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Incorporation of Microfield Distortion into Rapid Effective
Property Design
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(Received 5 July 2001)

�%������& It is advantageous to use analytical effective property approximations during the initial stages of the
design and development of new multiphase solids. Materials of this class are typified by microscopic second-
phase particles suspended in a binding matrix. Such approximate methods are ideal since they require minimal
computational effort, thus allowing one to perform rapid analyses for large numbers of multiphase solid com-
binations controlling parameters like the volume fractions and phase contrasts. Afterwards, when the number
of feasible microstructural design combinations has been sufficiently narrowed down, one can perform fur-
ther in-depth studies, applying computationally intensive numerical simulations, or more involved laboratory
tests, to a reduced set of design alternatives. However, a limitation of approximate methods is that they do
not provide much quantifiable information about the internal stress and strain fields in the material. Clearly,
during material design development, when selecting micro-additives, information about the changes in the
otherwise (relatively) smooth internal fields, corresponding to the matrix material alone, would be valuable
to characterize a new multiphase material’s performance. With regard to materials possessing microstruc-
tures described by particles suspended in a binding matrix, one obvious quantity of interest is the microfield
distortion, defined as the difference between the fields produced when heterogeneities are present and fields
produced when the heterogeneities are absent. Consistent with the use of computationally inexpensive effec-
tive property approximations, such information would be attractive, especially if it involved �	 �'��� ���������
�(������� ���(����	��. Accordingly, in this work an �'��� expression is derived for the microfield distortion,
solely in terms of the external loading, property mismatches and volume fractions. Examples are given il-
lustrating use of the expression in a design setting whereby second-phase additives are sought which deliver
desired effective responses, while simultaneously obeying microfield distortion constraints.

��� �����: Inverse problems, irregular heterogeneous microstructure

�� ������	
����

In many modern scientific applications, multiphase materials are now commonly used.
In the design of such materials, the basic philosophy is to select material combinations
to produce macroscopic responses possessing desirable properties from each component.
One relatively common process in manufacturing a certain class of multiphase materials is
the vortex method, whereby loose particulate additives are stirred into a vortex of molten
matrix material. The resulting microstructure consists of randomly distributed particles
suspended in a binding matrix (Figure 1). Mathematically, the mechanical properties of

���
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238 T. I. ZOHDI

Figure 1. Randomly distributed particles in a binding matrix.

microheterogeneous materials are characterized by a spatially variable elasticity tensor �.
Typically, in order to characterize the (homogenized) effective macroscopic response of such

materials, a relation between averages ���� � �
� � ���� is sought, where ���� def

� �
���

�
�
���,

and where � and � are the stress and strain tensor fields within a statistically representative
volume element (RVE) of volume ���. The quantity �

� is known as the effective property,
and is the elasticity tensor used in usual structural scale analyses.

For the effective property to be useful, i.e. statistically representative, it must be computed
over a sample containing a large amount of material. In other words, the sample must be so
large that for further enlargements �� does not change. If one were to attempt to perform a
direct numerical simulation of a truly statistically representative volume element of material,
incorporating all of the microscale details, an extremely fine spatial discretization mesh,
for example that of a finite-element mesh, would be required in order to accurately resolve
the microstructural fields. In order to give an idea of the immensity of the computational
problem, consider that in metals possessing particulate microstructure, a cubical sample
of dimensions ������ m������� m������� m, +
��
 ��� ����� �	� ���� %� �������������
��������������, can typically contain of the order of 1000–10,000 particles suspended in a
binding matrix. For three-dimensional problems, thousands of numerical degrees of freedom
per particle are needed to deliver numerically accurate solutions, and thus the resulting system
of equations would contain several million numerical unknowns. Furthermore, while there
exist a variety of numerical techniques specifically designed to simulate such problems, for
example micromechanical domain decomposition methods originally developed in Huet [1]
and recently extended in Zohdi et. al. [2], they are computationally demanding, even when
modern computational facilities are available. For reviews see Huet [3] and [4]. Additionally,
if inverse problems of material design are of interest, where several hundred or thousand
possible microstructural parameter combinations are to be tested, such processes become
even more intensive.

