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I ncor por ation of Microfield Distortion into Rapid Effective
Property Design

T. 1. ZoHDI
Department of Mechanical Engineering, 6195 Etcheverry Hall, University of California, Berkeley,
CA 94720-1740

(Received 5 July 2001)

Abstract: Itisadvantageousto use analytica effective property approximationsduring theinitial stages of the
design and devel opment of new multiphase solids. Materials of this class are typified by microscopic second-
phase particles suspended in abinding matrix. Such approximate methodsareideal sincethey requireminimal
computational effort, thus allowing one to perform rapid analyses for large numbers of multiphase solid com-
binations controlling parameters like the volume fractions and phase contrasts. Afterwards, when the number
of feasible microstructural design combinations has been sufficiently narrowed down, one can perform fur-
ther in-depth studies, applying computationally intensive numerical simulations, or more involved laboratory
tests, to areduced set of design dternatives. However, a limitation of approximate methods is that they do
not provide much quantifiable information about the internal stress and strain fields in the material. Clearly,
during material design development, when selecting micro-additives, information about the changes in the
otherwise (relatively) smooth internal fields, corresponding to the matrix material aone, would be valuable
to characterize a new multiphase materia’s performance. With regard to materials possessing microstruc-
tures described by particles suspended in a binding matrix, one obvious quantity of interest is the microfield
distortion, defined as the difference between the fields produced when heterogeneities are present and fields
produced when the heterogeneities are absent. Consistent with the use of computationally inexpensive effec-
tive property approximations, such information would be attractive, especialy if it involved no extra intensive
numerical simulations. Accordingly, inthiswork an exact expression is derived for the microfield distortion,
solely in terms of the external loading, property mismatches and volume fractions. Examples are given il-
lustrating use of the expression in adesign setting whereby second-phase additives are sought which deliver
desired effective responses, while simultaneously obeying microfield distortion constraints.

Key Words: Inverse problems, irregular heterogeneous microstructure

1. INTRODUCTION

In many modern scientific applications, multiphase materials are now commonly used.
In the design of such materials, the basic philosophy is to select material combinations
to produce macroscopic responses possessing desirable properties from each component.
One relatively common process in manufacturing a certain class of multiphase materiasis
the vortex method, whereby loose particulate additives are stirred into a vortex of molten
matrix material. The resulting microstructure consists of randomly distributed particles
suspended in a binding matrix (Figure 1). Mathematically, the mechanical properties of
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Figure 1. Randomly distributed particles in a binding matrix.

microheterogeneous materials are characterized by a spatially variable elasticity tensor E.
Typically, in order to characterize the (homogenized) effective macroscopic response of such

materials, arelation between averages (o), = E* : (€)q, issought, where (), £ a7 Jo A<,
and where o and € are the stress and strain tensor fields within a statistically representative
volume element (RVE) of volume |Q2|. The quantity E* is known as the effective property,
and isthe elasticity tensor used in usua structural scale analyses.

For the effective property to be useful, i.e. statistically representative, it must be computed
over asample containing a large amount of material. In other words, the sample must be so
large that for further enlargements E* does not change. If one were to attempt to perform a
direct numerical simulation of atruly statistically representative volume element of material,
incorporating all of the microscale details, an extremely fine spatia discretization mesh,
for example that of a finite-element mesh, would be required in order to accurately resolve
the microstructural fields. In order to give an idea of the immensity of the computational
problem, consider that in metals possessing particulate microstructure, a cubical sample
of dimensions 0.0001 mx0.0001 mx0.0001 m, which may still not even be statistically
representative, can typically contain of the order of 1000-10,000 particles suspended in a
binding matrix. For three-dimensional problems, thousands of numerical degrees of freedom
per particle are needed to deliver numerically accurate solutions, and thusthe resulting system
of equations would contain several million numerical unknowns. Furthermore, while there
exist avariety of numerical techniques specifically designed to simulate such problems, for
example micromechanical domain decomposition methods originally developed in Huet [1]
and recently extended in Zohdi et. a. [2], they are computationally demanding, even when
modern computational facilitiesare available. For reviewssee Huet [3] and [4]. Additionally,
if inverse problems of material design are of interest, where several hundred or thousand
possible microstructural parameter combinations are to be tested, such processes become
even more intensive.

