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The compaction of cohesive hyperelastic polymeric granules is investigated. Finite
strain concentration functions are developed for material models of compressible
Mooney–Rivlin type, which allow one to analytically estimate, in fact rigorously
bound, the progressive reduction of the volume fraction of the porous gap between
the granules as a function of increasing applied loading.
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1. Introduction

Within the last decade, materials formed by compacted polymeric granules, such as
Neopolen©R P, a polypropylene foam, have become of increasing interest to industry
due to their relatively easy formability and light weight. Such materials serve as pack-
aging fillers, containers, shock absorbers and so forth (Tatzel 1996; Domas 1997). The
usual process to manufacture such materials is to pack the polymeric granules into a
container and then to compact them together (figure 1). A primary manufacturing
interest is the estimation of the rate of densification, i.e. the reduction of the gap
within the granular aggregate during compaction. The surfaces of individual granules
are highly cohesive, therefore, if they meet under compression, they will immediately
adhere. When full or nearly full densification is achieved, the material is then heated
to the thermal-softening-threshold temperature in order to ‘thermo-form’ the final
product. Clearly, before the thermo-forming process is initiated, it is desirable to
attain full densification. The main objective of the present work is to estimate when
this will occur as a function of the externally applied loading. We remark that, while
there is considerable activity in the research of poro-plastic compaction of metallic
powders (see Anand & Gu 2000; Gu et al . 2001; Akisanya et al . 1997; Fleck 1995;
Brown & Abou-Chedid 1994), there is surprisingly little analysis of hyperelastic com-
paction at finite strains. Generally speaking, the compaction of metallic powders is
closely related to the pioneering analysis of Gurson (1977), addressing void growth
and coalescence at finite elasto-plastic strains. For the latest in the development of
this widely used model we refer the reader to Pardoen & Hutchinson (2000).

Presently, the first phase in thermo-forming of hyperelastic granules, i.e. cold com-
paction to full densification, is investigated. The outline of the presentation is as
follows. In § 2, material models of compressible Mooney–Rivlin type are introduced,
and they are used to describe the responses of the individual granules. In § 3, a
finite strain concentration function is derived, and it is used to develop a strict lower
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Figure 1. The compaction of cohesive granular pellets.

bound on the porous gap volume fraction in terms of the applied macroscopic loading.
Finally, in § 4, examples illustrating the behaviour of the model are given.

2. A classical hyperelastic material model

A widely used class of mathematical representations for the constitutive response
for hyperelastic polymeric materials under consideration are compressible Mooney–
Rivlin stored energy functions of the form

W = K1(̄IC − 3) + K2(IIC − 3)︸ ︷︷ ︸
def= W̄

+ 1
2κ(

√
IIIC − 1)2︸ ︷︷ ︸
def= U

. (2.1)

Here K1 + K2 = 1
2µ, so that, in the infinitesimal deformation case, the response

collapses to that of a linear isotropic Hookean solid and where C
def= F T · F is the

right Cauchy–Green strain tensor, where F = ∇Xx is the deformation gradient, u =
x − X is the displacement, X are referential coordinates, x are current coordinates,

S = 2
∂W

∂C
= JF −1 · σ · F −T

is the second Piola–Kirchhoff stress, σ is the Cauchy stress and where J is the
Jacobian of F , J = det F . In this material model, the first and second invariants of
C, IC and IIC have been scaled by the square root of the third invariant, i.e.

