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Abstract

In this work a model and solution strategy are developed to describe a class of coupled thermo-chemo-mechanical

systems involving the solid-state diffusion of a dilute solute into a multiphase solid material, the subsequent reactions,

production of heat, changes in the stress fields, and the evolution of material degradation and inelastic strains in the

solid. The algorithm involves recursive staggering, whose convergence is dependent on the discretized time step size.

Because the multifield coupling can change, becoming stronger, weaker, or possibly oscillatory, it is extremely difficult

to ascertain a-priori the time step size needed to meet a prespecified tolerance on the staggering error, i.e. the incomplete

resolution of the interaction between the fields. The solution process involves time step size adaptivity to control the

contraction mapping constant of the multifield system operator in order to induce desired staggering rates of con-

vergence within each time step, and hence, the staggering error. Three-dimensional numerical experiments are per-

formed to illustrate the behavior of the model and the solution strategy.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In many applications, multifield models arise from a description of thermo-chemical reactions occurring

in deformable multiphase solids (Fig. 1). Relevant examples include certain problems of environmental

mechanics concerned with the detrimental chemical attack on solids by volatile gases or liquid solutes which

come in contact with structural surfaces and then diffuse into the subsurface. The subsequent reactions lead

to loss of structural integrity. In this work aspects of the modeling and numerical simulation of such

strongly coupled thermo-chemical processes in multiphase solids are discussed. A general multifield model

is developed which describes the diffusion of a dilute solute into a heterogeneous solid material, its sub-
sequent reactions, production of heat, changes in the stress fields and the evolution of material changes and

inelastic strains within the solid. The modeling and solution algorithms are general enough to be applicable
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Fig. 1. Diffusion of a small species into a heterogeneous medium.
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to a wide range of long-term thermo-chemo-mechanical phenomena associated with damage in materials

with heterogeneous microstructure. For experimental and theoretical overviews, we refer the reader to the
series of works by Huet and coworkers [17–24]. For general overviews in the area of heterogeneous

materials see Nemat-Nasser and Hori [41]. Although the emphasis will be on the simulation of long-term

multifield phenomena, the analysis in this work is also applicable to shorter time-scale problems involving

thermo-chemical processing such as self-propagating high-temperature synthesis (SHS), whereby chemical

reactions are initiated on the surface of a material to be processed. In the method, the substantial heat

evolved by surface chemical reactions sustain and propagate thermo-chemical processes. This approach is a

relatively new economical way of manufacturing advanced materials. For example by initiating a highly

exothermic surface thermal reaction between bonded titanium powder in a nitrogen gas atmosphere, an
initial amount of titanium-nitride, TiðsÞ þ 1=2N2ðgÞ ¼ TiNðsÞ, which a desirable product, is produced. This

process releases substantial heat, which produces a combustion front which propagates throughout the

solid. A wide variety of materials, ceramics, intermetallic compounds and composites can be produced by

SHS. For an introduction see the texts of Ashby and Jones [5] or Shackleford [52]. Generally speaking, such

processes are related to controlled combustion methods [50], whereby a chemical species acts as a catalyst

to promote reactions, for example in chemical separation and polymerization. A related processing method

is Shock Induced Chemical Reactions (SICR), whereby a shock wave is passed through chemical reacting

powders, which sinters them together. Some relevant work in the modeling and simulation of such pro-
cesses can be found in Thadhani [55], Nesterenko et al. [43], Vecchio and Meyers [56] and Meyers et al. [36].

For a review of such methods see Meyers [37] or Nesterenko [42].
2. A model problem involving multifield processes in multiphase solids

A structure which occupies an open bounded domain in X 2 R3, with boundary oX, is considered. The

boundary consists of (1) Cc and Cg, where the solute concentrations (c) and solute fluxes are respectively
specified, (2) Cu on which the displacements (u) are prescribed and a part Ct on which tractions are pre-

scribed, and (3) Ch on which the temperature (h) is prescribed, and a part Cq on which thermal fluxes are

prescribed. The primary (familiar) mechanical, thermal, and diffusive properties of the heterogeneous

material are characterized by a spatially varying elasticity tensor E 2 R32�32

, a spatially varying conduc-

tivity tensor K 2 R3�3, and a spatially varying diffusivity tensor D0 2 R3�3 (at a reference temperature), all
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of which are assumed to be symmetric bounded positive definite tensor-valued functions. Other material
properties will be introduced during the development of the overall model. For reasons of clarity, strong

forms are used to derive the governing equations, possibly assuming more regularity than warranted.

