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Abstract

In this work, the accretion of *ne-grained particulate matter into larger objects in high-speed granular "ows, due to
sudden disturbances in their mean velocity *eld, is investigated. A multibody collision model is developed whereby the
coe/cients of restitution and friction, as well as quantities such as the contact area and collision duration time, are
implicit functions of the relative collision velocities and surfacial thermochemical reactions during impact. A recursive
*xed-point multilayered staggering scheme is developed to simulate the resulting coupled non-linear system. Inverse
problems are then constructed whereby transient "ow conditions, reaction rates, particulate volume fractions, hardnesses,
etc., are sought which deliver prespeci*ed aggregate growth from a base starting particulate size. Classical gradient-based
methods perform poorly, to this class of problems due to the fact that the associated objective functions depend in a
non-convex and non-di4erentiable manner on the mentioned starting-state parameters. Furthermore, the results are very
sensitive to the size of the control volumes selected. Therefore, due to the lack of robustness of classical gradient-based
minimization schemes, a statistical genetic algorithm is developed whereby (I) the starting state-variables are represented
by a “genetic string”, and concepts of evolutionary behavior, such as selective reproduction, are applied to a population
of such strings in order to determine an optimal set of starting state-parameters and (II) sequences of control volumes,
each containing a *nite number of particles, are adaptively computed until the sequential change in the ensemble average
of a population of control volumes all fall below a given tolerance. Three-dimensional numerical examples are given to
illustrate the behavior of the model and the overall solution process.
? 2002 Published by Elsevier Science Ltd.
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1. Introduction

The study of granular media covers the behavior of materials such as sand, gravel, snow, interplanetary
space dust, powders, sprays and pharmaceutical pills. The applications are broad. For example, over 50% (by
weight) of the raw materials handled in chemical industries are granular media. Also, high-tech processes such
as chemical vapor deposition, used in coating computer hardware, involve the analysis of particulate sprays.
Another industrial application, concerned with granular "ow, is the reduction of noise in aerodynamic designs
[1]. Environmentally, the study of granular media is important for understanding the mechanics of landslides,
coastal erosion and a host of other phenomena [2–5]. In particular, with regard to avalanche mechanics, we
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refer the reader to the works of Hutter and collaborators: Tai et al. [6], Gray et al. [7], Wieland et al. [8],
Berezin et al. [9], Gray and Hutter [10], Hutter [11], Hutter et al. [12], Hutter and Rajagopal [13], Koch et al.
[14], Greve and Hutter [15] and Hutter et al. [16]. In another area, the space sciences, research is concerned
with the formation of planetesimals by the aggregation of micron-sized granular dust particles in gaseous
accretion disks [17–25]. The following general review articles, Jaeger and Nagel [26,27], Nagel [5], Jaeger
and Nagel [28], Jaeger et al. [29–31], and Jaeger and Nagel [32], discuss the wide array of applications and
research issues pertaining to granular media.
In many instances high-speed granular "ows are encountered, where a primary concern is the accretion of

the granular material into larger aggregates when such "ows experience a sudden disturbance in their mean
*eld. For example, industrially, this is important for quality control in vapor deposition processes, clogging of
raw material feed lines, etc. Environmentally, for example in landslides, the concern is with the formation of
large, potentially dangerous, aggregates. In the space sciences the concern is with the conditions required for
planetesimals to form. In all of the mentioned cases, it is assumed, in one way or another, that grains collide,
adhere, and grow into larger objects. For high-speed "ow regimes, usually, for reasons of simplicity, at the
simulation level, most studies simply arbitrarily assign a *xed low coe/cient of restitution to the material
surfaces, since otherwise the particles do not adhere [33]. However, it is well known that the coe/cient of
restitution is a function of the pressure that arises between the contacting surfaces. Other quantities, such as
the friction forces, contact area and impact duration times, are also functions of the pressure, which implicitly
depend on the relative velocity of the incoming and outgoing contact surfaces of the particles. For systems of
particles, this leads to an enormous number of coupled non-linear equations. Historically, it is primarily for
this reason that the implicit coupling has usually been ignored in simulations. However, the recent dramatic
rise in computing power raises the possibility of more realistic modeling of the series of events leading to
accretion, with the brunt of the e4ort shifted to numerical simulation.
The focus of the present work is on the modeling and simulation of inverse problems associated with the

