎣
0.014
3.004
0.145

⎤

⎦

⎡

⎣
0.014
6.489
0.145

⎤

⎦

⎡

⎣
0.014
9.975
0.145

⎤

⎦

⎡

⎣
0.015
11.367
0.144

⎤

⎦

⎡

⎣
−2.246
−1.681
−0.671

⎤

⎦

⎡

⎣
−0.334
−0.032
0.497

⎤

⎦

⎡

⎣
−0.265
0.408
0.744

⎤

⎦

1.0

⎡

⎣
0.001

−7.106
0.000

⎤

⎦

⎡

⎣
0.009
2.971
0.086

⎤

⎦

⎡

⎣
0.009
6.457
0.086

⎤

⎦

⎡

⎣
0.009
9.943
0.086

⎤

⎦

⎡

⎣
0.015
11.563
0.079

⎤

⎦

⎡

⎣
1.836

−1.653
−3.423

⎤

⎦

⎡

⎣
0.022

−0.339
−2.354

⎤

⎦

⎡

⎣
0.171

−0.136
−2.190

⎤

⎦

Appendix C.3.: Numerical results of example 3

See Tables 11, 12 and 13.

Table 11 Position vectors of
two selected particles through
time (∅ � 1.0)

Particle t � 0 s t � 1.28 s t � 2.52 s t � 7.64 s t � 10.40 s t � 15 s

1

⎡

⎣
0.299
2.200
4.210

⎤

⎦

⎡

⎣
0.263
2.200
3.802

⎤

⎦

⎡

⎣
0.279
2.200
3.621

⎤

⎦

⎡

⎣
1.055
2.200
3.095

⎤

⎦

⎡

⎣
3.651
2.202
2.835

⎤

⎦

⎡

⎣
7.096
1.333
1.637

⎤

⎦

2

⎡

⎣
0.498
3.000
4.190

⎤

⎦

⎡

⎣
0.474
3.004
3.789

⎤

⎦

⎡

⎣
0.475
3.014
3.670

⎤

⎦

⎡

⎣
2.095
3.038
2.991

⎤

⎦

⎡

⎣
5.258
3.064
2.675

⎤

⎦

⎡

⎣
7.116
3.183
1.931

⎤

⎦

Table 12 Velocities vectors of
two selected particles through
time (∅ � 1.0)

Particle t � 0 s t � 1.28 s t � 2.52 s t � 7.64 s t � 10.40 s t � 15 s

1

⎡

⎣
0.000
0.000
0.000

⎤

⎦

⎡

⎣
0.043

−0.001
−0.192

⎤

⎦

⎡

⎣
0.035
0.000

−0.065

⎤

⎦

⎡

⎣
0.336
0.009

−0.034

⎤

⎦

⎡

⎣
1.452

−0.036
−0.145

⎤

⎦

⎡

⎣
−0.018
−0.018
0.006

⎤

⎦

2

⎡

⎣
0.000
0.000
0.000

⎤

⎦

⎡

⎣
−0.075
0.048

−0.060

⎤

⎦

⎡

⎣
0.023

−0.076
−0.041

⎤

⎦

⎡

⎣
0.651

−0.022
−0.065

⎤

⎦

⎡

⎣
1.449
0.020

−0.145

⎤

⎦

⎡

⎣
0.000
0.000
0.000

⎤

⎦

Table 13 Angular velocities
vectors of two selected particles
through time (∅ � 1.0)

Particle t � 0 s t � 1.28 s t � 2.52 s t � 7.64 s t � 10.40 s t � 15 s

1

⎡

⎣
0.000
0.000
0.000

⎤

⎦

⎡

⎣
−1.896
−1.298
−0.280

⎤

⎦

⎡

⎣
−0.648
0.616

−0.346

⎤

⎦

⎡

⎣
−0.258
3.375

−1.714

⎤

⎦

⎡

⎣
0.131
14.593
−2.295

⎤

⎦

⎡

⎣
0.206

−0.088
−0.001

⎤

⎦

2

⎡

⎣
0.000
0.000
0.000

⎤

⎦

⎡

⎣
−0.696
−1.140
0.334

⎤

⎦

⎡

⎣
1.065
0.385
1.206

⎤

⎦

⎡

⎣
0.213
6.545

−0.105

⎤

⎦

⎡

⎣
−0.180
14.561
0.220

⎤

⎦

⎡

⎣
0.002
0.005

−0.001

⎤

⎦
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Appendix D.: Contact search algorithm

See Table 14.

Table 14 Optimization
algorithm for tridimensional
contact search

Optimization algorithm for tridimensional contact search

Step 1 IF t � t0, where t0 is the starting time of the analysis
THEN Go to step 2 to initialize the variables before starting the analysis
ELSE Go to step 6 for the contact search procedures to be performed during the analysis

Step 2 Define the values of each global variable of the problem:
(1) identify the smallest particle diameter (dmin);
(2) establish the minimum and maximum admissible coordinates to define a hexahedron to
limit the position (x, y, z) of particles and walls during the analysis, i.e., xmin ≤ x ≤ xmax ,
ymin ≤ y ≤ ymax , and zmin ≤ z ≤ zmax . Adjust the limits coordinates so that each
dimension of the hexahedron becomes a multiple of dmin ;
(3) divide the hexahedron in several cubes with size equal to dmin , i.e., dimcube � dmin ;
(4) establish the maximum number of particles allowed per cube (npcmax � 8).

Step 3 Calculate the number of cubes in each direction of the hexahedron
(
ndivx , ndivy, ndivz

)

and calculate the total number of cubes
(
ncube � ndivx · ndivy · ndivz

)
, see Fig. 11

Step 4 Define and initialize a vector called volume_matri x with dimension equal to
dimvol.matri x � ncube · npcmax . It will store all particles number assigned to each cube

Step 5 Define a vector called particlecube, with dimension equal to Np , to inform in which cube
each particle belongs (cubei ). For this, calculate the cube position (l,m, n), using the
Eq. (125). The number of the cube is given by
cubei � l + ndivx · (m − 1) + ndivx · ndivy · (n − 1). Do the same for the walls

Step 6 IF K � 0 (beginning of the first step of each time increment)

THEN Actualize the vectors volume_matri x and particlecube, once the particle
positions have been updated, and go to step 7. (Obs.: Other possibility, is to
update these vectors after some predefined time)

ELSE Go to step 7

Step 7 Perform the contact search of each particle i :
(1) identify the number of the cube that this particle belongs, stored in the vector
particlecube;
(2) select the cubes that compose the domain defined by the parameter delta (see Eq. (126)
and Fig. 12);
(3) finally, check the contact between the particle i with the others belonging to the selected
cubes
Suggestion: to reduce the analysis time, check the contact only in the first step (K � 0) and
make it constant during the time increment (1 ≤ K ≤ Kd )
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