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Abstract. The focus of this communication is the development of genetic al-
gorithms to handle material design problems where particulate microstructures are
sought which deliver prescribed effective responses. In the problem formulation, con-
straints are incorporated on the distortion of the otherwise smooth internal fields
corresponding to a pure (inhomogeneity-free) matrix material, due to the presence of
particles. The key conceptual feature is that the microstructural variables are rep-
resented by a “genetic string”, and a “survival of the fittest” algorithm is applied to
a population of such strings in order to determine an optimal set of microstructural
material design parameters.

1. Introduction. Materials with tailored microstructures consisting of ran-
domly distributed particles suspended in a binding matrix are now widely employed
in structural designs. We refer the reader to Torquato [21] for recent surveys. The
microscale mechanical properties of such materials are characterized by a spatially
variable elasticity tensor IF, while the effective macroscopic response is characterized
by (o)q = IE* : {¢)q, where {-)q aof ]é—'fﬂ-dﬂ, and where o and € are the stress
and strain tensor fields within a statistically representative volume element (RVE) of
volume [©|. Direct numerical simulation to determine IE* is computationally enor-
mous, due to the fact that the microstructure must be resolved by the discretization
mesh. Therefore, it is advantageous to use analytical effective property approxima-
tions during the initial stages of the design and development of new tailored solids.
Such approximate methods require minimal computational effort, thus allowing one
to perform rapid analyses for large numbers of multiphase solid combinations con-
trolling parameters such as the constituent volume fractions and phase contrasts.
Afterwards, when the number of feasible microstructural design combinations have
been sufficiently narrowed down, one can perform further indepth studies, applying
computationally intensive numerical simulations, or more involved laboratory tests,
to a reduced set of design alternatives. As an example, consider the widely used
Hashin and Shtrikman bounds [9], [10], for isotropic materials with isotropic effective
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where k2 and &; are the bulk moduli and po and gy are the shear moduli of the

respective phases (kg > k1 and pg > p1), and where vy is the second phase volume
fraction. Such bounds are the tightest possible on isotropic effective responses, with
isotropic two phase microstructures, where only the volume fractions and phase con-
trasts of the constituents are known. During effective material design development,
when selecting particulate micro-additives for a base matriz, information about the
changes in the otherwise (relatively) smooth internal fields, corresponding to the ma-
triz material alone, is valuable to characterize a new tailored material’s performance.
One way to characterize the smoothness of the microscopic field behavior is via con-
centration tensors, which provide a measure of the deviation away from the mean
fields throughout the material. By direct manipulation we obtain

(o) = wv(o)a, +v{o)a,
viiE; : (€)a, + v2IEs : (€)q,
IE, : ((€)a —va2{eda,) + v2dE2 : {€)a,

= ((IBr+w(E; - IE1)): C) : (e)a (2)
~
where
(2B - B (" - 1) (o = (e} 3)
e

We may write, for the variation in the stress C : IE*™! : (o)q = IE; ' : (0')q,, which
reduces to IE, : C : IE*™! : {a)q def & . (o) = (0)q,. C is known as the stress
concentration tensor. QOuce either C or IE* are known, the other can be determined.
In the case of isotropy we may write
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Clearly, the microstress fields are minimally distorted when C, = C), = 1.

2. Computational material design. In a material design setting, we are pri-
marily concerned with the construction of an inverse problem, where combinations
of particulate and matrix materials are sought to minimize objective functions such

* «D,\ 2
as IT = (%‘Q , where IE%? is a prespecified desired effective response,

and where IE* is the effective response produced by a trial microstructure. A mi-
crostructural design can be defined through an N-tuple design vector, denoted A L

(A1, Ag, ..., AN), consisting of the mechanical properties and volume fraction of the
particulates. For both manufacturing and physical reasons, generally, each design
variable will have a constrained design search space. For example, the volume frac-
tion must nonnegative and no greater than unity. Specifically, our objective is to
computationally design the macroscale effective bulk and shear moduli £* and p*,
using convex combinations of the Hashin-Shtrikman bounds as approximations for
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the effective moduli, i.e. k* ~ 0x*t + (1 — 0)x*~ and p* ~ Ou** + (1 — 0)u*~ where
0 < 8 < 1. The micro-macro objective function is

