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Abstract. There exist numerous constitutive parameters in models used for the
prediction of high strain-rate responses of metallic materials in the finite-deformation
regime. Each of these parameters can possess various degrees of uncertainty, possibly
due to (a) error in experimental measurements (b) a lack of consistent production
methods or (c) the acquisition of data from different manufacturers. This commu-
nication investigates the overall system sensitivity that results, due to constitutive
parameter uncertainty, when employing the commonly used Johnson-Cook class of
high strain-rate ballistic models.

1 A class of high strain-rate ballistic models. In the ballistics literature,
high strain-rate inelastic deformation of metallic materials is often described by
constitutive equations of the form o = 7(d, €;, &€y, 6), where o is the Cauchy stress,

def %(Vz'& + (V;u)T) is the symmetric part of the velocity gradient (z being the
Eulerian coordinates), €, is the plastic “strain” and @ is the temperature. A relatively
common approach in describing high strain-rate processes is to employ the Jaumann
rate of the Cauchy stress, o - W.oto- W, where W & V0 — (V,0)T)
is the vorticity tensor. A typical accompanying constitutive assumption is o5 =
IE : d., where d. is defined by d. = d — €, — €5, where the plastic (€;) and thermal
(eg) “strains” should be interpreted as internal parameters, which are not intended
to have any kinematical meaning at finite strains. Their exact definition will be

given shortly. In this work, the elastic mechanical properties (IF) are assumed to
trd

be isotropic with bulk and shear moduliof xk and p, 1. e. IE: d = 3NT1 + 2ud’,
where trd = dj; and d' = d — %1. To complete the system of equations a yield
surface and a flow rule are needed. In the ballistics literature, there are several
models which attempt to describe the response of metals at high strain-rates, for
example the Johnson-Cook model (Johnson and Cook [3], Johnson and Holmquist
[4] and Johnson and Cook [5]), the Zerilli-Armstrong model (Zerilli and Armstrong
(11], [12], [13]), the Steinberg-Guinan model (Steinberg and Guinan [10]) and the
Follansbee-Kocks model (Follansbee and Kocks [2]). For reviews see Meyers [8],
Lesuer [6] and Lesuer et al. [7]. The most widely used model appears to be the
Johnson-Cook model and its variants, which accounts for three main phenomena:
(a) power-law work-hardening of the yield surface, oy x o, + A||€p||", where oy is
the yield stress, o, is the initial yield stress, n is the work-hardening exponent, A

is the hardening modulus and ||| def v/ 3€p : €, (b) logarithmic plastic strain-rate
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dependency of the yield surface, g, o In||€,|| and (c) thermal dependency of the

yield surface, oy o< 8* = def 99—3— where 8,, is the melting point and 6, is a reference

temperature. The Johnson-Cook model concatenates these three basic ingredients
to construct the following yield surface
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where 6* = 9‘;;_95:. Here a cut-off function has been added, where ® = 0 if (1 —
Tg:j|0*|”‘) < 0 and & = 1 otherwise. Therefore, if the material goes beyond melting,
the yield surface, represented by J, shrinks to zero. This yield relation must be
used in conjunction with a flow rule for plastic flow. A particularly convenient rule
is based on an over stress function of the form
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where |[|o']|] = o V30': o' and |||a’||| Vo':o!. When ||of|| >> J, there is

maximum plastic flow, [||&f|| %ef V€ : €, = 7. The Johnson-Cook model also
has a damage component {Johnson and Cook [5]), which is discussed later in the
presentation. We remark that other classes of models may have advantages in terms
of their insensitivity to constitutive parameter uncertainty. For a rigorous overview
of a wide range of models see Naghdi [9]. Investigation of several models is beyond
the scope of the present communication.