In many cases, during material design and development, one would like to
perform relatively quick analyses with minimal intensive computational effort, in order
to approximately determine new microheterogeneous solid combinations which deliver
prespecified desired��s. In other words, one would like to rapidly ‘narrow down’ the number
of feasible microstructural combinations, and then perform more in-depth analyses with
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numerical simulations over a reduced set of design alternatives afterwards. This is one reason
that a variety of analytical effective property approximation techniques, which serve as guides
in the selection of material combinations, are frequently used.� A variety of approximations,
such as the dilute method (based on the results of Eshelby [6]), the Hashin–Shtrikman bounds
(Hashin and Shtrikman [7] and [8]), the self-consistent method (Budiansky [9] and Hill
[10]) and the Mori–Tanaka method (Mori and Tanaka [11]) have wide continued use in the
mechanics community. For a detailed overview, we refer the reader to Nemat-Nasser and
Hori [5]. �	+����� � ��������	� 	
 �(�
 ����	'����� ���
	)� �� �
�� �
�� )	 �	� ��	��)� �(�

,(����
��%�� ��
	�����	� �%	(� �
� �������� ������ ��) ������ 
���)� �� �
� ��������- Clearly, during
material design development, when selecting micro-additives, information about the changes
in the otherwise (relatively) smooth internal fields, corresponding to the matrix material
alone, would be valuable for characterizing a new multiphase material’s performance. With
regard to materials possessing microstructures described by particles suspended in a binding
matrix, one obvious quantity of interest is the microfield distortion, defined as the difference
between the fields produced when heterogeneities are present and fields produced when the
heterogeneities are absent. Consistent with the use of computationally inexpensive effective
property approximations, such information would be attractive, especially if it involved �	
�'��� ��������� �(������� �	��(����	��. Accordingly, in this work an �'��� expression is
derived for such a microscale distortion measure in an induced energy norm. The result
is obtained under no assumptions on the character of the microstructure of the material,
other than it be pointwise positive-definite, as well as under no assumptions on the external
loading and geometry. The expression is solely in terms of easily accessible microstructural
data, such as the property mismatches and volume fractions, and thus it introduces no extra
significant computational burden. Afterwards, more precise analyses of the responses can
be computationally performed, 	� � ��)(��) ��� 	
 
����%�� )������, employing large-scale
numerical techniques.

The outline of the paper is as follows. In section 2, some background information is
given. In section 3, the fundamental structure of a micro–macro objective function, i.e.
one specifying a desired macroscopic response while simultaneously satisfying microfield
constraints, is discussed. In section 4, an exact expression of the microfield distortion
measure is derived. In section 5, numerical examples are given addressing inverse material
design problems, whereby second-phase additives are sought to modify a base matrix in order
to deliver a desired effective response, while simultaneously obeying microfield distortion
constraints. Finally, in section 6, some concluding remarks are given.


� ��
����	�� �����������

A sample of perfectly bonded heterogeneous material with domain �, under a given set of
specified boundary loadings, is considered (Figure 1). Its boundary is denoted as ��. The
body is in static equilibrium under the action of body forces, �, and surface tractions, �.
The boundary �� � �� � �� consists of a part �� and a part �� on which displacements
and tractions are respectively prescribed. Following standard notation, ����� is denoted
as the usual space of functions with generalized partial derivatives of order � � in �����.

The symbol �����
def
� 	�����
� is defined as the space of vector-valued functions whose
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components have generalized partial derivatives � � in �����
def
� 	�����
�. The data are

assumed to be such that � � ����� and � � ����� �, but less smooth data can be considered
without complications. The symbol ‘���� ’ is used for generalized boundary values, for
example for specified boundary displacements. Throughout the analysis, the microstructure,
which is characterized by� � 	����� whose components satisfy, 
� � 	���, � � �� , ��� �
� � � � � � � � ��� � �, � � ��� �� � �, 
� � �, where 	���� � 	���� � 	���� � 	���� ,
� � 
� �� �� 
 � �, and where 	���� are the Cartesian components of �.