accretion of *ne-grained particulates into larger objects collisions which involve possible thermo-chemical
reactions at the contact surfaces. The outline of the presentation is as follows. In Section 2, a multibody
collision model is developed whereby the coe/cients of restitution and friction are functions of the impact
velocities. In Section 3, other quantities such as the contact area and collision duration time, are expressed
as implicit functions of the impact velocity. In Section 4, thermochemical reactions at the impact surfaces
are modeled, and thermal softening, which a4ects accretion, is taken into account. In Section 5, a recursive
*xed-point multilayered staggering scheme is developed to simulate the resulting coupled non-linear system. In
Section 6, inverse problems are then constructed whereby transient "ow conditions, reaction rates, particulate
volume fractions, hardnesses, etc., are sought which deliver prespeci*ed aggregate growth from a base starting
particulate size. The results are very sensitive to the size of the control volumes selected. Furthermore, classical
gradient-based methods perform poorly, or are simply inapplicable, due to the fact that the associated objective
functions depend in a non-convex and non-di4erentiable manner on the mentioned starting-state parameters.
Accordingly, a statistical genetic algorithm is developed whereby the starting-state variables are represented by
a “genetic string”, and evolutionary behavior, such as selective reproduction, is applied to a population of such
strings to determine an optimal set of starting-state parameters and where sequences of control volumes, each
containing a *nite number of particles, are adaptively computed until the sequential change in the ensemble
average of the population falls below a given tolerance. Finally, in Section 7, three-dimensional numerical
examples are given to illustrate the behavior of the model and the overall solution process.

2. Momentum exchange, adhesion and friction

We consider a cloud of randomly distributed particles with random initial velocities. Two primary simplify-
ing assumptions are made: (I) the particles, and any subsequent accretions that are formed, remain spherical,



T.I. Zohdi / International Journal of Non-Linear Mechanics 38 (2003) 1205–1219 1207

mivi
mjvj

TIME=t

IMPACT= δt

Fig. 1. The impact of two particles in a granular "ow.

even after impact and (II) the accretions and particles do not (re)*ssure upon impact. At time t, for two
colliding particles i and j, normal to the line of impact, we have a conservation of momentum, before (t)
and after (t + �t) impact (Fig. 1),

mivtin + mjv
t
jn = miv

t+�t
in + mjvt+�tjn : (1)

If one isolates one of the members of the colliding pair, then

mivtin + In�t = miv
t+�t
in ⇒ In =

mi(vt+�tin − vtin)
�t

; (2)

where In is the impulsive force between the particles. In addition to momentum transfer, an auxiliary relation
comes from the commonly used material parameter, the coe/cient of restitution, de*ned by the ratio of the
relative velocities before and after impact

edef=
vt+�tjn − vt+�tin

vtin − vtjn
: (3)

If e were explicitly known, then one could write

vt+�tin =
mivtin + mj(v

t
jn − e(vtin − vtjn))

mi + mj
(4)

and

vt+�tjn = vt+�tin + e(vtin − vtjn): (5)

However, the phenomenological material parameter (e) depends on In, and thus implicitly on the impact
velocity. An approximate relation to determine whether two surfaces will bond when pressed together is if the
magnitude of the surface pressure (P) exceeds or attains twice the Vicker’s hardness (2H), i.e. if |P|¿ 2H
then the particles will bond. See [34] for reviews. A typical value of the Vicker’s hardness is H ≈ 3=�y,
where �y is the yield point for plastic deformation of the material. This is a relatively well-explored topic in
the materials science literature. An obvious relation to approximate the surface pressure is P ≈ In=ac, where
ac represents the apparent contact area. Clearly if e = 1, the impact is purely elastic with no adhesion, and
thus there is no loss in energy, while if e = 0 there is complete adhesion, and a maximum loss in energy.
One can approximate e by a linear scaling with the pressure to hardness ratio

edef=
vt+�tjn − vt+�tin

vtin − vtjn
≈ max

(
1− |In|=ac

2H
; 0
)
=max

(
1− mi|vt+�tin − vtin|

2acH�t
; 0
)
: (6)
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Fig. 2. Two contacting objects.

Since e is a function of the post-impact velocity, via In = In(vt+�t), Eqs. (4)–(6), along with relations that
govern changes in other variables (contact area and friction) are strongly coupled. One approach, in fact
the one adopted later in this work, to solve such a system is via a recursive (*xed-point type) staggering
process, whereby one *rst assumes permanent adhesion e=0, computing vt+�tin and vt+�tjn , then one checks the
implicit assumption of whether |P|¿ 2H is correct. If |P|¡ 2H , then e = 1 − |In|=2acH and the velocities
are recomputed. The procedure is repeated until the di4erence between successive solutions is below a given
tolerance. Essentially the same relations can be computed for all impacting pairs. This is elaborated upon
further in the work.
For a general preimpact velocity *eld of a particle, the normal velocity is computed by taking the inner

product v ·n, and projecting this in the normal direction. The normal direction, for two di4erent sized particles
contacting one another, is determined by the di4erence in the position vectors of their centers (Fig. 2),
nji=(rj − ri)=‖rj − ri‖. If the value of ‖rj − rj‖ is smaller than the sum of the two radii, then contact occurs.
The geometries of the particles and subsequent accretions are approximated as being spherical. The sizes of
the accretions can be determined by their total mass, �i 43�b