2 Heat generation. Interconversions of mechanical, thermal and chemical
energy in a system are governed by the first law of thermodynamics, where the
time rate of change of the total energy, K + Z, is equal to the work rate, P, in
addition to the net heat supplied, H# + @Q, i.e. %(IC +7I) =P+H+ Q Here
the kinetic energy of a subvolume of material contained in a body 2, denoted w,

is k& [, 5pt% - 0 dw, the rate of work or power of external (volumetric) forces
acting on w is given by p & f pb - tdw + fawa n - tda, the heat flow into
the volume through its control surface is Q def _ Jouq-nda=— [,V qduw, the
heat generated due to sources, such as chemical reactions, is H def J, pzdw and the
stored energy is 7 def J,, pwdw. Assuming that the mass in the system is constant,
one has [ pdw = [, pJdw, = [, podw,, which implies pJ = p, where J is the
Jacobian of the deformation gradient. Consequently, we have % Jo %pu cudw =
Jioo B (pJ%s - ) dwo = [, pts - i dw. We also have § [, pwdw = & [, pJwdw, =
Lo, adi(/’o)w dwo + [, p dw. By using the divergence theorem, we obtain [y, o -n-
ida = [ (V; -0) - wdw+ [, o: Vyudw. Combining the results, enforcing a balance
of momentum and arguing that the volume w is arbitrary, leads to the local form
pr — o :d+ V- q— pz =0. Neglecting conduction, chemical changes and latent



heat of melting, one has piy = o : d. Additionally, if the following approximation is
made, piy = o : (d — & — €g) + pHE, these last two relations imply

pHO = o : (& + &), (3)

where, following the ballistics literature, the thermal “strain-rate” is usually taken

to be of the form & def 461, where ~ is the coefficient of thermal expansion.

3 Coupled solution procedure. We now study the overall coupled system
behavior at a material point by controlling the displacement there viau =tx B X,
where t is the time, B is a displacement control parameter (a second-order tensor)
and where X are the referential coordinates of the material point. The relations
that have been introduced thus far result in a set of coupled nonlinear differential
equations. The system is solved by an explicit Euler time marching scheme with an
internal iterative staggering procedure to solve the coupled nonlinear system within
each time step (4¢). The algorithm is as follows, under displacement control, where
K is an iteration counter within a time step:
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REPEAT STEPS (K = K +1) UNTIL: |||lott®"% — ot+é4X-1||| < TOL|||0* 5% |||

UPDATE : o' =a't*¥ t=1+6t AND GOTO NEXT TIME STEP.

(4)
Convergence can be addressed by considering, in abstract terms, A(o) = F, where
o represents the solution at time ¢. It is convenient to perform an operator split
Alo) —F = G(o) — o + ¢ = 0. A straightforward iterative scheme is o¥ =
G(oX1) + ¢, where K = 1,2,3,... is the index of iteration. The convergence of
such a scheme is dependent on the behavior of G. Namely, a sufficient condition for
convergence is that G is a contraction mapping for all ¥, K = 1,2, 3... Accordingly,
we define the error as e = ¥ — 0. A necessary restriction for convergence is
iterative self consistency, i. e. the exact solution must be represented by the scheme
G(o) + ¢ = o. Enforcing this restriction, a sufficient condition for convergence is

L49



L50

the existence of a contraction mapping ||eX|| = ||o¥ — || = ||G(eX~1) — G(a)|| <
A|oK~1 — o||, where, if A < 1 for each iteration K, then e¥ — 0 for any arbitrary
starting value 0K=0 as K — oco. Since A « 4t, by time step reduction, one can
control the convergence rates. For general remarks on iterative schemes of this
type see Axelsson [1]. During the upcoming numerical simulations, the time steps
were refined to insure fixed-point type convergence within each time step, as well as
temporal discretization accuracy.