In many cases, during materia design and development, one would like to
perform relatively quick analyses with minima intensive computational effort, in order
to approximately determine new microheterogeneous solid combinations which deliver
prespecified desired E*s. In other words, onewould liketo rapidly ‘ narrow down’ the number
of feasible microstructural combinations, and then perform more in-depth analyses with
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numerical simulations over areduced set of design alternatives afterwards. Thisisonereason
that avariety of analytical effective property approximation techniques, which serve asguides
in the selection of material combinations, are frequently used.! A variety of approximations,
such asthe dilute method (based on the results of Eshelby [6]), the Hashin—Shtrikman bounds
(Hashin and Shtrikman [7] and [8]), the self-consistent method (Budiansky [9] and Hill
[10]) and the Mori—Tanaka method (Mori and Tanaka [11]) have wide continued use in the
mechanics community. For a detailed overview, we refer the reader to Nemat-Nasser and
Hori [5]. However; a limitation of such approximate methods is that they do not provide much
quantifiable information about the internal stress and strain fields in the material. Clearly, during
material design development, when sel ecting micro-additives, information about the changes
in the otherwise (relatively) smooth internal fields, corresponding to the matrix material
alone, would be valuable for characterizing a new multiphase material’s performance. With
regard to materials possessing microstructures described by particles suspended in abinding
matrix, one obvious quantity of interest isthe microfield distortion, defined as the difference
between the fields produced when heterogeneities are present and fields produced when the
heterogeneities are absent. Consistent with the use of computationally inexpensive effective
property approximations, such information would be attractive, especidly if it involved no
extra intensive numerical computations. Accordingly, in this work an exact expression is
derived for such a microscale distortion measure in an induced energy norm. The result
is obtained under no assumptions on the character of the microstructure of the material,
other than it be pointwise positive-definite, as well as under no assumptions on the external
loading and geometry. The expression is solely in terms of easily accessible microstructural
data, such as the property mismatches and volume fractions, and thus it introduces no extra
significant computational burden. Afterwards, more precise analyses of the responses can
be computationally performed, on a reduced set of feasible designs, employing large-scale
numerical techniques.

The outline of the paper is as follows. In section 2, some background information is
given. In section 3, the fundamental structure of a micro—macro objective function, i.e.
one specifying a desired macroscopic response while simultaneously satisfying microfield
congtraints, is discussed. In section 4, an exact expression of the microfield distortion
measure is derived. In section 5, numerical examples are given addressing inverse material
design problems, whereby second-phase additives are sought to modify abase matrix in order
to deliver a desired effective response, while simultaneously obeying microfield distortion
congtraints. Finally, in section 6, some concluding remarks are given.

2. BACKGROUND INFORMATION

A sample of perfectly bonded heterogeneous material with domain €2, under a given set of
specified boundary loadings, is considered (Figure 1). Its boundary is denoted as 9€2. The
body is in static equilibrium under the action of body forces, f, and surface tractions, t.
The boundary 9Q = T, UT, consists of a part I', and a part I, on which displacements
and tractions are respectively prescribed. Following standard notation, A*(€2) is denoted
as the usua space of functions with generalized partial derivatives of order < 1in L?(Q).

The symbol H(Q) £ [H'(2)]? is defined as the space of vector-valued functions whose
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components have generalized partial derivatives < 1inL2(Q) £ [L2(Q)]°. The data are
assumed to be such that f € L*(2) and t € L*(T,), but less smooth data can be considered
without complications. The symbol ‘u|;o’ is used for generalized boundary values, for
example for specified boundary displacements. Throughout the analysis, the microstructure,
whichischaracterized by E € R* *3° whose components satisfy, Ve € R3*%, e = €7 ,a" ¢ :
e<e:E:e< ate €0 < a‘,a* < oo, Vx € Q,WhereE,jk; :E‘jikl :Eijlk :Ek[ij,
1 <i,jk, 1 <3, and where E;;, arethe Cartesian components of [E.