A general variational boundary value formulation for the class of problems considered is

Find � � ����������
� �� such that�

�

�� � 	 � ���� �

�
�

� � ����

�
��

� � ���� 
� � ����������
� 	 (1)

When considering a material design process, the boundary value problem in Equation 1
must to be solved for each new microstructure (�). A standard restriction on the types of
loading which are consistent with micro–macro scale concepts is Hill’s condition, �� � ��� �
���� � ����. Hill’s condition dictates the size requirements on the sample to be statistically
representative. In order to see this, consider that for any perfectly bonded heterogeneous
body, in the absence of body forces (� � 	), two physically important loading states satisfy
Hill’s condition: (1) pure linear boundary displacements of the form ���� � 
 � �, where
represents a constant applied strain, which implies ���� � 
 ; and (2) pure boundary tractions
in the form ���� � � � 
, which implies ���� � �, where � represents a constant applied
stress tensor. One can thus consider that applying either of the above-mentioned boundary
loadings on a large sample of material is a way of approximately generating the boundary
conditions on a statistically representative subdomain of heterogeneous material within a
macroscopic body. In practice, by applying six linearly independent loadings on a large
sample of material of either form ��� or �
�, one can determine the components of ��. If
the material is macroscopically isotropic, then only one loading test, containing nonzero

dilatational ( �	�
�

and �	�
�

) and deviatoric components (�� def
� � � �	�

�
and ��

def
� � � �	�

�
),

is necessary to determine the effective bulk and shear moduli: �� �� �	�
�
�� � � �	�

�
�� and


������� � �����.

�� ��� ������ �� �� ����
���� ��������

Consider a one-dimensional bar of length � composed of random particles, i.e. strips in one
dimension (Figure 2). There are a total of � strips: �� dark strips, each of thickness �, and ��

white strips representing the rest of the material. The Young’s modulus 	� corresponds to the
‘particles’, while � corresponds to the ‘matrix’. Suppose one wishes to design an effective
response, 	�, of such a structure defined by ���� � 	��� ��. Consider the following two-
point boundary value problem: 



�
�	 
�


�
� � �, ���� � �, ���� � 
 � �, where 
 is a

constant. One finds that
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Figure 2. A simple one-dimensional heterogeneous structure.

	� �
� �

��� ���� � ��
� (2)

where � � ��



, �� � �� � � and �� �

���
�

. Clearly, there is no unique combination of � and
�� to produce the same desired effective response.

���� �����	��
���� �
 �����
���� ������
����

Let us define the (one-dimensional) induced energy norm comparing two strain fields:

� � ���� ��������

def
�

�
�

�
��

��
� ��

��
�	�

��

��
� ��

��
���� (3)

Note that in the event that displacements are specified on the boundary, then ��� � constant
is unobtainable unless � � �, and the semi-norm in Equation (3) is a norm in the strict
mathematical sense. Also we define the complementary norm comparing two stress fields:

� � ��� � � ���������

def
�

�
�

�� � � �	���� � � ���� (4)

As for the heterogeneous structure, let us consider the same one-dimensional bar, however
composed of only the matrix material, �. We consider the following two-point boundary
value problem, 



�
�� 
�


�
� � �, ���� � �, ���� � 
 � �. The stress is simply �
 � �
 and

the strain is � 
 � 
 . Let us define the distortion due to the inhomogeneities as the difference
between the fields of the heterogeneous and homogeneous systems:

�� �
���� � 
 ������� � ��� � �
 ���������

��� 
 ���
��� � ���
 ���
�����

� (5)

Therefore, we can now set up the following system of equations for macroscopic and
microscopic design criteria:

MACROSCOPIC � � � 	� � 	��� �

MICROSCOPIC � �� �
���� � 
 ������� � ��� � �
 ���������

��� 
 ������� � ���
 ���������

� � � (6)
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Figure 3. The surfaces for �� (TOP) and �� (BOTTOM) for � � �.
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Figure 4. The surfaces for �� (TOP) and �� (BOTTOM) for � � � � �.
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where � is a distortion tolerance on the microfield and where 	��� is a desired effective
response. After some algebra, this leads to the following:

� � � � 

�	���

	��� � �
and �� �

�	��� � ��� � 
�	��� �	��� � ��


� �	��� ��
� (7)

This solution, which is unique, is feasible only if the following restrictions are obeyed:

� �� � 

�	���

	��� � �� �� �
�

� � and � ��	��� � ��� � 
�	��� �	��� � ��


� �	��� ��� �� �
��

� �� (8)

Clearly, the macroscopic and microscopic objectives cannot always be met simultaneously,
i.e. in some cases no feasible solutions exist. This is graphically illustrated by the surfaces of
�

� and �� (Figures 3 and 4), which may or may not intersect. This depends on the desired
objectives 	��� and � . We denote the formulation of prespecifying a macroscopic response
with microfield constraints as a ����	–����	 )����� ��	%���.