4 Numerical simulations. A common goal in ballistics research is to determine
the amount of energy “stripped off” of a projectile by a target or ballistic “shield”.
Accordingly, we tracked a work-like (per unit mass) integral,

T :d .
1 d¢f (—" +H9) dt, (5)
0 P
where T is the time needed to achieve complete damage. Following the Johnson-
Cook model, complete failure occurs when an accumulated damage parameter at-
tains unity, defined by

T -
0 €f

Ds—%vz—

where ¢ = (D1 +Dse” *T07M)(1+ Dy Ln!l2l)(1+ D56*®) and where & = 0if 6* < 0

and ® = 1 otherwise. The suggested parameters (Lesuer [6]) for Aluminum 2024-
T3 are (D4, D2, D3, Dy, Ds) = (0.112,0.123, —1.5,0.011,0). The variable B;; was
the deformation control variable, while all other total components of B were set to
zero. Bj; was set to 304 m/s (1000 ft/s) in order to be consistent with an incoming
projectile traveling at a (transverse) velocity of 304 m/s (Figure 1). There exist
quite a few material constants in the entire set of governing equations. Clearly, for
the reasons given in the abstract, the material parameters may possess some level
of uncertainty. We took variations of the form (mean values from Lesuer [6]):

05 00 =00 %80, <ot (&5 = 269 M Pa)
AT<A=A+5A< AT (A = 684 M Pa)

B <B=Bx4éB<Bt (B = 0.0083)
n"<n=mxdn<nt (m=0.73)
m-<m=mzdém<m?’ (m=17)

épo < épo = €po £ dépo < &, (€po =10%s71)

6, <6, =0, £4§0, <6} (8, =295 K) )
0 < O = O £ 66, < 61, (0m = TT5 K)

k" <k=%r2xds <t (R = 77.9 GPa)
p-<p=pxép<pt (B = 27.47 GPa)

n- <p=q7xd<qt (=108"")

YT <y=7+8y <At (F=10"°K")

Po < po=Pstbpo < pf (Po = 2770 kg/m®)
H <H=H+§H<H' (H = 875 Nm/Kkg)
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We made the conservative assumption that the variations are mutually uncorrelated.

In order to attach some quantitative value to the effects of the material uncertainty,
we defined the excursion in IT as I . A total of 1000 samples were compu-
tationally tested (Figure 1). The overall excursion in II was approximately 46.7%
for a + 5 % range of variation (a 10 % spread) in the material data.

r (Projectile)

WORK (GPa/(Kg/M))

u(x)=controlled

0 100 200 300 400 500 600 700 800 900 1000
SAMPLE NUMBER

Figure 1: LEFT: A controlled deformation of a material point. RIGHT: The variation in II
for 1000 samples, for a = 5 % range of variation in the material data for Aluminum 2024-T3.

5 Concluding remarks. The excursions for all of the material parameters,
when individually perturbed in a range of £ 5 %, holding all other parameters
fixed at their mean values, are given in Table 1. Only two material parameters led
to amplified overall variation (> 10%) in response to the induced 10 % material
uncertainty: the bulk and shear moduli of the material. As one would expect, the
overall system is sensitive (13.7 %) to the shear modulus (u), since it dictates the
deviatoric stress which controls the evolution of plastic strain. However, from the
computational simulations, it has been identified that the overall system is most
sensitive to the bulk modulus (k). When it alone was allowed to vary in a range
of +£5 %, the corresponding overall excursion was 22.6 %. This sensitivity can be
explained by realizing that the temperature strongly controls the response of the
material when using the Johnson-Cook yield surface model. Therefore, we should
expect that the bulk modulus (k) plays a central role in the overall sensitivity due
to the type of functional dependency of the production of heat on yo : 1 in

o:é
pH vo:1 ®

Therefore, the bulk modulus strongly affects the heat production (é), which in turn
controls material thermal “softening” of the Johnson-Cook yield surface, which in
turn controls the plastic strain-rate €, via the overstress evolution law (Equation 2).



L52

Acknowledgment: The author expresses gratitude for support from FAA grant

01-C-AW-UCB-001.

0o A n B m €po n Po H o, O ¥ K I

0.00 | 0.00 { 0.00 | 0.00 | 0.00 | 2.56 | 6.47 | 2.64 | 2.63 | 0.00 | 0.00 | 2.64 | 22.63 | 13.68

Table 1: Values of 100 x Emﬁﬁmﬂ for individual variations in the range of +5%.
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