Afterwards, only the weak forms, which produce solutions which coincide with strong forms when the

solutions are smooth enough, are employed. The use of weak forms are important for this class of problems

due to the heterogeneous microstructure, which leads to particularly rough solution fields.
3. Constitutive assumptions

We consider the case of moderate finite deformations involving elastic and inelastic strains. Later in the

work, an updated Lagrangian staggering type scheme, formulated directly in the (deformed) current

configuration, will be developed, and thus Eulerian-based material laws are advantageous. A relatively

straightforward extension to classical isotropic infinitesimal deformation constitutive models is to employ

the Eulerian (or Almansi) strain tensor 1

r ¼ aE0 : ðe� bÞ; ð3:1Þ
where r is the Cauchy stress, where e ¼ 1

2
ðrxuþ ðrxuÞT � ðrxuÞT 	 rxuÞ, where b ¼ eh þ ek þ eu, where

eh¼def
c 	 ðh � h0Þ1, where ek represents deviatoric-like inelastic strains, for example plastic-like strains, where

eu represents dilatational-like inelastic strains, for example representing gas that occurs as a reaction

byproduct, and where eh represents thermal strains. Here, the current value of the elasticity tensor is

E ¼ aE0, where E0 represents the virgin isotropic undamaged material, where 06 a6 1 is the scalar

continuity (isotropic damage) parameter [31], where aðt ¼ 0Þ ¼ 1 indicates the initial undamaged state and

where a ! 0 indicates a completely damaged state. The introduced quantities are modeled as being gov-
erned by evolution over-stress functions of the form
_a¼ a1cþ a2

kr0k
kr0

critk
� 1

� �
þ a3

jtrrj
jtrrcritj

� 1

� �� �
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ga

a ð0 < a61Þ;

_k¼ a4

kS0k
kS0
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 ! !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gk

k) ek¼def
F 	

Z t

0

_khdt
� �

	FT h¼ def S0

kS0k

!
;

 

_u¼ ða5cÞ|ffl{zffl}
gu

u) eu¼
def

Z t

0

_u1dt; ð3:2Þ
where S is the second Piola–Kirchhoff stress, where the normalized concentration of the solute is c, given in

molecules per unit volume, where r0
crit ¼

def k1
r0

kr0k,
tr rcrit

3
¼def k2, k1 and k2 being material constants, r0 ¼ r � tr r

3
1,

S0 ¼ JF�1 	 r0 	 F�T, S0
crit ¼ JF�1 	 r0

crit 	 F�T, where F ¼ rXx is the deformation gradient, where J ¼ detF is

the Jacobian of the deformation, where the displacement is given by u ¼ x� X , where X are referential
1 Such a law is frame indifferent under rigid body rotations and translations for isotropic E.
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coordinates, where x are current coordinates and where a1 through a5 are spatially variable material

parameters governed by the following activation conditions:
If c < ccrit then a1 ¼ a5 ¼ 0;

If cP ccrit then a1 ¼ a�1; a5 ¼ a�5;

If kr0k ¼def ffiffiffiffiffiffiffiffiffiffiffiffi
r0 : r0

p
< jjr0

critjj then a2 ¼ a4 ¼ 0;

If kr0k ¼def ffiffiffiffiffiffiffiffiffiffiffiffi
r0 : r0

p
P jjr0

critjj then a2 ¼ a�2; a4 ¼ a�4;

If
trr

3





 



 < trrcrit

3





 



 then a3 ¼ 0;

If
trr

3





 



P trrcrit

3





 



 then a3 ¼ a�3;

ð3:3Þ
where ccrit is a spatially variable critical (threshold) concentration parameter. The parameters a�1 through

a�5 are given material parameters that are specified later in the analysis. For further details on these types

of phenomenological (damage) formulations, the interested reader is referred to the seminal work of

Kachanov [31]. Clearly, further evolution laws can be written for other material property changes, such as

K or D0, although only changes in E are considered during the simulations to follow.
3.1. An energy balance including growth

The interconversions of mechanical, thermal and chemical energy are governed by the first law of

thermodynamics, which states that the time rate of change of the total energy, KþI, is equal to the work

rate, P, and the net heat supplied, HþT, i.e.

d

dt
ðKþIÞ ¼ PþHþT: ð3:4Þ

Consider a subvolume of material contained within X, referred to as x, and

• the kinetic energy given by K¼def R
x

1
2
q _u 	 _udx,

• the stored energy is I¼def R
x qwdx,

• the rate of work or power of external volumetric (qb) and surface (r 	 n) forces acting on x is given by

P¼def R
x qb 	 _udx þ

R
ox r 	 n 	 _uda,

• the heat flow into the volume by conduction is T¼def �
R
ox q 	 nda ¼ �

R
x rx 	 qdx,

• the heat generated due to sources, such as chemical reactions, is H¼def R
x qzdx.