ĪC = ICIII−1/3
C = ICJ−2/3 and IIC = IICIII−2/3

C = IICJ−4/3,

to ensure that they contribute nothing to the compressible part of the response. This
is motivated by defining an incompressible deformation gradient,

F̄
def= J−1/3F = III−1/6

C F

and
C̄

def= F̄ T · F̄ = J−2/3C = III−1/3
C C,

which leads to J̄ = 1. In other words, the corresponding scaled third invariant is
always unity. The Cauchy stress can be split in the following manner, σ = σ′ + p1,

Proc. R. Soc. Lond. A (2003)

 on January 7, 2011rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Compaction of cohesive granules 1397

where p
def= 1

3 trσ, and thus

S = JF −1 · (σ′ + p1) · F −T = JF −1 · σ′ · F −T︸ ︷︷ ︸
def= S′

+JpC−1. (2.2)

We also have, by definition,

S = 2
∂W

∂C
= 2

∂W̄

∂C
+ 2

∂U

∂C
= 2

∂W̄

∂C
+ 2

∂U

∂J

∂J

∂C
= 2

∂W̄

∂C︸ ︷︷ ︸
S′

+
∂U

∂J
JC−1. (2.3)

Since

σ′ =
1
J

F ·
(

2
∂W̄

∂C

)
· F T,

equation (2.3) implies

p =
∂U

∂J
= κ(J − 1). (2.4)

3. Granular material densification

In order to perform a mesoscale analysis of the granular material, we represent the
granules’ elastic moduli, which are assumed to be isotropic, by the bulk and shear
moduli, κ2 and µ2. The porous ‘material’ (gap) is denoted by κ1 and µ1, and is
initially modelled as a soft (scaled) material, κ1 = δκ2 and µ1 = δµ2, where δ � 1.
Further remarks on this representation are made later in the analysis. Due to the
assumption that the granular material becomes perfectly bonded upon contact, we
can represent the solid phase as a continuous skeleton which surrounds the porous
gap. In classical infinitesimal deformation analyses, macroscopic responses of mate-
rials that are heterogeneous on the mesoscale are described using a relation between
averages,

〈σ〉Ωo = E
∗
o : 〈ε〉Ωo , where 〈·〉Ω

def=
1

|Ωo|

∫
Ω

· dΩo,

and σ and ε are the stress and infinitesimal strain tensor fields within a representative
volume element (RVE) of (referential) volume |Ωo|. If the effective property (E∗

o) is
assumed isotropic, then one may write

〈σ〉Ωo = 3κ∗
o

1
3(tr〈ε〉Ωo)1 + 2µ∗

o〈ε′〉Ωo ,

where ε′ def= ε − 1
3(tr ε)1. We emphasize that quantities such as κ∗

o and µ∗
o are not

material properties, but are relations between averages, or more appropriately appar-
ent properties (Huet 1990), which depend upon the averaging volume domain. For
finite deformations, the effective property depends upon whether the averaging vol-
ume is taken to be the referential (undeformed) volume or the deformed configuration
volume.

(a) A referential strain concentration function

For the case of finite deformations, defining the referential porous space volume
fraction by

v1o
def=

|Ω1o|
|Ωo|

= 1 − v2o = 1 − |Ω2o|
|Ωo|

,
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we have by averaging over the referential configuration

〈p〉Ωo = v1o〈p〉Ω1o + v2o〈p〉Ω2o

= v1oκ1〈J − 1〉Ω1o + v2oκ2〈J − 1〉Ω2o

= κ1(〈J − 1〉Ωo − v2o〈J − 1〉Ω2o) + v2oκ2〈J − 1〉Ω2o

= (κ1 + v2o(κ2 − κ1) Co)︸ ︷︷ ︸
κ∗
o

〈J − 1〉Ωo , (3.1)

where (
1

v2o

κ∗
o − κ1

κ2 − κ1

)
︸ ︷︷ ︸

def= Co

〈J − 1〉Ωo = 〈J − 1〉Ω2o . (3.2)

Co is a referential finite strain concentration function. Once either Co or κ∗
o is known,

the other can be determined.

Remark 3.1. It almost goes without saying that, since 〈p〉Ωo = κ∗
o〈J −1〉Ωo must

hold at infinitesimal and finite strains and since J = det F = det(1 + ∇Xu) ≈
1+tr∇Xu+O(∇Xu) = 1+tr ε+ · · · , at infinitesimal strains 〈p〉Ωo = κ∗

o〈tr ε〉Ωo . In
other words, the effective bulk modulus in the reference configuration is the effective
bulk modulus in the infinitesimal strain case, which, by definition, is posed over the
undeformed reference configuration.