A genera variational boundary value formulation for the class of problems consideredis

Findu € H'(Q),ulr, =d, such that

/VV : E:VudQ:/f-de+/ t-vdd, YvecHY(Q),v|r, =0 (1)
Q Q I,

When considering a material design process, the boundary value problem in Equation 1
must to be solved for each new microstructure (E). A standard restriction on the types of
loading which are consistent with micro—-macro scale conceptsisHill’scondition, (o : €)q =
(o)q : (€)q. Hill's condition dictates the size requirements on the sample to be statistically
representative. In order to see this, consider that for any perfectly bonded heterogeneous
body, in the absence of body forces (f = 0), two physically important loading states satisfy
Hill’s condition: (1) pure linear boundary displacements of the form u|;, = & - x, where
represents aconstant applied strain, whichimplies (e), = £; and (2) pure boundary tractions
intheformt|,o, = £ - n, which implies (o), = L, where £ represents a constant applied
stress tensor. One can thus consider that applying either of the above-mentioned boundary
loadings on a large sample of materia is a way of approximately generating the boundary
conditions on a statistically representative subdomain of heterogeneous material within a
macroscopic body. In practice, by applying six linearly independent loadings on a large
sample of materia of either form (1) or (2), one can determine the components of E*. If
the material is macroscopically isotropic, then only one loading test, containing nonzero
dilatational (“Z- and %-) and deviatoric components (o’ “o- 22 and € Te— =),
is necessary to determine the effective bulk and shear moduli: 3x*(%-)q = (%) and
2u™(€')q = (o).

3. THE DESIGN OF AN EFFECTIVE RESPONSE

Consider a one-dimensional bar of length L composed of random particles, i.e. stripsin one
dimension (Figure 2). Thereareatota of N strips: N, dark strips, each of thicknessa, and N,
white strips representing the rest of the material. The Young's modulus £, correspondsto the
‘particles’, while R corresponds to the ‘matrix’. Suppose one wishes to design an effective
response, E£*, of such a structure defined by (o), = E*(€ ). Consider the following two-
point boundary value problem: L (E4<) = 0, u(0) = 0, u(L) = & x L, where £ isa
constant. One finds that
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Figure 2. A simple one-dimensional heterogeneous structure.

(R
(1—V2)C+V27

where( = £ v, +v, = 1 and v, = 224, Clearly, thereis no unique combination of  and

v, to produce the same desired effective response.

E" = @)

3.1. Incorporation of microfield constraints

L et us define the (one-dimensional) induced energy norm comparing two strain fields:

def du dw._ du dw
0< = wlie, 2 [ (G - B — G @

Notethat in the event that displacements are specified on the boundary, then « —w = constant
is unobtainable unless u = w, and the semi-norm in Equation (3) is a horm in the strict
mathematical sense. Also we define the complementary norm comparing two stress fields:

OSM—MEWD@Aw—ywlw—MﬂL (@

As for the heterogeneous structure, let us consider the same one-dimensiona bar, however
composed of only the matrix material, R. We consider the following two-point boundary
value problem, £ (R4) = 0, u(0) = 0, u(L) = € x L. The stressissimply o® = RE and
thestrainise ® = £. Let usdefinethe distortion due to theinhomogeneities asthe difference
between the fields of the heterogeneous and homogeneous systems:

[l —u” |50y +1lo— 0" |[z-1(q)

7= : (5)

[[u® H;Qe(sz) + [|o® ||12e—1(9)

Therefore, we can now set up the following system of equations for macroscopic and
microscopic design criteria

MACROSCOPIC : Il =E* =E*P,

u—ul|%,., +|lo—ofA,
MICROSCOPIC 7T2:H RH‘Z(Q) I — -1y -9, (6)
[u® |12y + 0% ]Z-1q)
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Figure 3. The surfaces for E* (TOP) and 72 (BOTTOM) for 1 < ¢.
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Figure 4. The surfaces for E* (TOP) and 72 (BOTTOM) for 0 < ¢ < 1.
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where ¢ is a distortion tolerance on the microfield and where £ is a desired effective
response. After some algebra, thisleads to the following:

5E*’D (E*,D —R)2 _|_ 25E*,D (E*,D —R)
=14+2—— d =
C=litipp g ad v 25 (D)2 Y
This solution, which is unique, isfeasible only if the following restrictions are obeyed:
5E*’D (E*’D —R)2 + 25E*’D (E*,D —R)
14+2— d < <1
0<1+ D R <oo and 0L 25 (E-D 2 < (8
¢ v

Clearly, the macroscopic and microscopic objectives cannot always be met simultaneoudly,
i.e. in some cases no feasible solutions exist. Thisisgraphically illustrated by the surfaces of
E* and 72 (Figures 3 and 4), which may or may not intersect. This depends on the desired
objectives E*” and § . We denote the formulation of prespecifying a macroscopic response
with microfield constraints as a micro—macro design problem.