3
i = nmi ⇒ bi = (nmi=�i 43�)

1=3, where n is the
total number of particles in an accretion. At time t, the tangential velocities, which are orthogonal to the
normal direction, are computed by the di4erence of vtTAN = v

t − vtn. Immediately after impact, the tangential
velocities are computed by a conservation of momentum in the tangential plane. For the impacting pair as
a whole, we have, in the tangential plane, mivtTANi + mjvtTANj = mivt+�tTANi + mjvt+�tTANj. If there is permanent
adhesion, dictated by P¿ 2H , then vt+�tTANi = v

t+�t
TANj. If the particles do not permanently adhere, then a balance

of momentum for each particle in the tangential directions dictates, under the assumption of Coulomb type
friction, �|In|= friction force opposite to the direction of relative motion,

vt+�tTANix =
�|In|�t
mi

vtTANix − vtTANjx
‖vtTANi − vtTANj‖

+ vtTANix;

vt+�tTANiy =
�|In|�t
mi

vtTANiy − vtTANjy
‖vtTANi − vtTANj‖

+ vtTANiy;
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vt+�tTANiz =
�|In|�t
mi

vtTANiz − vtTANjz
‖vtTANi − vtTANj‖

+ vtTANiz ;

vt+�tTANjx =
�|In|�t
mj

vtTANix − vtTANjx
‖vtTANi − vtTANj‖

+ vtTANjx;

vt+�tTANjy =
�|In|�t
mj

vtTANiy − vtTANjy
‖vtTANi − vtTANj‖

+ vtTANjy;

vt+�tTANjz =
�|In|�t
mj

vtTANiz − vtTANjz
‖vtTANi − vtTANj‖

+ vtTANjz : (7)

We take the friction coe/cient to be a linear function of the coe/cient of restitution �=�0(1−e). Therefore,
in a consistent manner, if e = 1 it is an idealized, energy preserving, impact.

Remark. Immediately after impact; the particles must be slightly displaced in the direction of their outgo-
ing velocities so that the particles no longer overlap. Algorithmically; the violation criterion is; �def=‖ri −
rj‖=(bi + bj)¡ 1; and the subsequent immediate post-impact updates are a function of the amount of particle
overlap:

rt+�ti = rti + b
t
i(1− � t)

vt+�ti

‖vt+�ti ‖ ;

rt+�tj = rtj + b
t
j(1− � t)

vt+�tj

‖vt+�tj ‖ : (8)

To update the positions after the impact we use a Backward Euler approximation for all the particles in
the system, where Qt is the discrete time step size:

rt+�t+Qtxi = rt+�txi +Qtvt+�txi ;

rt+�t+Qtyi = rt+�tyi +Qtvt+�tyi ;

rt+�t+Qtzi = rt+�tzi +Qtvt+�tzi : (9)

Remark. Even though the particles may still slightly overlap after the application of the relations in Eq. (8);
after the application of the relations in Eq. (9) they will be well separated.

3. Intrinsic time scales

One can directly obtain an estimate on the relative velocities needed for particle accretion by setting e= 0

in Eqs. (4)–(6). Assuming mi = mj = m yields vcritrel
def=vtjn − vtin = 4a

cH�t=m. Since the particles are assumed
to be spherical, the mass for each particle can be written as m = � 43�b

3, where b is the radius. If we
assume that the contact area is proportional to the cross-sectional area of the particles, ac = k�b2, 06 k6 1,
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then

vcritrel = 3
Hk�t
b

: (10)

In such a simple model, as b becomes larger, the critical velocity needed for adhesion becomes smaller,
provided that quantities like impact duration time and the contact area scaling are independent of particle
size. However, this is unrealistic. To correct this inadequacy, we assume that the contact area scales with the
severity of impact, characterized by e. A relatively simple way to express this is by a linear function of the
coe/cient of restitution and cross-sectional area of the smaller of the two contacting bodies (Fig. 1),

ac = (a0 + (af − a0)(1− e))�(min(bi; bj))2: (11)

A logical relation for the impact duration time is the time to compress and decompress the radius of the
smaller of the two impacting pairs,