(b) A strict densification lower bound

If a material sample, which is heterogeneous on the mesoscale, has the following
prescribed loading on its referential surface, u|∂Ωo = L · X, then

〈∇Xu〉Ωo =
1

|Ωo|

(∫
Ω1o

∇Xu dΩ1o +
∫

Ω2o

∇Xu dΩ2o

)

=
1

|Ωo|

(∫
∂Ω1o

u ⊗ N dA1o +
∫

∂Ω2o

u ⊗ N dA2o

)

= L +
1

|Ωo|

∫
∂Ω1o∩∂Ω2o

[[u]] ⊗ N dA1o2, (3.3)

where (u ⊗ N
def= uiNj) is a tensor product of the vector u and vector N . [[u]]

describes the displacement jumps in the interfaces between Ω1o and Ω2o. Since the
material is fissure free, 〈∇Xu〉Ωo = L, thus 〈F 〉Ωo = 1 + L. For the Jacobian, we
have

〈J〉Ωo =
1

|Ωo|

∫
Ωo

J dΩo =
|Ω|
|Ωo|

. (3.4)

Under the special loading data u|∂Ωo = L · X, this result collapses to

〈J〉Ωo = det(1 + L). (3.5)

The primary quantity of interest is the volume fraction of solid material, v2, in the
deformed configuration

v2
def=

|Ω2|
|Ω| =

〈J〉Ω2o |Ω2o|
〈J〉Ωo |Ωo|

=
〈J〉Ω2o

〈J〉Ωo

v2o. (3.6)
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Explicitly, we have, by using the relationship in (3.2),

v2 =
Co〈J〉Ωo − Co + 1

〈J〉Ωo

v2o =
(

Co +
1 − Co

〈J〉Ωo

)
v2o =

(
Co +

1 − Co

det(1 + L)

)
v2o. (3.7)

As indicated earlier, once either Co or κ∗
o is known, the other can be determined.

The approach taken is to use classical bounds on κ∗
o to generate bounds on Co, which

in turn can be used to bound the volume fraction of the solid material (v2) in the
deformed configuration. Specifically, we employ the Hashin & Shtrikman (1962, 1963)
bounds for the effective bulk modulus in the reference configuration

κ∗−
o

def= κ1 + v2o

(
1

κ2 − κ1
+

3(1 − v2o)
3κ1 + 4µ1

)−1

� κ∗
o

� κ2 + (1 − v2o)
(

1
κ1 − κ2

+
3v2o

3κ2 + 4µ2

)−1
def= κ∗+

o , (3.8)

where κ2 � κ1 and µ2 � µ1. Such bounds are the tightest possible on isotropic
effective responses, with isotropic two-phase mesostructures, where only the volume
fractions and phase contrasts of the constituents are known. For combinations where
κ2 � κ1 and µ2 � µ1, and high volume fractions of the harder phase (v2), it is well
known that the Hashin–Shtrikman upper bound is quite accurate (Hashin 1983).
Essentially, a continuous hard skeleton of material encompassing a softer phase (fig-
ure 1), exactly the case considered in this work, is a stiff mesostructure that is
well characterized by the upper bound. Since κ∗+

o � κ∗
o, in compression we have

Co(κ∗+
o ) � Co(κ∗

o) and thus, from (3.7), v2(κ∗+
o ) � v2(κ∗

o). In other words, our esti-
mate of the volume fraction occupied by the solid in the deformed configuration,
i.e. the densification, is a strict lower bound,

v2(κ∗
o) �

(
Co(κ∗+

o ) +
1 − Co(κ∗+

o )
det(1 + L)

)
v2o = v2(κ∗+

o ). (3.9)

Therefore, if the lower bound predicts full densification, v2(κ∗+
o ) → 1, then the true

densification must tend to full densification, i.e. v2(κ∗
o) → 1. Also, it is important

to remark that from (3.9) one sees that the rate of densification increases rapidly as
the material becomes progressively more compressed.

