
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING

Int. J. Numer. Meth. Engng. 43, 493–506 (1998)

A DESCRIPTION OF MACROSCOPIC DAMAGE THROUGH
MICROSTRUCTURAL RELAXATION

T. ZOHDI, M. FEUCHT, D. GROSS AND P. WRIGGERS ∗

Institut f�ur Mechanik IV, Technische Universit�at Darmstadt, Hochschulstrasse1, D-64289 Darmstadt, Germany

ABSTRACT

In this paper a 
exible model for the description of damage in heterogeneous structural materials is presented.
The approach involves solving the equations of equilibrium, with unilateral constraints on the maximum at-
tainable values of selected internal variables. Due to the unilateral constraints, the problem is non-linear.
Accordingly, a simple iterative algorithm is developed to solve this problem by (1) computing the internal
�elds with the initial undamaged microstructure and (2) reducing the material sti�ness at locations where the
constraints are violated. This process is repeated until a solution, with a corresponding microstructure, that
satis�es the equations of equilibrium and the constraints, is found. The corresponding microstructure is the
�nal ‘damaged’ material. As an application, the method is used in an incremental fashion to generate re-
sponse curves describing the progressive macroscopic damage for a sample of commonly used �bre-reinforced
Aluminum=Boron composite. The results are compared to laboratory experiments published by Kyono et al.1

and computational results using standard numerical methods, published by Brockenbrough et al.2 ? 1998
John Wiley & Sons, Ltd.
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1. INTRODUCTION

As a solid heterogeneous body is subjected to increasing loads, microfailures occur. These may be
in the form of microcracks, interface separation, void nucleation, dislocation pile ups, etc. As the
loading progresses, these local failures increase in size and number and eventually merge to produce
observed macroscopic failure or damage. Alone, the de�nition of mechanical damage presents a
di�cult problem. In this paper we shall avoid this delicate issue by refering to damage as simply
a local reduction in material sti�ness. Investigation of such phenomena is quite di�cult, since
knowledge of the microfailure criteria is incomplete and analytical results are usually restricted to
academic simpli�cations. There are a variety of viewpoints to the general subject of damage: (1)
atomistic (see reviews by Krajcinovic3), (2) thermodynamic, which attempt to relate micro=macro
internal variables (see References 4 and 5) and (3) phemenological, which develop ‘hereditary’
laws, or history-type variables (see References 6–8). Rather than make an attempt to list the
variety of approaches in the literature, we refer the reader to the exhaustive general survey found
in Krajcinovic.3 Obviously, the above approaches do not allow direct identi�cation of the true
damage in the material. In a sense, all the approaches are phemenological at one scale or the
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494 T. ZOHDI ET AL.

other. Quantities such as dislocation density, void nucleation rate, etc., are extraordinarily di�cult
to measure, and virtually impossible to use in practical computations.
With this in mind, we present an approach, which is also phemenologically based, that accounts

for damage in a material via unilateral constraints on the internal variables. If the constraints
are violated, the material is forced to lose sti�ness via a local reduction in the elasticity tensors
eigenvalues. Therefore, the true damage is hidden in a local re-regularization of the material via a
reduction of the material sti�ness. By casting the damage process in this fashion it becomes easy
to isolate a speci�c type of damage via a judicious choice of the constraints. However, since it is
impossible to know a priori where, and if, the constraints are violated throughout the body, the
problem is non-linear. Accordingly, a simple iterative algorithm is developed to solve this problem
by (1) computing the internal �elds with the initial undamaged microstructure and (2) reducing
the material sti�ness at locations where the constraints are violated. This process is repeated until
the equations of equilibrium and the constraints are satis�ed. For a given load, the microstructure
at the end of the process is the ‘damaged’ microstructure.
The objective of this paper is to present the basic model, a general algorithm to solve it, and

to provide some examples of where it is of possible bene�t. A particularly important application,
illustrated later, is the description of macroscopic damage in composite materials. The outline of the
paper is as follows. In Section 2 the governing equations for the model are laid down. In Section 3
a general algorithm is presented. In Section 4 the �nite element method, which plays a supporting
role in examples, is discussed. Special attention is paid to issues of numerical accuracy and mesh
dependency. In Section 5 the overall algorithm, in conjunction with the �nite element method, is
used to simulate the macroscopic damaged response of a widely used Aluminum–Boron composite
combination. The results are compared to laboratory experiments published by Kyono et al.1

and computational results using standard numerical methods published by Brockenbrough et al.2

Finally, in Section 6 a summary is given.