�t =
2�min(bi; bj)

|vtin − vtjn|+ |vt+�tin − vt+�tjn | =
2�min(bi; bj)
(1 + e)|vtin − vtjn|

; (12)

where 0¡�6 1. Under these assumptions, to make an estimate of the critical velocities needed, we con-
sistently modify Eq. (10) by assuming that the particles are of the same size, and that e = 0, thus leaving
vcritrel =

√
6afH�. We de*ne the average separation distance (S) between particles as the control volume (V )

divided by the number of particles (N ), Ldef=(V=N )1=3, minus the diameter of an intrinsic particle (D), i.e.
S=L−D. An estimate for the number of collision cycles (M) needed to drive the energy to steady state, i.e.
to drive the relative velocities below a small tolerance, is given by SeM =TOL⇒ M =Ln(TOL)=Ln( Se), where
Se is an estimate of the average coe/cient of restitution in the system. To insure that the time duration of the
simulation is long enough to reach steady state, a relatively conservative (high) value should be chosen for
the average coe/cient of restitution in the system, for example Se ≈ 0:9, while a relatively low value should
be chosen for the tolerance, for example TOL = 0:01. An approximate intrinsic simulation time scale (T ) is
the time it takes for one collision cycle, multiplied by the number of collision cycles to bring the system to
steady state, therefore

T ≈ S
vcritrel

M: (13)

Remark 1. Because the system will lose energy during the impact events; if the starting relative velocities are
below the critical value; it is unlikely to have much signi*cant accretion; since the system will progressively
“lose its chances for accretion” due to energy losses.

Remark 2. For simulation purposes; we want no losses in energy and momentum in the system due to
particles escaping to the outside of each control volume. Therefore; if a particle escapes from the control
volume; it is placed on the opposite end of the control volume with the same (now incoming) velocity for the
component direction violated; i.e. if |rx|¿ limit; then rx=−limit rx=|rx|. Therefore; the total system energy can
decrease only due to collision losses. The momentum will remain constant; due to the fact that no external
forces are applied.

4. Surfacial thermochemical e�ects

The strain rates in such impact scenarios can lead to locally high temperatures in the contact zone which,
when coupled to thermochemical reactions, due to possibly reactive materials present on the surface of
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Fig. 3. A possible scenario where a *lm of hydrogen, or some other reactant, covers the surfaces of an impacting pair.

particles, may lead to a rapidly formed molten layer, which, upon cooling, strongly fuses the colliding pair
together. In fact, this e4ect has been exploited in the materials processing community by purposely adding
powdered hydrides and other potentially reactive materials into metallic powder mixes to enhance thermo-
chemical bonding upon compaction. One such method is shock induced chemical reactions (SICR), whereby
a shock wave is passed through chemical reacting powders, which sinters them together. Relevant work in
the modeling and simulation of such processes can be found in [34–38] and recently in [39]. In another
realm, planetesimal accretion, the presence of hydrogen gas adsorbed onto the surface of interplanetary de-
bri is thought to be a possible explanation for easier bonding of particles upon impact (Fig. 3). Therefore,
regardless of the speci*c application, it is reasonable to include such e4ects into the general model.
In order to incorporate thermochemical surface reaction e4ects that enhance accretion, we consider an energy

balance for an impacting pair. We assume that all losses in kinetic energy are converted into heat, and that
surface reactions in the contact zone provide additional energy. The post-collision velocities are computed
from the momentum relations. The resulting kinetic energy loss is

WL
def= 1

2 miv
t
iv
t
i +

1
2 mjv

t
jv
t
j − 1

2miv
t+�t
i vt+�ti − 1

2mjv
t+�t
j vt+�tj : (14)

We assume that the forces of compression and restitution during an impact event are always equal and opposite
between a colliding pair of particles in the contact zone, and also that the kinetic energy lost in the system
is split equally between the impacting pair

miC� t+�t = miC� t +
WL
2
+Ri ; (15)

where C is the heat capacity per unit mass, and Ri is the contribution from reactions at the surfaces of the
particles. This term can be expressed as

Ri = 'ac = '(a0 + (af − a0)(1− e))�(min(bi; bj))2; (16)

where ' is a material constant. For the particle pair, the new temperature can be written as

�t+�ti = �ti +
WL
2miC

+
'
miC

(a0 + (af − a0)(1− e))�(min(bi; bj))2;