Remark 3.2. Since κ∗−
o � κ∗

o, in compression we have Co(κ∗−
o ) � Co(κ∗

o) and thus,
from (3.7), v2(κ∗−

o ) � v2(κ∗
o), leading to an upper bound on the volume fraction

occupied by the solid in the deformed configuration:

v2(κ∗
o) �

(
Co(κ∗−

o ) +
1 − Co(κ∗−

o )
det(1 + L)

)
v2o = v2(κ∗−

o ). (3.10)

Consistent with the previous comments about the high accuracy of the lower densifi-
cation bound, this upper bound is typically quite coarse and is of little practical value
for the class of problems considered here.

4. An example

Consider displacement data of the form (t denotes time)

u|∂Ωo

def=


L11 × t 0 0

0 L22 × t 0
0 0 L33 × t





X1

X2
X3


 . (4.1)
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Figure 2. The lower bound on the volume fraction occupied by
the solid, v2(κ∗+

o ), for various µ2/κ2 ratios.

The displacement-controlled loading rate was L11 = L22 = L33 = −0.1, leading to
〈1−J〉Ωo = 1−(1+L11t)(1+L22t)(1+L33t) = 1−(1−0.1t)3. Here there are no rate
effects; time simply serves as a parameter to drive the simulations. The bulk modulus
of the granules was fixed at κ2 = 10 GPa and the shear modulus, µ2, was varied,
owing to the wide range of such values used in industrial applications. The starting
volume fraction value was v2(t = 0) = v2o = 0.4. Simulations were repeatedly rerun
with progressively smaller values of the porous space stiffness reduction factor (δ),
forcing δ → 0. Beyond a threshold of δ = 0.001 the results were insensitive, and thus
the simulations can be considered to be ‘convergent’ to simulations involving true
voids. As indicated by (3.9), the densification rate increases rapidly with increasing
load (figure 2). By increasing shear modulus, more pressure is required to compress
the material and densification is delayed. At full densification, we have |Ω1| = 0, and
thus

〈J〉Ωo =
|Ω|
|Ωo|

=
|Ω1| + |Ω2|

|Ωo|
=

|Ω2|
|Ωo|

. (4.2)

Since |Ωo| = |Ω1o| + |Ω2o| and 1 = v1o + v2o, we have |Ω1o| = (1 − v2o)|Ωo| and thus
an expression for the total volumetric deformation of the granular phase

|Ω2|
|Ω2o|

=
〈J〉Ωo |Ωo|

|Ωo| − |Ω1o|
=

〈J〉Ωo |Ωo|
v2o|Ωo|

=
〈J〉Ωo

v2o
. (4.3)

From figure 2, we observe that, for µ2/κ2 = 14/10, full densification occurs at approx-
imately 〈1 − J〉Ωo = 0.86, leading to |Ω2|/|Ω2o| = 0.35, while for µ2/κ2 = 4/10, full
densification occurs at 〈1 − J〉Ωo = 0.73, yielding |Ω2|/|Ω2o| = 0.675.

5. Concluding remarks

The primary result in this communication was a lower bound on the volume fraction
occupied by solid granules undergoing compaction, in the deformed configuration, as
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a function of the external applied loading. Central to the result was the development
of a finite-strain concentration function bound built upon the Hashin–Shtrikman
upper bound, whose high accuracy in representing effective responses for mesostruc-
tures formed by a continuous hard skeleton of material encompassing a softer phase,
exactly the case considered in this work, is well known. Once the effective bulk mod-
ulus was accurately described in the reference configuration, all subsequent results
followed from purely geometric arguments.

The author thanks Professor David Steigmann for his helpful comments during the preparation
of this article.
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