'k“ International Journal of Fracturel12: L13-L17, 2001.
i. © 2001 Kluwer Academic Publishers. Printed in the Netherlands. L13

PROPAGATION OF MICROSCALE MATERIAL UNCERTAINTY IN A CLASS
OF HYPERELASTIC FINITE DEFORMATION STORED ENERGY FUNCTIONS

Tarek 1. Zohdi

Department of Mechanical Engineering

6195 Etcheverry Hall

University of California, Berkeley, California, 94720-1740, USA
zohdi@newton.berkeley.edu fax. 512-642-6163

Abstract. Whenever effective material responses are determined, there is a de-
gree of microscale uncertainty. For example in the case of overall isotropic responses,
we have uncertainties in the effective constitutive parameters, such as p* + Ap* and
k* + Ax*. In this communication bounds on the resulting uncertainty in a class of
polyconvex macroscale finite deformation stored energy functions, which employ the
uncertain material parameters, are determined.

1. Stored energy representations. In many applications involving compress-
ible polymeric materials, finite deformations are expected. Representative examples
of such materials are polyethelenes, which have the largest volume use of any plastic
in the world. Typically, they are prepared by chemically treating a vulcanized poly-
mers, for example catalytic polymerization of ethelyene. Such processes can result
in various degrees of inhomogeneity, typically in the form of inclusions, through-
out the material. For macroscale analyses at finite deformations of such materials,
a widely used class of mathematical representations for the constitutive response
are compressible hyperelastic stored energy functions. Analogous to the familiar
infinitesimal strain case, an elastic material is called hyperelastic if there exists a
stored energy function, W, that is only a function of the mechanical deformation,
and that § = 2% = g—% or P = 2% where F = Vxx is the deformation gradient,
u = & — X, X are referential coordinates and @ are current coordinates, J is the

Jacobian of F, J = detF, C df T . F is the right Cauchy-Green strain tensor,

EY %(C’ — 1) is the Green-Lagrange strain tensor, P = o - F~TJ is the first
Piola-Kirchhoff stress, o is the Cauchy stress and where § = JF™! -0 - F7T is the
second Piola-Kirchhoff stress. In addition to being material frame indifferent, any
admissible stored energy function must obey five criteria: (1) C =1 F=1%&
(Ic =Ho =3,Ic =1) & W =0, where (I¢, II¢, Ill¢) are the principal invariants
of C, (2)W >0, (3) W - 0o« det F - 0 or detF - o0, (4) S=0forC =1
and (5) the material constants in a finite deformation material law must give hy-
perelastic responses with known material constants, for example in isotropic cases,
the Lame parameters, \* (= &* — gg—) and u*, when perturbed around the unde-
formed configuration. A relatively simple family of representations which satisfy the
previously mentioned requirements are compressible Mooney-Rivlin models

W(C) = Ki (e = 3) + K3 (o - 8) + = (Ve - 1%,
e ———

compressible part

~
incompressible part
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where K7 + K5 = Ez: For this class of models, the first and second invariants of
- -1
C, I¢ and II¢, have been scaled by roots of the third invariant, Ic = IcIll® =

ICJ”§ and I = IICIIlgg = IlcJ ”%, to insure that they contribute nothing to
the compressible part of the response. We remark that when K; = § and K; = 0,
the material is called a compressible Neo-Hookean material. Compressible Neo-
Hookean and compressible Mooney-Rivlin material response functions are known to
be polyconvex, and thus possess desirable mathematical (existence) properties (Ball
[1]). For general overviews see Ciarlet [2] or Ogden [3]. Without loss of generality,
for the remainder of the analysis, we consider a convex combination of the material
constants, Ki + K3 = ¢4 + (1 - ¢) =&, 0< ¢ < L.

2. Microscale uncertainties. In reality, for microheterogeneous materials,
such as a chemically treated vulcanized polymer, the coefficients in Equation 1 are