3.2. Preface to three-dimensional analyses

Unlike in the simple one-dimensiona example, for three-dimensional problems involving
a statistically representative sample of material, the microfields cannot be determined
pointwise analytically, and then simply post-processed to determine E* and 72. Consistent
with the premise that one would like to (initially) avoid intensive numerical simulations, one must
resort to estimates of I5*. The simplest estimates are the Hill-Reuss-Voigt bounds[12], [14],
[13]: (E~1)5" < E* < (E)q. The notation means that the difference tensors ((E)q — E*)
and (E* — (E~1);") are positive-definite. For isotropic macroscopic responseswith isotropic
phases thisimplies (x )" < x* < (k)g and (u =)' < u* < (u)q, Wherex and i are
the spatially variable bulk and shear moduli of material. In 1963, such boundswereimproved
by Hashin and Shtrikman [7], [8], for isotropic materials with an isotropic effective response,
resulting in the following:

\ %] % 1-— Vo
K1 + 1 3(1—v2) S K S K2 + 1 + 3vg ) (9)
Ko —K1 31 +4u1 K1—K2 3reo+4us
bulk modulus H/S lower bound bulk modulus H/S upper bound
and
\ ] (1 — VQ)
<u*<
M1t — | S0 Gt 2e) = HS a2t — T on(eie) (19
H2—p1 5p1 (3x1 441 ) 1 —H2 5pz (32 +-4p2)
shear modulus H/S lower bound shear modulus H/S upper bound

where k1,11 and ko, o are the bulk and shear moduli for the phases, while v, is the
second-phase volume fraction. Such bounds are the tightest possible on isotropic effective
responses, with isotropic two-phase microstructures, where only the volume fractions and
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phase contrasts of the constituents are known. For soft-matrix/hard-particle combinations,
the Hashin-Shtrikman lower bounds are known to give good estimates for the effective
moduli, while for the effective moduli of hard-matrix/soft-particle combinations the Hashin—
Shtrikman upper bounds are appropriate. In this work, the Hashin-Shtrikman bounds will
be used to approximate the effective responses. However, with regard to being able to set
up a tractable micro—macro design formulation, this still leaves open the question of the
characterization of 72. Surprisingly, 72 can be determined exactly with knowledge of just uX,
R and E, using potential theory.

4. MICROFIELD DISTORTION/A POTENTIAL RESIDUAL

Two boundary value problems are considered, one where the mechanical properties of the
material are characterized by a (regular) spatialy constant admissible inhomogeneity-free
elagticity tensor, R, and another with an admissible spatially nonconstant (inhomogeneous)
elasticity tensor, E.

4.1. Homogeneous coefficient boundary value problem

The solution to the constant-coefficient problem, denoted the regular solution, u®, is
characterized by avirtual work formulation:

Findau® € H'(Q),u"

r, = d, such that

/VV:URDQ = /f-de—i—/ t-vdd Vv € H'(Q),v|r, = 0, (11)
Q Q Iy

v v~

®pr (uk v) ® (v

where o® = R : Vu®. The equivalent complementary form is
Findo®,V-o® +f = 0,0% -n|;, = t such that

/T:tho'RdQ = / 7-n-dd4d Vr,V-7 = 0,7 -n|;, = 0. (12
Q

Iy

v v~

dEfA" (ak 1) dﬁfg(r)

For the complementary problem, similar restrictions are placed on the solution and test fields
to force the integrals to make sense. In other words, we assume that solutions produce finite
global energy.
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4.2. Inhomogeneous coefficient boundary value problem

The solution corresponding to a material with microstructureisu, and is characterized by the
following virtual work formulation:

Findu € H'(Q),u|r, = d, such that

/Vv:a'dQ = /f-de+/ t-tdd Vv € H'(Q)v|r, = 0, (13)
Q Q r,

~~ -~

® e (u,v) 4 (v

where o = £ : Vu. The equivalent complementary formis
Findo,V-o+f = 0,0 n|r, =tsuchtha
/T:E_liddQ = /T-n~ddA Vr,V.-7=0,7-n|r, =0. 149
Q Fu

- N
def
E A(o,r) 4o iry

4.3. A potential residual

We have for any kinematically admissible function w, a natural definition of the induced
primal energy norm:

og|u—wmm¢§/WM—vaE:WM—VWMQ. (15)
Q
B(ufv‘v,,ufw)
We may write
0 < [jlu- WH%J(Q) = Bu-w,u—w)

= B(u,u) + B(w,w) — 2B(u, w)
= B(w,w) — B(u,u) — 2B(u, w) + 2B(u, u)
= B(w,w) - B(u,u) — 2B(u,w — u)

= B(w,w) - B(u,u) — 2F(w — u)

= B(w,w)—2F(w) — (B(u,u) — 27 (u))

— 27(w) - 27 (), (16)
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where we define the elastic potential as 7 (w) “ B(w,w) — F(w) = % fQ Vw :
E : VwdQ) — f f- wdQ — f t - w. Clearly, the true solution possesses the minimum
potential, which is a restatement of the principle of minimum potential energy. Similarly, for
the complementary variational formulation, for any statically admissible function (v), one
has for the induced complementary energy norm

0 < "0'_7“1‘23—1(9) = Alo—~,0—-7)

= 'A(Ua U) + A(77 7) - 2"4(077)

= 'A(77 7) - A(Ua U) - 2"4(077) + 2"4(07 U)

= 'A(77 7) - A(Ua U) - 2"4(077 - U)

= A(777) - A(Ua U) - 29(7 - U)

= A(7,7) —26(7) — (Alo,0) — 26(a))

= 21(:('7) - ZIC(U)a (17)
where we define K(v) £ A7) —G(7) = 5 Jov BT i d— [y - n - dd4,
which is a form of the principle of minimum complementary potential energy. By adding
together the potential energy and the complementary energy we obtain an equation of balance,
J(u)+K(o) = 0. If wechoosew = u”, which is akinematically admissible function, we
obtain [[u — u® |7 o) = 2(j( uf) — J(u)). Also, choosing v = o®, which is statically

admissible, we have [|o — o* [[7-1 ) = 2(K(o") — K(e)). Combining the two previous
resultsyields

2(7 (") + K(e®)) = [lu—u[[5q) +lo = 0" [[i-1(q)- (18)

A corresponding normalized measureis

o 2(J (uR) + K(a®)) _ [u —u® H%(Q) +||lo —of ||125*1(Q) ‘ (19)
IR [[3q) + lloF (310 [0 [[7@) + llo {72 0)

We refer to w2 as the potential residual. The relation in Box 19 allows us, for a given
boundary value problem, to exactly determine the differences between solutions produced
with aregularized constitutive law, and the exact constitutive law, and requires no computation
of the exact microfield boundary valueproblem.

Remark. In the previous analyses, the tensor R could have been nonconstant without
altering the results. Related further analyses can be found in Zohdi [15].
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4.4. Compact forms

If we consider the case of a microstructure composed of a matrix (R) embedded with
particul ate matter, under uniform loadings, 72 attains very compact forms. Under pure linear
boundary displacements of theform u|; = £ - x, one has

E:(B+R:E;':R): &
2 _ _
7T_v2< 26:R: €& L (20)

while under pure boundary tractionsintheformt|,o = £ - n,

L: (E_l—l—R_l:EQ:R_l):E
2 __ 2 _
7T_v2< 2L . R-1: L L (21)

where £ and £ are the (boundary) constant strain and stress tensors introduced earlier. One
immediately notices that Boxes 20 and 21 depend only on the external loading, the volume
fractions and the mechanical properties of the constituents, thus making either expression
trivial to compute. If £ =R : £, then the formsin Boxes 20 and 21 are equivaent. Clearly,
under uniform boundary loading, 72 is linear in terms of v,. The dependence of 72 on the
mechanical propertiesis less obvious due to the presence of two ‘competing’ terms, E, and
E5 . In order to clearly see the inherent structure of 72, consider the special case when the
elagticity tensor of the stiffness of the particulate material is a uniform scaling of the matrix
material, E = {Rwhere{ = 1inthematrix, andwhere{ # 1intheparticles(0 < { < 00).
Under these conditions, Boxes 20 and 21 collapse to

s v s LN w1
W_Q(\/Z \/?)_2(( 2+§>. (22)