�t+�tj = �tj +
WL
2mjC

+
'
mjC

(a0 + (af − a0)(1− e))�(min(bi; bj))2: (17)
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The temperature rise a4ects the impacting materials hardnesses, since H ≈ �y=3, where �y is a function of
temperature. Since the strain rates in such impact scenarios can lead to high particulate temperatures leading to
thermal softening and potentially to melting, the threshold for strong bonding can be dramatically reduced. To
model thermal softening, the hardness parameter H is represented by H =H0eU=R�, where U is an activation
energy and R is the universal gas constant, motivated by the fact that dislocation dynamics, the subcontinuum
mechanism for continuum plastic "ow, is usually governed by such an Arrhenius-type relation. Clearly, these
equations are coupled to those of impact. After impact, it is assumed that the heat begins to be radiated
away, governed by

�C�̇=∇ · (K · ∇�) +B(�− �0)4; (18)

where K is the material’s conductivity, �0 is the ambient temperature, B is the Stefan–Boltzmann constant,
B=−5:67× 10−8Nm=sK◦, and where, consistent with the particle-based philosophy, it is assumed that the
temperature *elds are uniform in the particles, thus ∇�=0. Therefore, after a single forward Euler integration,
we have

� t+�t+Qt = � t+�t +Qt
(

B

�C
(� t+�t − �0)4

)
: (19)

Remark. Two central open issues are (1) the e4ect of particle and accretion topology; which clearly will
not be spherical and (2) (re)*ssuring of accretions and particles. To an extent; these issues can only be
investigated further by more detailed analysis of the spatial deformation during impact within a large-scale
multibody collision analyses. This is outside the scope of the present analysis. Possible extensions in this
direction; amenable to large scale computation; may be to employ the concept of pseudo-rigid bodies. A
pseudo-rigid body can only deform only homogeneously. For recent theoretical and numerical developments
in this area we refer the reader to [40–42].

5. Multilayered #xed-point staggering schemes

We now address the solution of the system of equations generated by the model developed thus far. In
order to do this, consider a general system of coupled non-linear equations given by D(z) =F, where z
is a solution, and where it is assumed that the operator, D, is invertible. One desires that the sequence of
iterated solutions, zI , I = 1; 2; : : : ; converges to D−1(F) as I → ∞. If zI is a function of D;F; zI ; : : : ; zI−K

one says that K is the order of iteration. It is assumed that the I th iterate can be represented by zI =
GI (zI−1)+ rI . A necessary condition for convergence is iterative self consistency, i.e. GI (z)+ rI =z, therefore
z=D−1(F)=GI (D−1(F))+rI . Accordingly, one has the consistency condition rI=D−1(F)−GI (D−1(F)),
and as a consequence, zI = GI (zI−1) +D−1(F)− GI (D−1(F)). Using the consistency requirement, a su/-
cient condition for convergence can be obtained by de*ning the error vector: +I = zI − z = zI −D−1(F) =
GI (zI−1) +D−1(F)− GI (D−1(F))−D−1(F) = GI (zI−1)− GI (D−1(F)). For the non-linear systems con-
sidered, a su/cient condition for convergence is the existence of a contraction mapping ‖+I‖ = ‖zI − z‖ =
‖GI (zI−1) − GI (z)‖6 |K| ‖zI−1 − z‖, where if |K|¡ 1 for each iteration I , then +I → 0 for any arbi-
trary starting solution zI=0 as I → ∞. See [43] or [44] for reviews. A multilevel (embedded) recursive
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staggering implementation of such a scheme, applied to the problem of interest, is as follows:

(1) FOR EACH PARTICLE (i) FIND CURRENT NEAREST NEIGHBOR (j) : rj
def= minrp;p �=i ‖ri − rp‖

(2) IF CONTACT CRITERIA MET ASSUME COMPLETE ADHESION (K = 0; eK = 0) :
(3) COMPUTE THE FOLLOWING FOR THE CONTACT PAIR :

vt+(�t)
K

in =
mivti + mj(v

t
j − eK (vtin − vtjn))

mi + mj

vt+(�t)
K

jn = vt+(�t)
K

in + eK (vtin − vtjn)

IKn =
mi(v

t+(�t)K

in − vtin)
(�t)K

vt+(�t)
K

TANix =−�|IKn |(�t)K
mi

vtTANix − vtTANjx
‖vtTANi − vtTANj‖

+ vtTANix ;

vt+(�t)
K

TANiy =−�|IKn |(�t)K
mi

vtTANiy − vtTANjy
‖vtTANi − vtTANj‖

+ vtTANiy ;

vt+(�t)
K

TANiz =−�|IKn |(�t)K
mi

vtTANiz − vtTANjz
‖vtTANi − vtTANj‖

+ vtTANiz ;

vt+(�t)
K

TANjx =
�|IKn |(�t)K

mj

vtTANix − vtTANjx
‖vtTANi − vtTANj‖

+ vtTANjx ;

vt+(�t)
K

TANjy =
�|IKn |(�t)K

mj

vtTANiy − vtTANjy
‖vtTANi − vtTANj‖

+ vtTANjy;

vt+(�t)
K

TANjz =
�|IKn |(�t)K

mj

vtTANiz − vtTANjz
‖vtTANi − vtTANj‖

+ vtTANjz :