1= wi(Zp — 1)+ wa(£p — 1)? + da(| S22 = 1) + da (|42 - 1), %)
where (I) if [Cx — 1] < ¢y, then 13 = 0, (II) if |Cx — 1| > ¢, then w3 = w3, (I1I)
if |Eu — 1| < ¢y, then wy = 0 and (IV) if IU” — 1| > ¢,, then Wy = wy. The design
variables are A = {ko, 9,v2}, and their constrained ranges are ﬁg_) < Ky < ngﬂ,
N( ) < pg < M( ) and véﬂ) < v < véﬂ. There are two characteristics of such
a formulation which make the application of standard gradient type minimization
schemes, such as Newton’s method, inapplicable: (I} the incorporation of limits on the
microfield behavior, as well as design search space restrictions, renders the objective
function not continuously differentiable in design space and (II) the objective function
is nonconvex, i.e. the system Hessian is not positive definite (invertible) throughout
design space.

3. Nonconvex/nonderivative search methods: genetic algorithms. The
lack of robustness of classical gradient based deterministic optimization processes can
be rectified by application of a family of methods usually termed “genetic” algo-
rithms. Essentially, genetic algorithms are search methods based on the probabilistic
principles of natural selection. There are a variety of such methods, which employ
concepts of species evolution, such as reproduction, mutation and crossover. Such
methods stem from the pioneering work of John Holland and his colleagues in the
late 1960s and early 1970s at the University of Michigan (Holland [11]). For intro-
ductions to the basics of such methods, the interested reader is referred to Goldberg
[7], Davis [3] and Onwubiko [19]. A recent overview of the state of the art of the
field can be found in a collection of recent articles edited by Goldberg and Deb [8].
Here we concentrate on constructing a genetic-type algorithm for nonconvex inverse
problems of micro-macro material design where the microstructural parameters form

“genetic string”, and a “survival of the fittest” is then applied to a population of

such strings. Algorithmically, the approach is:

STEP 1:RANDOMLY SELECT N STARTING GENETIC STRINGS Al (i=1,..,N):
9 AL AL, .} (FOR EXAMPLE : A% {x, uf, vi})
STEP 2 : COMPUTE FITNESS (T(A')) OF EAGH GENETIC STRING : (i = 1, .., N)

STEP 8 : RANK THE GENETIC STRINGS, Al (i=1,

STEP 4 : MATE NEAREST PAIRS (PRODUCE OFFSPRING) (i=1,...,N)
A4S pini g (1— oH)aitl PR e e (- ¢,z+1)A£+1
0< #' = RAND <1 (DIFFERENT FOR EACH COMPONENT)

STEP 5 : ENFORCE DESIGN CONSTRAINTS : &) < «b < v, py < uy <uf,.
STEP 6 : KILL OFF BOTTOM M < N STRINGS. OPTIONAL : KEEP TOP K PARENTS

STEP 7 : REPEAT WITH TOP GENE POOL PLUS M NEW ONES:A' = A%, (i = 1,...,N)
TERMINATION : CONTINUE UNTIL }{I1]| £ TOL

We remark that, in this algorithm, the definition of “fitness” of a genetic string
indicates the value of the objective function. In other words, the most fit genetic
string is simply the one with the smallest objective function. STEPS 1-7 attempt
to first collect genetic strings associated with multiple local minima and then to
successively mate them to determine the most fit genetic string. It is remarked
that if the function ® is allowed to be greater than unity, one can consider the

(6)
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resulting convex combination (offspring) as a “mutation”. This was not employed
in this work. It may seem somewhat superfluous to retain the top (K) parents in
such an algorithm, however, if one considers that the objective functions are highly
nonconvex, i.e. nonmonotone objective function behavior between parents in design
space, there exists a strong possibility that the inferior offspring will replace superior
parents. However, with top parent retention, the minimization of the cost function is
guaranteed to be monotone. Typically, with the presented algorithm (Box 6), after a
few generations, a dominant genetic string will appear.