2. GOVERNING EQUATIONS

We consider a structure composed of initially linearly elastic material which occupies an open
bounded domain in 
∈R3. Its boundary is denoted @
. The body is in static equilibrium under
the action of body forces, f(x), and surface tractions, f(x). The boundary @
 consists of a por-
tion �u on which the displacements, d(x), are prescribed, and a part �t on which tractions, t(x),
are prescribed. In this paper only in�nitesmal strains are considered. From this point onward we
drop the heavy (x) notation, where it is clear that all quantities are a function of position unless
explicitly otherwise stated.

2.1. Undamaged formulation

We denote u0 as the ‘undamaged’ solution which is the solution of the following classical linear
elastostatics problem:

−∇ · (E0 : ∇u0)= f ; ∀x∈


u0= d; ∀x∈�u

n · (E0 : ∇u0)= t; ∀x∈�t

(1)
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A DESCRIPTION OF MACROSCOPIC DAMAGE 495

Here E0 is the fourth-order (undamaged) elasticity tensor with the usual symmetries and positive-
de�nite character. E0 can be anisotropic with components that are functions of spatial position in
the body.

2.2. Introduction of damage

The damaged solution, uD, is characterized by the following

−∇ ·D(uD) = f ; ∀x∈


uD = d; ∀x∈�u

n ·D(uD) = t; ∀x∈�t

(2)

D(uD) is spatially variable and non-linear, i.e. dependent on the solution, its gradient and possibly
higher gradients in a non-linear fashion. There are obviously an in�nite number of possible choices
for the form of D(uD). In this paper we select D(uD) to be of a certain form (multiplicative
decomposition, with constraints):

D(uD) def= (A(uD) : E0) : ∇uD

0¡A(uD)¡I if M(uD)=K at x

0¡A(uD)= I if M(uD)¡K at x

(3)

Here M(uD) serves as a functional which is used to measure selected internal �elds of our choosing,
for example the stress, strain, strain energy density, deviatoric energy, etc., and K serves as a
constraint. The purpose of the tensorial damage variable A(uD) is to suppress selected internal
variables, such as the stress �eld, below a critical level for a given external loading. The inequality
I¿A(uD) means that the eigenvalues of I − A(uD) are positive at a point.
One can interpret A(uD) as inducing a relaxation, or ‘energy release’ of the microstructure with

progressive damage. It can, in general, be a scalar, vector or tensor function. The true micro-
damage mechanisms could be any of a variety, depending on the type of material under analysis.
For example damage mechanisms, such as microcracking, microvoid nucleation, dislocation growth
or debonding, etc. could generate the sti�ness reduction. Therefore, a judicious choice of M(uD)
is necessary and should depend on the type of failure modes expected. Some obvious examples
are M(uD)= b, M(uD)= b : U, etc. A more indepth discussion of the choice of the constraints will
be given later in the paper.

3. A GENERAL SOLUTION ALGORITHM

In order to solve the constrained problem, a straightforward, and simple, algorithm is developed.

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 43, 493–506 (1998)
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3.1. The algorithm

As we have mentioned earlier, the basic idea is to (1) load the body with the initial linear
elastic microstructure (2) compute a corresponding trial solution by solving the equations of equi-
librium, (3) compute M(utrial) at all point x in the body and (4) reduce the material sti�ness where
M(utrial)¿K. The process is then repeated until the microstructure ‘stabilizes’. The procedure of
reducing the material sti�ness at a point involves reducing the eigenvalues of the undamaged elas-
ticity tensor E0 by an amount proportional to the constraint violation at the point. For purposes of
clarity only, we present an algorithm for scalar (isotropic) damage (M(utrial) and K are scalars).
We use the following notation:

�E0 means �× (�01; �02; �03; �04; �05; �06) (4)

where the �0i ’s are the eigenvalues of E
0.