IF
|IKn |
aK

¿ 2H THEN ACCRETE mi AND mj INTO ONE PARTICLE = mi + mj

eK+1def=max


1− mi|vt+(�t)

K

in − vtin|
ac;K2H (�t)K

; 0




IF |eK+1 − eK |6 eKTOL THEN GO TO (2) FOR NEXT CONTACT PAIR

IF |eK+1 − eK |¿eKTOL THEN

eK = eK+1

(�t)K+1 =
2k min(bi; bj)

(|vtin − vtjn| + |vt+(�t)Kin − vt+(�t)
K

jn |)
;

ac;K+1 = (a0 + (af − a0)(1− eK+1))�(min(bi; bj))2:

WK+1
L

def=
1
2

(
mivti · vti + mjvtj · vtj − miv

t+(�t)K+1

i · vt+(�t)K+1i − mjv
t+(�t)K+1

j · vt+(�t)K+1j

)
;

�t+(�t)
K+1

i = �ti +
WK+1
L

2miC
+

'
miC

(a0 + (af − a0)(1− eK+1))�(min(bi; bj))2;

�t+(�t)
K+1

j = �tj +
WK+1
L

2mjC
+

'
mjC

(a0 + (af − a0)(1− eK+1))�(min(bi; bj))2;

GO TO (2) AND REPEAT FOR THE NEXT CONTACT PAIR
(4) UPDATE VELOCITIES; POSITIONS; TEMPERATURES ETC : : :AND GO TO (1) (20)
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Remark. Typically; for the system at hand; convergence is easily attained over a wide parameter range; since
at low speeds the contraction constant is small; and the iterations converge quickly; while at high speeds; the
particles accrete (e = 0); and only a few iterations are necessary.

6. Statistical inverse solution schemes

We now concentrate on constructing inverse problems where transient "ow conditions, reaction rates, par-
ticulate volume fractions, hardnesses, etc., are sought which deliver prespeci*ed aggregate growth from a
base starting particulate size. For example consider the cost function, .= |(1=2)(bf =b0)− 1|, where bf is the
*nal average radius of the particles in a control volume and b0 is average radius at the starting state. Due
to the fact that objective functions such as . depend in a non-convex and non-di4erentiable manner on the
mentioned starting-state parameters, gradient-based minimization methods are inapplicable. The lack of ro-
bustness of gradient-based deterministic minimization processes can be recti*ed by application of a family of
methods, usually termed “genetic” algorithms. Genetic algorithms are search methods based on the principles
of natural selection, employing concepts of species evolution, such as reproduction, mutation and crossover.
Such methods stem from the work of John Holland and his colleagues in the late 1960s and early 1970s at
the University of Michigan [45]. For reviews of such methods, the interested reader is referred to Goldberg
[46], Davis [47] and Onwubiko [48]. A recent overview of the state of the art of the *eld can be found in a
collection of recent articles, edited by Goldberg and Deb [49].
In [50] a genetic algorithm was developed, where the key feature was the development of a “genetic string”,

which contains microstructural design information. A “survival of the *ttest” algorithm was then applied to a
population of such strings. In this presentation, we concentrate on adapting this type of genetic algorithm to
inverse problems. Accordingly, we write the state vector as a string

�def=(v0rel; s; �; H0; C; �0; �0; U; ') (21)

and apply the following:

Step 1: RANDOMLY SELECT N STARTING GENETIC STRINGS �idef={0i1; 0i2; : : : ; } (i = 1; : : : ; N ):
Step 2: COMPUTE FITNESS (.(�i)) OF EACH GENETIC STRING : (i = 1; : : : ; N )

Step 3: RANK THE GENETIC STRINGS; �i (i = 1; : : : ; N )

Step 4: MATE NEAREST PAIRS (PRODUCE OFFSPRING) (i = 1; : : : ; N )

�idef=�i�i + (1−�i)�i+1 �i+1def=�i+1�i+1 + (1−�i+1)�i+1

06�i = RAND6 1 (DIFFERENT FOR EACH COMPONENT )