���� ���

�� �� ���������������
� 
�
�����

Unlike in the simple one-dimensional example, for three-dimensional problems involving
a statistically representative sample of material, the microfields cannot be determined
pointwise analytically, and then simply post-processed to determine �

� and ��. �	��������
+��
 �
� ������� �
�� 	�� +	(�) ���� �	 .���������/ ��	�) ��������� �(������� ���(����	��� 	�� �(��
���	�� �	 ��������� 	
 ��. The simplest estimates are the Hill–Reuss–Voigt bounds [12], [14],
[13]: �������

� � �
� � ����. The notation means that the difference tensors ����� � �

��
and �����������

� � are positive-definite. For isotropic macroscopic responses with isotropic
phases this implies �������

� � � � � �� �� and �������
� � � � � ����, where � and � are

the spatially variable bulk and shear moduli of material. In 1963, such bounds were improved
by Hashin and Shtrikman [7], [8], for isotropic materials with an isotropic effective response,
resulting in the following:

� � �
��

�
�����

� �������

����	��� �� �
bulk modulus H/S lower bound

� � � � � � �
�� ��

�
�����

� ���
����	��� �� �

bulk modulus H/S upper bound

� (9)

and

� � �
��

�
�����

� 
��������������

��������	���� �� �
shear modulus H/S lower bound

� �� � �� �
��� ���

�
�����

� 
����������

��������	���� �� �
shear modulus H/S upper bound

(10)

where � �� �� and � �� �� are the bulk and shear moduli for the phases, while �� is the
second-phase volume fraction. Such bounds are the tightest possible on isotropic effective
responses, with isotropic two-phase microstructures, where only the volume fractions and
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phase contrasts of the constituents are known. For soft-matrix/hard-particle combinations,
the Hashin–Shtrikman lower bounds are known to give good estimates for the effective
moduli, while for the effective moduli of hard-matrix/soft-particle combinations the Hashin–
Shtrikman upper bounds are appropriate. In this work, the Hashin–Shtrikman bounds will
be used to approximate the effective responses. However, with regard to being able to set
up a tractable micro–macro design formulation, this still leaves open the question of the
characterization of ��. *(����������� �� ��� %� )��������) �'����� +��
 ��	+��)�� 	
 0(�� �
 �
� ��) �� (���� �	������� �
�	��-

�� ��
������� ������������ ��������� �����	��

Two boundary value problems are considered, one where the mechanical properties of the
material are characterized by a (regular) spatially constant admissible inhomogeneity-free
elasticity tensor, �, and another with an admissible spatially nonconstant (inhomogeneous)
elasticity tensor, �.

���� ����������� ���

������ �����
�� �
��� 	������

The solution to the constant-coefficient problem, denoted the ���(��� solution, �
 , is
characterized by a virtual work formulation:

Find a �
 � �������
 ���
� �� such that�

�

�� � �
��� �� �
def
��� ��� ���

�

�
�

� � ����

�
��

� � ���� �� �
def
�����


� � ����������
� 	� (11)

where �
 � � � ��
 . The equivalent complementary form is

Find �
 �� � �
 � � � 	��
 � 
���
� � such that�

�

� � ��� � �
 ��� �� �
def
��� ��� �� �

�

�
��

� � 
 � ���� �� �
def
�	�� �


� �� � � � 	� � � 
���
� 	� (12)

For the complementary problem, similar restrictions are placed on the solution and test fields
to force the integrals to make sense. In other words, we assume that solutions produce finite
global energy.
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���� ������������� ���

������ �����
�� �
��� 	������

The solution corresponding to a material with microstructure is �, and is characterized by the
following virtual work formulation:

Find � � ����������
� �� such that�

�

�� � ���� �� �
def
��� �����

�

�
�

� � ����

�
��

� � ���� �� �
def
�����


� � ���������
� 	� (13)

where � � � � ��. The equivalent complementary form is

Find ��� � � � � � 	�� � 
���
� � such that�

�

� � ��� � ���� �� �
def
���� �� �

�

�
��

� � 
 � ���� �� �
def
�	�� �


� �� � � � 	� � � 
���
� 	� (14)

���� � 	������
� ������
�

We have for any kinematically admissible function �, a natural definition of the induced
primal energy norm:

� � ������������

def
�

�
�

������� � � � ���������� �� �
����������

� (15)

We may write

� � ������������ � ����������

� ������ � ������� 
������

� ������� ������� 
������ � 
������

� ������� ������� 
������ ��

� ������� ������� 
���� ��

� ������� 
����� �������� 
�����

� 
� ���� 
� ���� (16)
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where we define the elastic potential as � ���
def
� �

�
������ � ���� � �

�

�
�
�� �

� � ���� � �
�
� � ��� � �

��
� � �. Clearly, the true solution possesses the minimum

potential, which is a restatement of the principle of minimum potential energy. Similarly, for
the complementary variational formulation, for any statically admissible function (�), one
has for the induced complementary energy norm

� � ��� � ���������� � ��� � ��� � ��

� ������ �������� 
������

� �������������� 
������ � 
������

� �������������� 
����� � ��

� �������������� 
��� � ��

� ������� 
����� �������� 
�����

� 
����� 
����� (17)

where we define ����
def
� �

�
������ � ���� � �

�

�
�
� � ��� � ��� � �

��
� � 
 � ���,

which is a form of the principle of minimum complementary potential energy. By adding
together the potential energy and the complementary energy we obtain an equation of balance,
� �������� � �. If we choose � � �
 , which is a kinematically admissible function, we
obtain ��� � �
 ������� � 
�� ��
 � � � ����. Also, choosing � � �
 , which is statically
admissible, we have ��� � �
 ��������� � 
����
 �������. Combining the two previous
results yields


�� ��
 � ����
 �� � ���� �
 ������� � ��� � �
 ��������� � (18)

A corresponding normalized measure is

�� def
�


�� ��
 � ����
 ��

���
 ���
��� � ���
 ���
�����

�
���� �
 ������� � ��� � �
 ���������

���
 ���
��� � ���
 ���
�����

� (19)

We refer to �� as the �	������� ����)(��. The relation in Box 19 allows us, for a given
boundary value problem, to exactly determine the differences between solutions produced
with a regularized constitutive law, and the exact constitutive law, and requires �	 �	��(����	�
	
 �
� �'��� ����	
���) %	(�)��� ���(���	%���.

���� !� In the previous analyses, the tensor � could have been nonconstant without
altering the results. Related further analyses can be found in Zohdi [15].
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���� ���	
�� 
����

If we consider the case of a microstructure composed of a matrix (�) embedded with
particulate matter, under uniform loadings, �� attains very compact forms. Under pure linear
boundary displacements of the form ���� � 
 � �, one has

�� � ��

�

 �

�
�� � � � ���

� � �
	
� 




 � � � 
 � �



� (20)

while under pure boundary tractions in the form ���� � � � 
,

�� � ��

�
� �

�
�

��
� ��

�� � �� � �
��
	
� �


� � ��� � � � �



� (21)

where 
 and � are the (boundary) constant strain and stress tensors introduced earlier. One
immediately notices that Boxes 20 and 21 depend only on the external loading, the volume
fractions and the mechanical properties of the constituents, thus making either expression
trivial to compute. If � � � � 
 , then the forms in Boxes 20 and 21 are equivalent. Clearly,
under uniform boundary loading, �� is linear in terms of ��. The dependence of �� on the
mechanical properties is less obvious due to the presence of two ‘competing’ terms, �� and
�

��
� . In order to clearly see the inherent structure of ��, consider the special case when the

elasticity tensor of the stiffness of the particulate material is a uniform scaling of the matrix
material,� � ��where � � � in the matrix, and where � �� � in the particles (� � � � �).
Under these conditions, Boxes 20 and 21 collapse to

�� �
��



��
� � ��

�

��

�
��



�
� � 
 �

�

�

�
� (22)

Clearly, as � � �, then �� � � linearly in � , while as � � � then �� � � as �
�
. In

either case, the microfield distortion increases monotonically as the mismatch deviates from
unity. The results imply, for heterogeneous materials with the same scaling for the bulk and
shear components of the second-phase particles, that soft particles in a hard matrix produce
more 	������ distortion than hard particles in a soft matrix, due to the faster growth of �

�
,

relative to that of � , in ��.