The algorithm is

For each x; Etrial =E0

(♠)Compute: ∇ · (Etrial : ∇utrial) =−f

For each x⇒ Eupdate =
K

�(utrial)
Etrial

If Eupdate¿E0 at x⇒ Eupdate =E0 at x

If
‖max{�(utrial); K} − K‖L2(
)

‖K‖L2(
)
¿tol� ⇒ Etrial =Eupdate for each x⇒ go to ♠

If
‖max{�(utrial); K} − K‖L2(
)

‖K‖L2(
)
6tol� ⇒ stop

For each x : D=Etrial; uD = utrial (final ‘damaged’ microstructure)

(5)

We use the standard norm: ‖ · ‖2L2(
)
def=

∫

(·)2 dx. The motivation of such an algorithm is clear.

Ideally, after weakening the microstructure, if we were to reapply the same loading intensity to
the updated microstructure, there should be no values of the internal variable throughout the body
above the critical value. One can consider such a microstructure as macroscopically stable, since
it ceases to change in a global L2(
) norm.

3.2. Application to macroscopic “damaged” properties

A basic theme in the analysis of structural materials has been to determine a damage dependent
macroscopic response function, D∗, from a relation between volumetric averages, over a statistically
representative volume element (RVE), 〈b〉=D∗(〈U〉); 〈·〉 def= (1=|
|) ∫
 dx. Here b and U are the
computed microstress and microstrain �elds within the RVE domain, 
. For the RVE to be
statistically representative, it usually must contain a signi�cant amount of microstructure. This

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 43, 493–506 (1998)



A DESCRIPTION OF MACROSCOPIC DAMAGE 497

Figure 1. (a) The model problem; (b) succesive reduction of the secant moduli

fact usually makes computational algorithms and damage laws associated with these problems
rather complex. An important application of the method introduced in this paper is to study
the macroscopic damaged behaviour of a sample of composite material. The obvious goal is to
determine the reduction of macroscopic sti�ness with increasing loads. In order to make a coherent
attempt to simulate the damaged response of a composite material we �rst brie
y review the linear
theory, which can be interpreted as a single incremental load step in the determination of D∗.

3.2.1. Background
To determine an e�ective macroscopic linear elasticity tensor, E∗, a relation between averages,

〈b〉=E∗ : 〈U〉, must be computed, where 〈·〉 def= (1=|
|) ∫
 dx, and where b and U are the stress
and strain tensor �elds within statistically representative volume element (RVE) with volume |
|.
Loosely speaking, an RVE is a theoretical structure that is small enough that it can be considered
as a material point with respect to the size of the domain under analysis, but large enough to
be a statistically representative sample of the microstructure (Figure 1). Here we assume that at
least one choice of the RVE is possible. For details see Reference 9. The fact that the RVE
must be statistically representative, makes computations, of even an undamaged material response,
extremely complex and costly. This occurs primarily because, when employing numerical methods,
such as the �nite element, the distance between discretization nodes must be far smaller than the
microstructural oscillations to obtain accurate simulations. This has made, until relatively recently,
direct numerical simulations involving the real microstructure of the material virtually impossible
for general macroscopic structures.
In general, E∗ is not a material property, i.e. it is a relation between averages. For the general

three dimensional anisotropic response, the usual procedure is to specify a set of six linearly inde-
pendent loadings on the RVE boundary, either of uniform strain or uniform stress type. Each load-
ing state provides explicit computation of six components of E∗. Explicitly, one speci�es 6 linearly
independent loadings (in the three-dimensional case) of the form, (1) u|@
 =S ·x or (2) t|@
 =T ·n
where S and T are symmetric second order strain and stress tensors, with constant components.