Combining the expressions leads to

d

dt

Z
x

q
1

2
_u 	 _u

�
þ w

�
dx ¼

Z
x

qb 	 _udx þ
Z
ox

r 	 n 	 _uda�
Z

x
rx 	 qdx þ

Z
x

qzdx: ð3:5Þ

Converting the first integral to a reference configuration leads to

d

dt

Z
x0

q
1

2
_u 	 _u

�
þ w

�
J dx0 ¼

Z
x0

d

dt
ðqJÞ 1

2
_u 	 _u

�
þ w

�
dx0 þ

Z
x0

ðqJÞð€u 	 _uþ _wÞdx0: ð3:6Þ
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The third integral in Eq. (3.5) can be converted via Gauss�s divergence theorem:Z
ox

r 	 n 	 _uda ¼
Z

x
rx 	 ðr 	 _uÞdx ¼

Z
x
ðrx 	 r 	 _uþ r : rx _uÞdx: ð3:7Þ

Thus, writing all relations in the current configuration, and since the subvolume x is arbitrary, yields the

following local form yields

1

J
d

dt
ðqJÞ 1

2
_u 	 _u

�
þ w

�
þ qð€u 	 _uþ _wÞ � ðrx 	 r 	 _uþ qb 	 _uþ r : rx _uÞ þ rx 	 q� qz ¼ 0: ð3:8Þ

Substituting a balance of linear momentum

rx 	 r þ qb ¼ q€u; ð3:9Þ
leads to 2

1

J
d

dt
ðqJÞ 1

2
_u 	 _u

�
þ w

�
þ q _w� r : rx _uþrx 	 q� qz ¼ 0: ð3:10Þ

The mass of the solid in the current configuration is given byZ
x

qdx ¼
Z

x0

qJ dx0 �
Z

x0

ðq0 þFðcÞÞdx0; ð3:11Þ

where FðcÞ represents the density changes due to uptake of c. Since the subvolume x0 is arbitrary, this

implies

qJ � q0 þFðcÞ ) d

dt
ðqJÞ ¼ _FðcÞ: ð3:12Þ

Finally, we have the following local form,

1

J
_FðcÞ 1

2
_u 	 _u

�
þ w

�
þ q _w� r : rx _uþr 	 q� qz ¼ 0: ð3:13Þ

We make the following non-hyperelastic, moderate-finite-strain, approximation for the stored energy

qw ¼ W � 1
2
ðe� bÞ : E : ðe� bÞ þ qCh; ð3:14Þ

where b are all of the eigenstrains, which implies, since _w ¼
_
W
q

� �
¼ _W

q � W
q2 _q,

q _w ¼ _W � W
_q
q
¼ 1

2
ðe� bÞ : _E : ðe� bÞ þ ð _e� _bÞ : E : ðe� bÞ þ qC _h þ q _Ch þ _qCh

� _q
q

1

2
ðe

�
� bÞ : E : ðe� bÞ þ qCh

�
; ð3:15Þ

and thus the first law becomes

rx 	 ðK 	 rxhÞ ¼
1

J
_FðcÞ 1

2
_u 	 _u

�
þ 1

2q
ðe� bÞ : E : ðe� bÞ þ Ch

�
þ ð _e� _bÞ : E : ðe� bÞ

þ 1

2
ðe� bÞ : _E : ðe� bÞ þ qð _Ch þ C _hÞ � qz�rx _u : E : ðe� bÞ

� 1

2

_q
q

 !
ðe� bÞ : E : ðe� bÞ; ð3:16Þ

where Fourier�s law, q ¼ �K 	 rxh, has been employed.
2 Normally, if the mass was conserved, then d
dt ðqJÞ ¼ 0.
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Remark. The chemical production of energy at a point is modeled as being related to the change in the rate

of damage, qz ¼ qfj _aj, where f is a spatially variable material parameter. The parameter f is negative for

exothermic reactions and positive for endothermic reactions.