the effective bulk and shear moduli, 3s*(%€)q = (%Z)q and 2u*(e')q = (o')q,

which are the Lame parameters of (o)q = IE* : (€)q, Where ()q def ]'517[ Jq - d€2, and
where o and € are the Cauchy stress and infinitesimal strain tensor fields within a
statistically representative volume element (RVE) of volume |Q|. The quantity, IE*,
is known as the effective property, and is the elasticity tensor used in usual structural
scale analyses. For the effective response to be meaningful, i.e. statistically repre-
sentative, it must be computed over a sample containing a large amount of material.
In other words, the sample must be so large, that for further enlargements IE* does
not change. If one were to attempt to perform a direct numerical simulation of a
truely statistically representative volume element of material, incorporating all of
the microscale details, an extremely fine spatial discretization mesh, for example
that of a finite element mesh, would be required in order to accurately resolve the
microstructural fields. In order to give an idea of the immensity of the computa-
tional problem, consider that in materials possessing particulate microstructure, a
cubical sample of dimensions 0.0001m x 0.0001m x 0.0001m, which may still not even
be statistically representative, can typically contain on the order of 1000-10000 ran-
domly distributed particles or pores. For three dimensional problems, thousands of
numerical degrees of freedom per particle are needed to deliver numerically accurate
solutions, and thus the resulting system of equations would contain several million
numerical unknowns. This is the primary reason that effective property bounds are
popular. Rigorously speaking, the simplest upper and lower bounds on the effective
response are the Hill-Reuss-Voigt bounds [4], [6], [5]: (IE™Y)g' < IE* < (IE)q.
The notation means that the difference tensors ((IE)q — IE*) and (IB* — (IE~1)51)
are positive definite. For isotropic macroscopic responses with isotropic phases this
implies (k~1)g' < k* < (K)o and (p~1)g' < p* < (w)q, where k and u are the
spatially variable bulk and shear moduli of material. In 1963, such bounds were
improved by Hashin and Shtrikman [7], [8], for isotropic materials with an isotropic
effective response, resulting in the following
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where k1, 41 and kg, g are the bulk and shear moduli for the phases, while vs is
the second phase volume fraction. Such bounds are the tightest possible on isotropic
effective responses, with isotropic two phase microstructures, where only the volume
fractions and phase contrasts of the constituents are known. Therefore, we have
an interval of uncertainty in the effective constitutive parameters, for example in
the isotropic case, u* + Au* and * + Ax*, which produces uncertainty in finite
deformation stored energy functions that employ such parameters

W = ﬂﬂ'LzAP_'l('jC -3)+ Q:ﬁ%ﬂﬂ('ﬁc -3+ S'_CizA'il(,/][[C -1)2.

(3)

Due to thermodynamic restrictions, the bulk and shear moduli for any admissible
system must be positive, thus pu* + Ap* > 0 and k* + Ax* > 0, even if Ap* < 0 and
Ak* < 0. Due to the positivity of the components of the stored energy function, we

have the following

W (5" + AR, u") = W (k" u) | _ sl (TG - 1)? < 1as7]
W (s, ) B0 -5+ LD @e -9y + S (vilc -1~ "
20 20
}W‘(K‘,#"FAH*)—W*(K‘,[J*) _ l'él;—‘M(TC—B)'i'j—A'L‘lél__ﬂ(ﬁC—a) < IAII*I
W*(n*,li ) /‘2¢(70_3)+E__(12—_¢)(ﬁc_3)+%_( /IIIC_1)2 H

>0 >0

(4)

The maximum range of uncertainty in the effective moduli are the differences in the
upper and lower Hashin-Shtrikman bounds, which, when divided by the smallest
normalizing factors, the lower bounds, lead to

]
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As a numerical example, consider Polyethelene (x = 3.06 GPa and p = 0.26 GPa)
with inhomogeneities due that occur due to processing. Shown in Figure 1 are the
behavior of the bounds in Box 5 as a function of volume fraction. Clearly, as the
phase contrast is increased the bounds increase.

3. Concluding remarks. The corresponding second Piola-Kirchhoff stress
tensor is

213{2 IICIIIg§)C‘1> ,

(6)

with the Cauchy stress being derived from o = %F -8 - FT. Defining A,-S def
1

S(k* + Ax*,u*) — S(k*, u*) we have Ay S = Ax*(Ilc — I1E)C~ !, and Ay- S def

S(k*, pu* + Ap*) — S(k*, p)

- . > * -1
S=2 (K{IIIC§1 + K315} (Io1 - ©) + (5 (1T - mé) - %ICHIC 5

_ _ ~ 2 _
A,S = Ap* (¢ (1110%1 - %ICIIIC‘SLc*) +(1-¢) <IIIC§(IC1 ~C)- gIIcIIIC§C'”1>)
(7
f

By a direct transformation we have Ag+o de o(k* + Ax*, u*) — o(k*,pu*) = %F .

1
(Ax* (Il — MIZ)CY) - FT, and Ayeo & o (s, p* + Ap*) — o (5%, 4*) = 3 F-A,. S-

FT

2

_2
3110111030"1))~FT.

(8)
Unfortunately, no general rigorous bounds, as for the energy, are available on the
components of the perturbed stresses.

Apo = %FA;;‘ (¢ (1115*1 - %ICIII(;*C“) +(1-¢) (mg%(zd —c)-
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Figure 1: The behavior of the bounds as a function of volume fraction. Clockwise,
starting from the top left: %2 = £ = 125 %2 = £ = 2 &2 - ﬁf = 5 and

. Py K1 w1 ’ Ky b1 ' K1
k2 — -
= 10.