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 43, 493–506 (1998)
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Each independent loading state provides six equations, for a total of 36, which are used to
determine the relation between average stress and strain



〈�11〉
〈�22〉
〈�33〉
〈�12〉
〈�23〉
〈�13〉



=




E∗
1111 E∗

1122 E∗
1133 E∗

1112 E∗
1123 E∗

1113

E∗
2211 E∗

2222 E∗
2233 E∗

2212 E∗
2223 E∗

2213

E∗
3311 E∗

3322 E∗
3333 E∗

3312 E∗
3323 E∗

3313

E∗
1211 E∗

1222 E∗
1233 E∗

1212 E∗
1223 E∗

1213

E∗
2311 E∗

2322 E∗
2333 E∗

2312 E∗
2323 E∗

2313

E∗
1311 E∗

1322 E∗
1333 E∗

1312 E∗
1323 E∗

1313







〈�11〉
〈�22〉
〈�33〉
2〈�12〉
2〈�23〉
2〈�13〉




(6)

We note that E∗ is symmetric and has really only 21 independent constants in the general
anisotropic case. The usual choices for the six independent load cases are

S or T=


� 0 0
0 0 0
0 0 0


 ;


0 0 0
0 � 0
0 0 0


 ;


0 0 0
0 0 0
0 0 �


 ;


0 � 0
� 0 0
0 0 0


 ;


0 0 0
0 0 �
0 � 0


 ;


0 0 �
0 0 0
� 0 0


 ;
(7)

where � is a load parameter.

3.3. Incorporation into a macroscopic e�ective damage algorithm

To determine the progressive damaged response of a composite material sample, essentially the
algorithm in Box 5 is applied at each load increment. For example, for displacement controlled
tests we have

Step I: Partition loading: �� def= �
N

Step II: Apply load increment: u(L)|@
 def= L×�� · x; L=1; 2 : :N:

Step III: Use E(L−1) as the undamaged microstructure (L=1 initially)

Step IV: Apply damage algorithm for u(L)|@


Step V: Store stablized damaged microstructure ⇒ E(L) and solution u(D;L)

Step VI: Goto Step II and repeat for next load increment with L= L+ 1

Step VII: Post process E(L) L=1; 2; : : : ; N ⇒ 〈b(D;L)〉=E∗(L) : 〈U(D;L)〉:

(8)

The end result is a series of e�ective secant moduli, E∗(L); L=1; 2; : : : ; N , that can be thought of,
collectively, as representing the macroscopic damaged response D∗. The process is essentially the
same for traction controlled tests.
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4. NUMERICAL DISCRETIZATION

A central interest is to simulate damage in composite materials. The algorithm presented must be
used in conjunction with a numerical method, for example, the �nite element method. Accordingly,
for reliable numerical accuracy in the simulations, a primary computational concern is to determine
an adequate mesh density to capture the evolving damaged microstructure. There are essentially two
choices to mesh the microstructure with the �nite element method, an ‘Eulerian’ or a ‘Lagrangian’
approach. An Eulerian approach does not require the �nite element boundaries to align with
material boundaries when meshing the internal geometry. A Lagrangian approach would impose
that the element boundaries coincide with material interfaces and therefore the elements have no
material dicontinuities within them. For more details on meshing approaches see Zukas et al.10 for
a general discussion of the two approaches. In order to get a feeling for the relative behaviour of the
two approaches we compare Eulerian and Lagrangian meshing approaches, for the same number of
degrees of freedom, for a simple set of examples. We use bilinear shape functions. Since we use a
numerical method based on energy-based principles (�nite element method) to generate solutions,
it is natural to measure di�erences between the two meshing techniques via their strain energies.
Numerical tests were performed on a widely used Aluminum=Boron �bre-reinforced composite

combination. The material chosen is a 6061 Aluminum-o alloy reinforced with 46 per cent Boron
unidirectional �bres. The material data is taken from Kyono et al.1 and is shown in Table I. This
material is also used in larger experiments in the next section. We consider two-dimensional plane
strain conditions. The meshes are shown in Figure 3 and the numerical results in Table II. Higher
quadrature rules above the canonical usage are also employed within the �nite elements for the
Eulerian meshing case to more accurately capture any discontinuities within the �nite elements
(although never higher than 4× 4 Gauss rules). Uniaxial tension was applied.
Comparing the strain energies, these results, which were representative of others performed,

imply that above approximately 64–256 elements=�bre, in 2-D, we have relatively accurate results,

Figure 2. (a) The microstructure; (b) a blowup of a typical �nite element mesh used in the numerical calculations

Table I. Material data for the composite simulation

Material Vol. frac. (%) � (GPa) � (GPa)