Clearly, as{ — oo, then w2 — oo linearly in ¢, whileas ¢ — Othen7? — oo asi. In
either case, the microfield distortion increases monotonically as the mismatch deviates from
unity. The results imply, for heterogeneous materials with the same scaling for the bulk and
shear components of the second-phase particles, that soft particles in a hard matrix produce
more overall distortion than hard particles in a soft matrix, due to the faster growth of 1,

relative to that of ¢, in 2.

5. EXAMPLES WITH MICRO MACRO OBJECTIVES

We consider examples with isotropic macroscopic objectives of the form x* = x*? and
w* = u*P and a microscopic objective of 72 = §. This corresponds to specifying a
desired macroscopic isotropic behavior of the material, while simultaneously achieving a
certain internal distortion level. For purposes of realistic numerical experiment, we chose
k1 = 77.9 GPaand i; = 24.9 GPa, which corresponds to a commonly used metal matrix
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material (aluminum 6061). Three microstructural design variables are considered: «», uo
and v,. Uniform loading is considered with £ = R : &, thus making the potential residual
equivalent for displacement or traction loading (Equations 20 and 21). As mentioned above,
without loss of generality, the Hashin—Shtrikman bounds will be used to approximate the
effective responses.? We consider two design scenarios:

e CASE I. A model problem of amaterial with arelatively soft matrix, whose overall stiff-
ness we wish to increase with harder particles. In this case it is appropriate to use the
Hashin—Shtrikman lower boundsto characterize the macroscopic responses, sincethey are
known to give reasonable estimates for the effective moduli of soft-matrix/hard-particle
combinations. The nonlinear system of coupled equationsis

1,

1,

1,

K* K1+ — _:23(17\,42)
1 kp—r1 'Sk FAun 1=0
K*’D K*’D )
\%
lu* Hi + 1 +6(;*2\"(§)('2;r?ﬂ)1)
_ Hy—p1 i1 (3x1 +4u g _
e b e —1=0, (23)
20T (uf) + K(o®
2y WY+ o

[[u? (|3 + 1081310

e CASE Il. For amodel problem of a material with arelatively hard matrix, whose overall
stiffness we wish to reduce with softer particles, we employ the Hashin—Shtrikman upper
boundsto characterize the macroscopic responses, with theresulting set of equationsbeing

I

1,

1,

17V2

* Ko+ 1 3vo
kK™ 1= 2 Mz S Tam 1=0
K*’D K*’D )
. fo + 1+(le_—v )
lu o 1 — u1—n2 ' Sug (3kg+4ug) o 1 — O, (24)
Iu*7D Iu*,D
2(J(u?) + K(a®
2 (J@) +K) 5

R 2y + 1o [[5-1q)

In either case, the resulting system is solved for by Newton's method. At each Newton
iteration, we have three equations and three unknown design increments:

Y]

11y

Y]

11y

Il

dKo A2 dvg AKQ _Hl
9Ilo 91l 280} — _

6K2 (9,112 (7\/2 A’u 2 - H2
ol olls  9ll3 AVQ _H3

L) uz dvo

S

~ )
evaluated at previous iteration previous values
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Table 1. Feasible microstructural solutions for CASE | for a resolution of 50 x 50 x 50

divisions of the desired microdesign space (x; = 77.9 GPa and u; = 24.9 GPa). Note:
*, *,D . .

for each row, ’CMD , "#—1 and J were specified, and % z—f and v, were determined. In each

case k1 and u, were fixed.