4. Numerical examples. As an example, we considered a base matrix material
(aluminum) of fixed material values, £; = 77.9 GPa and p = 24.9 GPa. The desired

values were £ = 100 GPa, u*” = 50 GPa, ¢,=0.5 and ¢, =0.5. The (constrained)

design variable’s ranges were 0.1x; = ng_) < Ky < /sg"') = 10k, 0.1pu; = ,u(—) <

po < /L§+) = 10p; and 0 = vg—) < vy < vé“ = 0.66666. The weights were set to
w; = we = 1 and w3 = w4 = 1000. We used 6 = 0.5 for the Hashin-Shtrikman bound
combination. The number of genetic strings was set to 1000, for ten generations,
keeping the offspring of the top 100 parents after each generation. Two cases were
considered: (I) Additionally keeping top K = 100 parents after each generation,
thus with 800 new genetic strings infused and (II) Not keeping top K = 100 parents
after each generation, thus with 900 new genetic strings infused. Table 1 and Figure
1 depict the results. After ten generations, a dominant genetic appeared for each
approach ((I) and (II)). The minimization of the cost function is guaranteed to be
monotone, if the top parents are retained. As the results illustrate, not retaining
the parents is suboptimal due to the possibility that inferior offspring will replace
superior parents. Furthermore, parent retention is computationally less expensive,
since these designs do not have to be reevaluated, although this was not a concern
for the types of simulations presented in this work, since the total simulation time
was on the order of a few seconds. However, it is a concern for large scale numerical
simulations involving spatial discretization, which we briefly discuss next.

5. Final comments. The presented genetic minimization schemes can be used
for optimization involving many more design parameters, such as topological vari-
ables. Reviews of methods of topology optimization for quasi-regularly structured
(checkerboard-like) materials are given in Bendsoe [2], Kikuchi et. al [15] and re-
cently in Sigmund [20]. Such techniques have been recently extended in Hyun and
Torquato [14] and Torquato and Hyun [22]. Specifically for randomly dispersed partic-
ulate composites, deterministic optimization approaches can be found in Zohdi [25].
The presented genetic minimization schemes can also be used in conjunction with
large-scale numerical methods, where the primary issue is the simulation of bodies
containing large numbers of particulates or fibers. There exist a variety of methods
to deal with large-scale computational micromechanical problems, for example multi-
scale methods, exemplified by Fish and Ghouli [4], Voronoi cell methods (Ghosh et al.
[6]), transformation methods (Moulinec et al. [17]), hierarchical modeling methods
(Huet [12], [13], Zohdi et al. [23],0den and Vemaganti [18]), multipole methods (Fu et
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al. [5]) and iterative micro-domain decomposition type strategies (Zohdi et al. [24]).
Micro-domain decomposition methods are closely related to alternating Schwarz ap-
proaches (see Le Tallec [16] for reviews) and methods of equilibration (see Ainsworth
and Oden [1] for reviews). Such iterative domain decomposition techniques can be
incorporated into the genetic algorithm design methodology relatively easily, and are
currently being implemented in a large-scale computational framework by the author.

RANK %12 ‘Ef v2 II
1 1.70504332 | 4.18105632 | 0.47901479 | 0.0000000669
2 1.79829428 | 4.73913286 | 0.43593674 | 0.0000002239
3 1.70429527 | 4.15100069 | 0.48157999 { 0.0000004331
4 1.73964619 | 4.40902794 | 0.46050216 | 0.0000005034
5 1.79563011 | 4.73965691 | 0.43711644 | 0.0000006076
1 1.74140577 | 4.41387024 | 0.45972867 | 0.0000003176
2 1.76652440 | 4.51961623 | 0.45075001 | 0.0000010890
3 1.76565742 | 4.49920830 | 0.45314006 | 0.0000013550
4 1.71215005 | 4.28228845 | 0.47080279 | 0.0000033655
5 1.71220297 | 4.30300751 | 0.46913710 | 0.0000057834

Table 1: Best microstructural designs after ten generations. TOP: Keeping parents
and BOTTOM: Not keeping parents.
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Figure 1: Generational values of (LEFT) the best design’s objective function and (RIGHT)
the average of the best 100 designs’ objective functions.
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