FIBRE:Boron 46 230 172
MATRIX:6061 Aluminum 54 67·5 25·9

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 43, 493–506 (1998)
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Figure 3. One-quarter of the meshes used for a single �bre with: (a) Eulerian meshing; and (b) Lagrangian meshing

Table II. A comparison between Eulerian and Lagrangian meshing

full mesh 8× 8= 64 12× 12= 144 16× 16= 256 20× 20= 400
|U lag−U eul|

|U lag|
3·42 per cent 2·83 per cent 1·95 per cent 1·77 per cent

i.e. 1·77 per cent6 |U lag−U eul|
|U lag|

63·42 per cent, where

|U eul − U lag|
|U lag|

def=

∣∣∣∣
(∫



∇uheul : E : ∇uheul dx

)
−

(∫


∇uhlag : E : ∇uhlag dx

)∣∣∣∣∫


∇uhlag : E : ∇uhlag dx

: (9)

We note that the Lagrangian solution was stable using approximately 400 elements, and the corre-
sponding solution can be taken as essentially ‘exact’. For other loadings, such as shear loading, the
results are essentially identical. For simplicity, and to consider a somewhat complicated realistic
microstructure (for example, multiple interacting �bres), for the remainder of this paper we opt
for a Eulerian meshing approach.
To control the absolute error for the Eulerian approach, for multiple particles, the simplest, of

error estimation techniques, based on extrapolation, is used. The standard a priori error estimate
for the �nite element method is

‖u − uh‖E(
)6C(u; p)hmin(s−1;p)
def
=w; ‖u − uh‖2E(
) =

∫


∇(u − uh) : E : (u − uh) dx (10)

where p is the polynomial order of the �nite element method used, s is the regularity of the
exact solution, C is a constant dependent on the exact solution and the polynomial approximation,
but independent of h (the maximum element diameter). Typically, for the class of problems of
interest, the true solution is not smooth due to the initial material interfaces in the undamaged
material and the evolving damage fronts. In this case, the rate of convergence is essentially in the

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 43, 493–506 (1998)



A DESCRIPTION OF MACROSCOPIC DAMAGE 501

following range: 1¡s6 3
2 . Therefore, because of the low regularity of the true solution, we use

the h-version �nite element method (with bilinear shape functions) which is based on successive
mesh subdivision. We utilize the following relations to estimate the premultiplicative constant C:

‖u − uh1‖2E(
)6C2(u; p)h2w1

‖u − uh2‖2E(
)6C2(u; p)h2w2 ; h1¡h2

‖u − uh‖2E(
) = 2(J(uh)−J(u))

J(u) def=
1
2

∫


∇u : E : ∇u dx−

∫


f · u dx−

∫
�t
t · u ds:

Using these relations and assuming that J(uh2 )6J(uh1 ), which is a natural consequence of the
Principle of Minimum Potential Energy yields

C2 ≈ 2J(uh1 )− 2J(uh2 )
h2w1 − h2w2

(11)

We then specify etarget and solve for the required mesh size

etarget def=
‖u − uh tol‖E(
)
‖uh tol‖E(
) ≈ Chwtol

‖uh tol‖E(
) ⇒ htol ≈
(
etarget‖uh tol‖E(
)

C

)1=w
(12)

This was used as a guide in the following manner:

Step 1 : Compute C from two succesive mesh densities (4× 4 and 8× 8):

C ≈
√
2J(uh1 )− 2J(uh2 )

h1 − h2

Step 2 : Estimate the needed mesh density for a target error

htol ≈
(
etarget‖uh tol‖E(
)

C

)1=w

Step 3 : To check : Repeat the procedure with higher mesh density

(13)

Typically, for error under 2 per cent, a mesh density between 12× 12 and 16× 16, per particle,
was needed.