"� �#������ $��� ��
��%��
�� ��&�
�����

We consider examples with isotropic macroscopic objectives of the form � � � � ��� and
�� � � ��� and a microscopic objective of �� � � . This corresponds to specifying a
desired macroscopic isotropic behavior of the material, while simultaneously achieving a
certain internal distortion level. For purposes of realistic numerical experiment, we chose
� � � ���� GPa and � � � 
��� GPa, which corresponds to a commonly used metal matrix
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material (aluminum 6061). Three microstructural design variables are considered: � �, � �

and ��. Uniform loading is considered with � � � � 
 , thus making the potential residual
equivalent for displacement or traction loading (Equations 20 and 21). As mentioned above,
without loss of generality, the Hashin–Shtrikman bounds will be used to approximate the
effective responses.� We consider two design scenarios:

� CASE I. A model problem of a material with a relatively soft matrix, whose overall stiff-
ness we wish to increase with harder particles. In this case it is appropriate to use the
Hashin–Shtrikman lower bounds to characterize the macroscopic responses, since they are
known to give reasonable estimates for the effective moduli of soft-matrix/hard-particle
combinations. The nonlinear system of coupled equations is

�� �
� �

� ��� � � �
� � �

��
�

�����
�

����� ��
�������

� ��� � � � ��

�� �
��

���� � � �

�� �
��

�
�����

�
����� ����������

	�����������

� ��� � � � �� (23)

�� � �� � � �

�� ��
 � ����
 ��

���
 ���
��� � ���
 ���
�����

� � � ��

� CASE II. For a model problem of a material with a relatively hard matrix, whose overall
stiffness we wish to reduce with softer particles, we employ the Hashin–Shtrikman upper
bounds to characterize the macroscopic responses, with the resulting set of equations being

�� �
� �

� ��� � � �
� � �

����
�

�����
�

�� �
�������

� ��� � � � ��

�� �
� �

� ��� � � �

�� �
������

�
�����

�
�� ���������
	�����������

���� � � � �� (24)

�� � �� � � �

�� ��
 � ����
 ��

���
 ���
��� � ���
 ���
�����

� � � ��

In either case, the resulting system is solved for by Newton’s method. At each Newton
iteration, we have three equations and three unknown design increments:


��
�
�

���

�
�

���

�
�

���
�
�

���

�
�

���

�
�

���
�
�

���

�
�

���

�
�

���

�
��

� �� �
evaluated at previous iteration

��
�

�� �

�� �

���

��
� �

��
�

���

���

���

��
�� �� �

previous values

� (25)
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Table 1. Feasible microstructural solutions for CASE I for a resolution of �� � �� � ��
divisions of the desired microdesign space (� � � ���� GPa and �� � 
��� GPa). Note:
for each row, ����

��
, ����

��
and � were specified, and ��

��
, ��
��

and �� were determined. In each
case � � and � � were fixed.