D =D

o ”ﬂ—l 0 i—j /:Lf Vy Newton iterations
1.2000 1.6000 .0600 1.4836 2.7404 4862 39
1.2000 1.8000 .0800 1.4860 3.7103 4844 21
1.4000 1.2000 .1600 2.3310 1.4943 4546 98
1.4000 1.6000 .1600 2.1355 2.6855 4950 67
1.4000 1.8000 .1800 2.1440 3.6072 4929 39
1.4000 2.2000 .2600 2.1909 7.0863 4822 18
1.6000 1.2000 .3400 3.2114 1.4532 4882 28
1.6000 1.6000 .3800 3.3352 2.7937 4781 23
1.6000 2.0000 .4000 3.1583 48414 4929 27
1.6000 2.0000 4200 3.2755 5.0709 4829 35
1.6000 2.0000 4400 3.3929 5.3029 A738 17
1.6000 2.2000 .4600 3.2570 6.9832 4844 25
1.8000 1.2000 .6600 4.6892 1.4408 .4996 29
1.8000 1.4000 .6800 47593 1.9882 4970 20
1.8000 1.4000 .7000 4.8787 2.0005 4929 21
1.8000 1.4000 .7200 4,9983 2.0123 4889 20
1.8000 1.4000 .7400 5.1180 2.0237 4852 12
1.8000 1.4000 .7800 5.3577 2.0453 4784 15
1.8000 1.4000 .8800 5.9586 2.0934 4642 19
1.8000 1.6000 .6800 4.6824 2.6564 4999 17
1.8000 1.6000 .7000 4.8007 2.6820 .4956 18
1.8000 1.6000 .7200 49191 2.7067 4915 19
1.8000 1.6000 .7400 5.0377 2.7308 4877 21
1.8000 1.6000 .7600 5.1564 2.7541 4841 14
1.8000 1.8000 .7000 4.6921 3.5328 4995 14
1.8000 1.8000 .7200 4.8083 3.5799 4953 13
1.8000 1.8000 .7400 4.9246 3.6260 4913 14
1.8000 1.8000 .7600 5.0412 3.6710 4876 15
1.8000 1.8000 .7800 5.1579 3.7150 4840 15
1.8000 1.8000 .8000 5.2748 3.7580 .4806 17
1.8000 1.8000 .8200 5.3919 3.8001 AT75 19
1.8000 1.8000 .8800 5.7440 3.9208 .4688 27
1.8000 2.0000 .7400 47713 4.7636 .4966 13
1.8000 2.0000 .7600 4.8837 4.8465 4927 15
1.8000 2.2000 .7800 47792 6.4774 4963 13
1.8000 2.2000 .8000 4.8843 6.6231 4927 15
1.8000 2.4000 .8200 4.6864 8.8449 4997 16
1.8000 2.4000 .8400 47783 9.0962 4964 17
1.8000 2.4000 .8600 4.8700 9.3503 4932 18

1.8000 2.4000 .8800 4.9614 9.6072 4901 17
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EFFECTIVE BULK MODULUS (GPa)

50 1 1 1 1 1
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Figure 5. The Hashin—Shtrikman bounds for the effective bulk modulus. TOP: {( = 5 and variation of
the volume fraction. BOTTOM: v2 = 0.3 and variation of {, k2 = (x1 and p, = (p,. The curves are
qualitatively similar for the shear modulus.
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Table 2. Feasible microstructural solutions for CASE Il for a resolution of 50 x 50 x 50
divisions of the desired microdesign space (x; = 77.9 GPa and u; = 24.9 GPa). Note:
for each row, K;'lD , “ﬂ—lb and ¢ were specified, and % z—f and v, were determined. In each
case k1 and u, were fixed.

’“:10 ﬂLID 5 £ i Vs Newton iterations
.8600 .1000 .7400 7367 .0282 .4566 39
.9000 .1400 .5000 .7953 .0384 4327 26
.9000 .5800 .0400 .8080 3311 A747 47
.9200 .4600 .0800 .8126 1701 .3807 30
.9400 .1800 4400 .7844 .0241 .2328 91
.9400 .2800 .2200 .8249 .0586 .3019 33
.9400 .3000 .1800 .8528 .0835 3713 27
.9400 .5000 .0600 .8622 .2107 14023 24
.9600 .0800 .9200 9193 .0232 4748 18
.9600 .2400 .2200 .9208 .0871 4853 28
.9600 .4600 .0800 .8906 1491 .3409 19
.9600 .5000 .0600 9013 .1988 .3825 13
.9600 .5400 .0400 9197 .2932 4797 12
.9800 .0800 .9600 .9545 .0202 4284 12
.9800 .2200 .3000 9414 .0469 3284 18
.9800 .2200 .3200 .9296 .0369 .2696 17
.9800 .2200 .3600 .8849 .0198 1571 38
.9800 .2400 .3000 9137 .0319 .2163 21
.9800 .2600 .2800 .8954 .0279 1749 26
.9800 .2800 .2400 9128 .0389 .2138 24
.9800 .3600 .1400 .9370 .0858 3041 13
.9800 .5000 .0600 9477 1915 3704 1
.9800 .5400 .0400 9578 .2834 .4645 9
.9800 .5600 .0600 9114 1275 .2107 19
.9800 .6600 .0200 .9538 .3849 4231 12
.9800 .7400 .0200 .9085 .2685 .2042 17