5. SIMULATION OF AN ALUMINUM=BORON COMPOSITE

Numerical tests, using the algorithm, were performed on a widely used Aluminum=Boron �ber-
reinforced composite combination. The material chosen is a 6061 Aluminum-o alloy reinforced with

? 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 43, 493–506 (1998)
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46 per cent Boron unidirectional �bers. The primary source for damage in the material is in the
ductile Aluminum matrix. Random placement of the �bre cross-sections are given in the transverse
plane. The e�ective moduli of such an arrangement is approximately transversely isotropic. We
considered a sequence of microstructures 1× 1, 2× 2, 4× 4, etc. �ber arrangements (randomly
positioned) until we measured no more change in 3 successive e�ective properties (under one-half
of one percent). For this speci�c microstructure this occurred starting with the sequence 8× 8,
12× 12, 16× 16. The tests in this experiment are ‘uniform’ boundary loading of the form:

u|@
 =S · x where S=



S11 S21 S31
S12 S22 S32
S13 S23 S33


 =



0 0 0

0 S22 0

0 0 0


 (14)

5.1. Choice of a constraint

The selection of K and M should be made to isolate the damage mechanism of interest in the
simulation. For this particular composite combination it is ductile failure in the matrix. Therefore
the constraint should be selected with this in mind. To show a relation of the formulation to
plasticity formulations K and M(uD) would be selected as follows:

K= �? + H�ineq ; M=
√

3
2 s : s (15)

where �? and H are �xed, denoting the one-dimensional initial yield stress and isotropic linear
hardening modulus, respectively. s is the deviatoric stress and �ineq is the local equivalent inelastic
strain for the material at point x. It is emphasized that, in contrast to conventional plasticity, �ineq
is not a history variable. It is calculated only with knowledge of the actual micro�eld quantities:

�ineq =
√

2
3e
in : ein ; �in = �− (E0)−1 : b (16)

where E0 denotes the initial undamaged material sti�ness and ein the inelastic deviatoric strain.
Obviously, this selection of K and M(uD) has a character close to conventional elastoplasticity.
We brie
y illustrate the similarities and the di�erences. The well-known von Mises 
ow function,
including linear isotropic work hardening reads as follows:

M(b)=
√
s : s −

√
2
3 (�

? + H�pleq) (17)

We use the associated 
ow rule for the plastic strain increment

��pl =�

@M
@s

(18)

and we de�ne the elastic trial state, which is obtained by ‘freezing’ the plastic 
ow. Then we
can solve for the unknown Lagrange multiplier �
 by enforcing ful�llment of the consistency
condition at the end of the actual load increment (see Reference 11 for details), obtaining

�
=

√
strial : strial − 2

3 (�
? + H�pleq)

2� + 2
3�

(19)

The stress is then computed

b= � tr �I + 2�(e− epl) (20)
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with �; � being bulk and shear modulus, and e the strain deviator, respectively. Now, we de�ne
the same stress state, but assuming that there is no plastic strain, therefore the elastic constants
must be altered to

b= �̂ tr �I + 2�̂(e) (21)

If we assume further that plasticity only a�ects the shear modulus (�= �̂), as it is usually done
in metal plasticity, then it follows

2�̂e=2�(e−�epl) (22)

Taking the inner product both sides with e and dividing by � yields

�̂
�
=
e · e− e ·�epl

e · e (23)

and after some algebra

�̂
�
=

H
3� + H

+
2�

2� + 2
3H

�? + H�pleq√
3
2 s
trial : strial

(24)

Therefore, selecting M=
√

3
2 s : s would force the formulation to coincide exactly, if we de�ne

A�= �̂, (A(uD) : E0 =D). Only in the case where the material is isotropic, the bulk modulus is
never altered, with no work hardening will the algorithm coincide with classical elastoplasticity,
otherwise they are di�erent.
If the material is isotropic then the eigenvalues are

Eig(E0)= {3�0; 2�0; 2�0; �0; �0; �0} (25)

and for the locations where there are violations:

�update =
K

�(uD)
�trial; �update =

K
�(uD)

�trial (26)

where the complete isotropic elasticity tensor is given by

E def=




� + 4
3� � − 2

3� � − 2
3� 0 0 0

� − 2
3� � + 4

3� � − 2
3� 0 0 0

� − 2
3� � − 2

3� � + 4
3� 0 0 0

0 0 0 � 0 0

0 0 0 0 � 0

0 0 0 0 0 �




(27)