Step 5: ENFORCE CONSTRAINTS : �i−6�i6�i+

Step 6: KILL OFF BOTTOM M ¡N STRINGS: OPTIONAL : KEEP TOP K PARENTS

Step 7: REPEAT WITH TOP GENE POOL PLUS M NEW ONES : �i = �i; (i = 1; : : : ; N )

Termination : REPEAT UNTIL ‖.‖6TOL (22)

We remark that the de*nition of “*tness” of a genetic string in this algorithm indicates the value of the objec-
tive function. In other words, the most *t genetic string is simply the one with the smallest objective
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function. 1 At *rst glance, it may seem inconsequential to retain the top parents, however, in [50], it was found
that parent retention produces superior results. This stems from the fact that the objective functions are highly
non-convex, consequently there exists a strong possibility that inferior o4spring will replace superior parents.
Therefore, the practice of retaining the top parents is not only less computationally expensive, since they do
not have to be reevaluated, it is theoretically superior. With top parent retention, the minimization of the cost
function is guaranteed to be monotone. The total number of global evaluations is equal to q+(g−1)×(q−p),
where g is the number of generations, q is the total number of genetic strings in the population, and p if the
number of parents kept after each generation.

6.1. Stabilization of statistically uncertain systems

An idealized steady-state system energy can be computed from the fact that each individual particle’s
velocity can be split into the mean and perturbed part, vi = 〈vi〉+ �vi, where 〈�vi〉= 0

Kinetic energy =
1
2

N∑
i=1

mi(〈vi〉+ �vi) · (〈vi〉+ �vi)

=
1
2

N∑
i=1

mi〈vi〉 · 〈vi〉+
N∑
i=1

mi〈vi〉 · �vi + 1
2

N∑
i=1

mi�vi · �vi

=
1
2

N∑
i=1

mi〈vi〉 · 〈vi〉+ 1
2

N∑
i=1

mi�vi · �vi : (23)

If there is no energy input into the system, as the inelastic collisions progress (e¡ 1), then the system kinetic
energy will tend towards 1

2

∑N
i=1 mi〈vi〉 · 〈vi〉 since e(vtin − vtjn) = v

t+�t
jn − vt+�tin → 0 as t → ∞. Typically, for

particle groups with a *nite number of grains, for example several hundred, a numerically generated (random)
sample realization will not be perfectly statistically representative, i.e. 〈�vi〉 �= 0. Therefore, one must simulate
several samples and then ensemble average the responses of the samples to obtain statistically valid objective
functions.

6.2. Convergence in the sense of statistical moments

The exact number of tests needed to stabilize the results is controlled by the characteristics of the statistical
distribution of responses associated with a starting-state vector. One can describe the essential characteristics
of distributions through statistical moments. Consider any tested quantity, Q, with a distribution of values
(Qi; i = 1; 2; : : : ; N = samples) about an arbitrary reference point, denoted Q?, as follows:

MQi−Q?
r

def=
∑N

i=1(Qi − Q?)r

N
def= (Qi − Q?)r ; (24)

where
∑N

i=1(·)=N def=(·) and Adef=Qi. The various moments characterize the distribution, for example: (I) MQi−A
1

measures the *rst deviation from the average, which equals zero, (II) MQi−0
1 is the average, (III) MQi−A

2 is
the standard deviation, (IV) MQi−A

3 is the skewness and (V) MQi−A
4 is the kurtosis. The higher moments,

such as the skewness measure the bias, or asymmetry of the distribution of data, while the kurtosis measures

1 It is remarked that if the function : is allowed to be greater than unity, one can consider the resulting convex combination (o4spring)
as a “mutation”. Mutation was not used in the present work.



1216 T.I. Zohdi / International Journal of Non-Linear Mechanics 38 (2003) 1205–1219

the degree of peakedness of the distribution of data around the average. The skewness is zero for symmetric
data. A general criterion for ensemble convergence essentially suggests itself, namely, one should successively
test samples with di4erent random realizations until the relative di4erence between ensemble averages of the
moments stabilize (r = 1; 2; 3; : : :).

|MQKi −AK
r −MQK+1i −AK+1

r |6TOL |MQK+1i −AK+1
r |; (25)

where QKi are the particles that have been computed from all tests up to and including test K and where AK

is the corresponding average.