whose solution furnishes an update of the design vector, i.e. k"% = k% + A, u"™ =
w4 + Ap and vier = v9® + Av,. The procedure is repeated iteratively. In theory, for a
given target desired micro—macro response, there can be multiple feasible solutions. Thisis
in part dueto the structure of 72 aswell as the concave dependence of the Hashin-Shtrikman
bounds on the mismatch and their convex dependence on the volume fraction (Figure 5). A
general closed-form apriori criterion to predict the occurrence of multiple feasible solutions,
or possibly no solutions (like the expressions in Equation 8 for one dimension), is at present
lacking.

Pertaining to CASE |, depicted in Table 1 are all feasible designs between 1 < :2 < 10,
1< z—f < 10and 0 < vy < 0.5, which deliver desired micro—macro responses between

D

1< 2 <101 < <10and0 < & < 1. For CASE Il, All designs between
0<2<1,0< ﬁj—f < land0 < vy < 0.5, which deliver desired micro—macro responses
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*D *D

and 5 were specmed and 22 fQ and v, were determined. In each case k andﬂl
Werefixed The externa loading was SU =0.001,4,j =1,2,3, orequivdently L =R : £.

Consistent with the observations for the one-dimensional exampl e, there can be unattainable
micro—macro objectives (infeasible goals). This was determined by the lack convergence
characterized by Newton's algorithm being unable to meet aresidual convergence criterion,

&= )2+ (ﬂi‘f; —1)2+ (7w — )2 < 107%,in 1000 iterations or less for agiven

=

starting vector. All searches were started at v, = 0.5, k3 = k™2 and py = u*?. W
e remark that to test over 125,000 design specifications, which correﬁponds to partitioni ng

50 x 50 x50 ° deS| gnﬂgrid’ each time solving an entire Newton search for the correspondi ng
microstructural design (x o, 2, v2), took no more than 30 seconds on a single workstation
(IBM RISC 6000 series). The numerical simulations found no feasible microstructures for
hard-matrix/soft-particle combinations where the bulk and shear mismatches were roughly
the same (Table 2). Thisis consistent with the theoretical predictionsindicating rapid growth
in the microfield distortion for this case.

6. CONCLUSIONS

The potential residual, 72, provides easily accessible information about the magnitude of the
distortion of the microstress and microstrain fields, defined as the difference, in an induced
energy norm, between the fields produced when heterogeneities are present and the fields
produced when the heterogeneities are absent. Thisresult was obtained under no assumptions
on the character of theinhomogeneous material microstructure, other than that it be pointwise
positive-definite. The usefulness of the potential residua lies in the fact that it is solely in
terms of the external loading and accessible microstructural data, such as the properties of
the constituents and their respective volume fractions. Therefore, the determination of the
potential residual requires no extrasignificant computational effort. The use of 2 in material
design and development, in conjunction with approximate, computationally inexpensive,
effective property estimates, permits oneto account for the microfield distortion in the design
of the macroscopic behavior of a multiphase material. As illustrated in the examples, this
allows one to narrow down the number of microstructural designs which have appropriate
microstructural behavior without resorting to intensive microscale ssmulations. Afterwards,
more precise analyses of the responses can be performed, on a reduced set of feasible designs,
employing intensive large-scale numerical techniques or laboratory experiments.

NOTES

1. For example for particulate materials, parameters such as volume fractions, mechanica properties and
topologies of the second phases to add to a homogeneous base matrix might be sought.

2. Theincorporation of the potential residual isgeneral, and could be used with any desired effective property
approximation method.
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