����

��

����

��
� ��

��

��
��

�� Newton iterations

1.2000 1.6000 .0600 1.4836 2.7404 .4862 39
1.2000 1.8000 .0800 1.4860 3.7103 .4844 21
1.4000 1.2000 .1600 2.3310 1.4943 .4546 98
1.4000 1.6000 .1600 2.1355 2.6855 .4950 67
1.4000 1.8000 .1800 2.1440 3.6072 .4929 39
1.4000 2.2000 .2600 2.1909 7.0863 .4822 18
1.6000 1.2000 .3400 3.2114 1.4532 .4882 28
1.6000 1.6000 .3800 3.3352 2.7937 .4781 23
1.6000 2.0000 .4000 3.1583 4.8414 .4929 27
1.6000 2.0000 .4200 3.2755 5.0709 .4829 35
1.6000 2.0000 .4400 3.3929 5.3029 .4738 17
1.6000 2.2000 .4600 3.2570 6.9832 .4844 25
1.8000 1.2000 .6600 4.6892 1.4408 .4996 29
1.8000 1.4000 .6800 4.7593 1.9882 .4970 20
1.8000 1.4000 .7000 4.8787 2.0005 .4929 21
1.8000 1.4000 .7200 4.9983 2.0123 .4889 20
1.8000 1.4000 .7400 5.1180 2.0237 .4852 12
1.8000 1.4000 .7800 5.3577 2.0453 .4784 15
1.8000 1.4000 .8800 5.9586 2.0934 .4642 19
1.8000 1.6000 .6800 4.6824 2.6564 .4999 17
1.8000 1.6000 .7000 4.8007 2.6820 .4956 18
1.8000 1.6000 .7200 4.9191 2.7067 .4915 19
1.8000 1.6000 .7400 5.0377 2.7308 .4877 21
1.8000 1.6000 .7600 5.1564 2.7541 .4841 14
1.8000 1.8000 .7000 4.6921 3.5328 .4995 14
1.8000 1.8000 .7200 4.8083 3.5799 .4953 13
1.8000 1.8000 .7400 4.9246 3.6260 .4913 14
1.8000 1.8000 .7600 5.0412 3.6710 .4876 15
1.8000 1.8000 .7800 5.1579 3.7150 .4840 15
1.8000 1.8000 .8000 5.2748 3.7580 .4806 17
1.8000 1.8000 .8200 5.3919 3.8001 .4775 19
1.8000 1.8000 .8800 5.7440 3.9208 .4688 27
1.8000 2.0000 .7400 4.7713 4.7636 .4966 13
1.8000 2.0000 .7600 4.8837 4.8465 .4927 15
1.8000 2.2000 .7800 4.7792 6.4774 .4963 13
1.8000 2.2000 .8000 4.8843 6.6231 .4927 15
1.8000 2.4000 .8200 4.6864 8.8449 .4997 16
1.8000 2.4000 .8400 4.7783 9.0962 .4964 17
1.8000 2.4000 .8600 4.8700 9.3503 .4932 18
1.8000 2.4000 .8800 4.9614 9.6072 .4901 17
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Figure 5. The Hashin–Shtrikman bounds for the effective bulk modulus. TOP: � � � and variation of

the volume fraction. BOTTOM: �� � ��� and variation of �, �� � ��� and �� � ���. The curves are

qualitatively similar for the shear modulus.
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Table 2. Feasible microstructural solutions for CASE II for a resolution of �� � �� � ��
divisions of the desired microdesign space (� � � ���� GPa and �� � 
��� GPa). Note:
for each row, ����

��
, ����

��
and � were specified, and ��

��
, ��
��

and �� were determined. In each
case � � and � � were fixed.

����

��

����

��
� ��

��

��
��

�� Newton iterations

.8600 .1000 .7400 .7367 .0282 .4566 39

.9000 .1400 .5000 .7953 .0384 .4327 26

.9000 .5800 .0400 .8080 .3311 .4747 47

.9200 .4600 .0800 .8126 .1701 .3807 30

.9400 .1800 .4400 .7844 .0241 .2328 91

.9400 .2800 .2200 .8249 .0586 .3019 33

.9400 .3000 .1800 .8528 .0835 .3713 27

.9400 .5000 .0600 .8622 .2107 .4023 24

.9600 .0800 .9200 .9193 .0232 .4748 18

.9600 .2400 .2200 .9208 .0871 .4853 28

.9600 .4600 .0800 .8906 .1491 .3409 19

.9600 .5000 .0600 .9013 .1988 .3825 13

.9600 .5400 .0400 .9197 .2932 .4797 12

.9800 .0800 .9600 .9545 .0202 .4284 12

.9800 .2200 .3000 .9414 .0469 .3284 18

.9800 .2200 .3200 .9296 .0369 .2696 17

.9800 .2200 .3600 .8849 .0198 .1571 38

.9800 .2400 .3000 .9137 .0319 .2163 21

.9800 .2600 .2800 .8954 .0279 .1749 26

.9800 .2800 .2400 .9128 .0389 .2138 24

.9800 .3600 .1400 .9370 .0858 .3041 13

.9800 .5000 .0600 .9477 .1915 .3704 11

.9800 .5400 .0400 .9578 .2834 .4645 9

.9800 .5600 .0600 .9114 .1275 .2107 19

.9800 .6600 .0200 .9538 .3849 .4231 12

.9800 .7400 .0200 .9085 .2685 .2042 17

whose solution furnishes an update of the design vector, i.e. � ��� � � ��
 � �� , � ��� �
� ��
 � �� and � ���

� � � ��

� � ���. The procedure is repeated iteratively. In theory, for a

given target desired micro–macro response, there can be multiple feasible solutions. This is
in part due to the structure of �� as well as the concave dependence of the Hashin–Shtrikman
bounds on the mismatch and their convex dependence on the volume fraction (Figure 5). A
general closed-form a priori criterion to predict the occurrence of multiple feasible solutions,
or possibly no solutions (like the expressions in Equation 8 for one dimension), is at present
lacking.

Pertaining to CASE I, depicted in Table 1 are all feasible designs between � � ��
��

� ��,
� � ��

��
� �� and � � �� � ���, which deliver desired micro–macro responses between

� � ����

��
� ��, � � ����

��
� �� and � � � � �. For CASE II, All designs between

� � ��
��

� �, � � ��
��

� � and � � �� � ���, which deliver desired micro–macro responses
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between � � ����

��
� �, � � ����

��
� � and � � � � � are shown in Table 2. For each case,

����

��
, ����

��
and � were specified, and ��

��
, ��
��

and �� were determined. In each case � � and � �

were fixed. The external loading was 
�� � �����, 
� � � �� 
� �, or equivalently � � � � 
 .
Consistent with the observations for the one-dimensional example, there can be unattainable
micro–macro objectives (infeasible goals). This was determined by the lack convergence
characterized by Newton’s algorithm being unable to meet a residual convergence criterion,

�
def
�

�
� ��
���� � ��� � � ��

���� � ��� � �� � � �� � ����, in 1000 iterations or less for a given

starting vector. All searches were started at �� � ���, � � � � ��� and �� � � ��� . W
e remark that to test over 125,000 design specifications, which corresponds to partitioning
� � ����

��
� �, � � ����

��
� � and � � � � � into 50 increments in each interval direction, a

������ �� ‘design grid’, each time solving an entire Newton search for the corresponding
microstructural design (� �, ��, ��), took no more than 30 seconds on a single workstation
(IBM RISC 6000 series). The numerical simulations found no feasible microstructures for
hard-matrix/soft-particle combinations where the bulk and shear mismatches were roughly
the same (Table 2). This is consistent with the theoretical predictions indicating rapid growth
in the microfield distortion for this case.

'� 
��
�	�����

The potential residual, ��, provides easily accessible information about the magnitude of the
distortion of the microstress and microstrain fields, defined as the difference, in an induced
energy norm, between the fields produced when heterogeneities are present and the fields
produced when the heterogeneities are absent. This result was obtained under no assumptions
on the character of the inhomogeneous material microstructure, other than that it be pointwise
positive-definite. The usefulness of the potential residual lies in the fact that it is solely in
terms of the external loading and accessible microstructural data, such as the properties of
the constituents and their respective volume fractions. Therefore, the determination of the
potential residual requires no extra significant computational effort. The use of �� in material
design and development, in conjunction with approximate, computationally inexpensive,
effective property estimates, permits one to account for the microfield distortion in the design
of the macroscopic behavior of a multiphase material. As illustrated in the examples, this
allows one to narrow down the number of microstructural designs which have appropriate
microstructural behavior without resorting to intensive microscale simulations. Afterwards,
more precise analyses of the responses can be performed, 	� � ��)(��) ��� 	
 
����%�� )������,
employing intensive large-scale numerical techniques or laboratory experiments.

�����

1. For example for particulate materials, parameters such as volume fractions, mechanical properties and

topologies of the second phases to add to a homogeneous base matrix might be sought.

2. The incorporation of the potential residual is general, and could be used with any desired effective property

approximation method.
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