We now compare laboratory experiments, numerical solutions produced by conventional elasto-
plasticity, and the solution produced by the algorithm presented in this paper.
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Figure 4. The evolution of E∗
y = e�ective Young’s modulus versus the load: (a) for di�erent (total) meshes and �xed load
increment; (b) for various load increments and �xed mesh

5.2. Results

We use the loading in relation (14). We compared our results with a (1) previous numerical
study of Brockenbrough, Suresh and Wienecke2 who used conventional elastoplasticity, and (2)
experimental results of Kyono et al.1 We assume that the Boron �bres remain linear elastic and
perfectly bonded to the 6061 Aluminum matrix (as in Reference 2). The assumption of perfect
bonding is known to be reasonable for this material (see Reference 12 for details). We use the
relations in equation (15) for the ductile Aluminum-o matrix with �?=22·5MPa and H =2·5GPa.
Clearly, all quantities, which are post-processed from the micro�eld are mesh dependent, how-

ever, they stabilize beyond a certain mesh threshhold. For this example, the threshhold was usually
between 144(12× 12) − 256(16× 16) elements per �bre for a total between 18 818–33 282 un-
knowns. The interpretation of the behaviour of E∗

y with increasing S22 (Figure 4(a)) is straightfor-
ward. The simulations were also repeated for increasing smaller load increments (0·002 → 0·0001
strain) as shown in Figure 4(b) with the highest mesh density. It is clear that as the material is
progressively damaged, it tends to a more homogeneous state. For this test the general trend is

0·3489S−0·7177
22 ≈ D∗

y (Damaged Young′s modulus) (28)

where the regression value of the curve �t is R2 = 0·99. We note that R2 = 1·00 is a perfect
curve �t. Figure 4 indicates after initial macroscopic ‘yielding’, the material stabilizes, and the
response is that of a much weaker material. Figures 5(a) and 5(b) illustrate the predicted relation
between macroscopic stress and strain, which is in close agreement with the experimental work
published by Kyono et al.1 Also the curves are in agreement with numerical results using the �nite
element method, published by Brockenbrough et al.2 who modelled the 6061 Aluminum-o matrix
as an isotropic hardening elasto-plastic solid, using conventional numerical methods. The results
in Brockenbrough et al.2 coincide at the experimental points. The curve asserts that after yielding
the macroscopic response is linear and only slightly sti�er than the 6061 Aluminum matrix alone.
Essentially, ‘plastic plugs’ envelope the Boron �bres after excessive yielding and, consequently,
their contribution to the sti�ness becomes negligible.
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Figure 5. The evolution of 〈�22〉 versus the load: (a) for di�erent meshes and �xed load increment; (b) for various load
increments and �xed mesh

6. SUMMARY

To an extent, this is still work in progress. However, there are some concluding observations at
this point in the research. Since the iterative algorithm used to solve the model’s governing equa-
tions involves solving a linear elasticity problem at each stage, it is amenable to standard error
estimators and domain decomposition techniques. This is an important point, since the numeri-
cal performance of many methods, which are successful on two-dimensional problems, degrade
rapidly when applied to three-dimensional problems due to increased memory and computational
requirements. As one example the method was applied to a Aluminum=Boron composite. The good
agreement of the numerical results with experiments indicates the potential of the approach. It is
important to emphasize that the method is independent of any numerical discretization technique.
We have used the �nite element method out of convenience.
A critical point to emphasize is that M(uD) and K have no a priori smoothness or continuity

requirements. Indeed they can be discontinuous, and, in fact, it is advantageous to design them to
be so. For example, a rather obvious choice illustrating this is interfacial debonding. In this case
the constraint should be selected to re
ect an interfacial debonding limit and K could be selected
as follows:

K=
{
�I if x∈ interface
∞ if x =∈ interface M(uD) def= b¡K ∀x∈
 (29)

where �I is the interface sti�ness of the material. In the general algorithm the internal variables
used in the local damage model have been purposely left arbitrary, making the method 
exible
enough to accomodate a variety of materials including di�erent microdamage mechanisms. This
could be an interesting issue in future investigations, involving microcracking in brittle solids. In
particular, this would involve the possible selection of M= J1-integral which is the energy release
rate (see References 13 or 14 or 15) criteria valid for brittle fracture.
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