7. Numerical experiments

We considered control volumes, each containing 100 initially non-intersecting particles. A population of 20
genetic strings was selected per generation. The top six parents were retained after each generational “mating
sequence”. The top six o4spring were produced, and allowed to proceed, along with the top six parents, to
the next generation. Therefore, eight old “bad” genetic strings were eliminated and eight new genetic strings
were infused after each generation. For each starting state, 200 time steps were taken over the corresponding
characteristic time scale (T ) to insure adequate numerical accuracy. 2 The following impact parameters were
chosen: a0 =0:01, af =1 and �=0:000001. The initial position vectors were given random values, within each
control volume of −L6 rix; riy; riz6L. We considered starting-state vectors, constrained within prespeci*ed
search ranges, consisting of the relative velocity vector distribution vrel = v0relri, where 06 ri6 1, for each
(i) particle, the diameter of the particles, which is scaled as follows, s= d=(V=N )1=3, where s−6 s6 s+, the
density of the particles �−6 �6 �+, the base hardness of the particles H−

0 6H06H+0 , the heat capacity
of the particles C−6C6C+, the base coe/cient of friction of the particles �−0 6 �06 �+0 , the activation
energy U−6U6U+ and the chemical reaction coe/cient '−6 '6 '+. The objective was to double the
average particulate size at steady state (t = T ) of the top six genetic strings

. =
1
6

6∑
k=1

∣∣∣∣12
bfk
b0k

− 1
∣∣∣∣ ; (26)

where bfk is the *nal average radius of the particles for string k, i.e. the *rst moment of the particulate popu-
lation distribution, at steady state, and b0k is average radius at the starting state. The tolerance for convergence
of the *rst moment of the distribution of radii (the average) was set to 0.00001,

|(bfk)J+1 − (bfk)J |6TOL|(bfk)J+1|; (27)

where bfk =
∑J

i=1 b
f i
k =J and where J is the number of samples. The ranges of search for the state vector were

0:1 m=s6 v0xrel6 30 m=s;

0:46 s6 0:8;

103 kg=m36 �6 104 kg=m3;

10 MPa6H06 200 MPa;

10 J=Kg-(K◦)6C6 1:5× 103 J=Kg-(K◦);

2 The results were insensitive to re*nement of discretization.
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Fig. 4. Cost of best starting-state vectors and average of the top six after 22 generations.
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Fig. 5. For the best starting-state vector, the distribution of the normalized radii, de*ned as the *nal radii divided by the initial radius,
for 89 control volumes (the number needed for statistical moment convergence, TOL = 10−5), each with 100 particles. The simulation
was driven to steady state (T = the characteristic time scales).

10−26 �06 0:5;

273:13 K◦6 �06 373:13 K◦;

10 kJ=mol6U6 103 kJ=mol;

0 J=m26 '6 107 J=m2; (28)

where v0yrel = v0zrel = 0, i.e. a velocity *eld with only a non-zero mean x velocity component. Twenty-two
generations were needed to meet an average tolerance of .6 0:0005 for the top six genetic strings. A total
of 314 genetic strings were tested. An average of 125 samples were needed per genetic string for a total of
39,286 samples tested (see Figs. 4 and 5, Table 1).
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Table 1
Best starting-state vectors after 22 generations

Rank v0xrel (m=s) s � (kg=m3) H0 (MPa) C (J=Kg-K◦) �0 �0 (K◦) U (kJ=mol) ' (J=m2) .

1 4.326 0.633 6141.898 67.188 1279.542 0.307 330.652 707.351 5,940,883.989 0.00013602
2 4.746 0.638 5579.604 60.730 1170.780 0.283 353.865 598.416 2,347,406.359 0.00036241
3 4.434 0.637 5921.768 62.759 1310.642 0.292 349.057 578.921 3,157,762.434 0.00036671
4 3.412 0.621 6436.049 76.611 1339.450 0.308 327.914 573.144 3,864,868.553 0.00039773
5 3.074 0.626 5292.318 60.678 1114.462 0.311 335.793 751.632 6,910,186.063 0.00050522
6 4.257 0.632 6124.641 62.269 1265.586 0.308 335.316 709.750 6,790,030.553 0.00070812

In the previous example, the objective function centered on obtaining an average accretion size in the
"ow. Clearly, higher moments of the particle distributions can also be targeted. In this regard, convenient
dimensionless higher-order moment measures of the particulate distribution can be represented through

mQi−Ar =
MQi−A

r(√
MQi−A
2

)r ; (29)

where (I) mQi−A1 = 0, (II) mQi−A2 = 1, (III) mQi−A3 = 0 for symmetric data (IV) mQi−A4 = 3 for a “normal”
Gaussian distribution (V) mQi−A4 ¿ 3 for more peaked than Gaussian distribution (Leptokurtic) and (VI)
mQi−A4 ¡ 3 for "atter than Gaussian distribution (Platykurtic). The fourth normalized moment is particularly
useful to characterize the “peakedness” of the distribution. Such “higher moment” inverse problems studies
are currently under investigation by the author.
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