3.2. Mass transfer and reaction–diffusion models

The mass balance for a small diffusing species consists of a storage term ( _c), a reaction term (_s), and an

inward normal flux term (�G 	 n). Since the domain is undergoing simultaneous finite deformations,
consider a control volume for the dilute mass (m) written in the current (deformed) configuration

dm
dt

¼ d

dt

Z
x
Mdx ¼

Z
x0

dðMJÞ
dt

dx0 ¼
Z

x0

ð _MJ þM _JÞdx0 ¼
Z

x

_M

 
þM

_J
J

!
dx ¼ �

Z
ox

G 	 nda:

ð3:17Þ

After using the divergence theorem and since the volume x is arbitrary, one has the local form

_MþM
_J
J
¼ �rx 	 G : ð3:18Þ

We decompose the total dilute mass into two parts, the concentration c and the products of reaction s,
M ¼ cþ s. It is a classical stoichiometrically inexact approximation to assume that the diffusing species

reacts (is created or destroyed) in a manner such that the production of the reactant (s) is directly pro-

portional to the concentration (c) of the diffusing species itself [7],

s ¼ sc: ð3:19Þ

Upon substitution of this relation into the conservation law for the diffusing species, one has a diffusion–

reaction model in strong form

_cð1 þ sÞ þ cð1 þ sÞ
_J
J
¼ rx 	 ðD0e�

U
Rh 	 rxcÞ: ð3:20Þ

When s > 0, the diffusing species is destroyed as it reacts, while s < 0 means that the diffusing species
is created as it reacts, i.e. an autocatalytic reaction occurs. In Eq. (3.20), the familiar Arrhenius

form D ¼ D0e�
U
Rh has been used, where D0 is the diffusivity tensor at a reference temperature and where U

is the activation energy per mole of diffusive species, R is the universal gas constant and h is the temper-

ature.

Remark 1. It is sometimes observed that, in regions of relatively high positive triaxial stress, the diffusion is

accelerated, while in regions of high negative triaxial stress, diffusion is decelerated. Diffusion models with

explicit pressure dependency will not be considered in the present work, however, we remark that a
particularly simple constitutive model to incorporate stress-dependency phenomena is given by a pseudo-

Fickian/Arrhenius law, G ¼ �D0e
�UðrÞ

Rh 	 rc, motivated by thermodynamical arguments found in the clas-

sical works of Flynn [10] or Crank [7]. 3
3 An additive split for stress dependency of the form UðrÞ ¼ U0 þ eU ðPÞ, where U0 is a stress-independent reference activation

energy and p ¼ � tr r
3

is the pressure, has been given in Zohdi [61,62] for certain applications.
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Remark 2. It is important to note that instabilities can be induced by diffusion, i.e. a coupled mechano-

chemical system can be stable when no diffusion is present and unstable in the presence of diffusion. An

indepth mathematical analysis of such effects has been conducted by Markenscoff [33–35].
4. Staggered multifield weak formulations

Staggering schemes are a natural choice for the solution of the multifield system developed thus far.
Generally, such approaches proceed, within a discretized time step, by solving each field equation indi-

vidually, allowing only the corresponding primary field variable to be active. This effectively decouples the

system of differential equations. After the solution of each field equation, the primary field variable is

updated, and the next field equation is solved in a similar manner, with only the corresponding primary

variable being active. Usually, after this process has been applied only once to all of the field equations, the

time step is incremented and the procedure is repeated. This non-recursive process can be highly sensitive to

the order in which the field variables are determined. For accurate numerical solutions, the approach re-

quires small time steps, primarily because the staggering error accumulates with each passing increment.
For details, see Park and Felippa [47], Zienkiewicz [58], Schrefler [51], Lewis et al. [40], Doltsinis [8,9],

Piperno [49], Lewis and Schrefler [39] and Le Tallec and Mouro [38]. In an attempt to improve such ap-

proaches, a recursive staggering strategy which allowed the adaptive control of time step sizes was devel-

oped in Zohdi [59] for a restricted class of coupled geometrically linear/materially nonlinear problems. In

that approach, in order to reduce the error within a time step, the staggering methodology was formulated

as a recursive fixed-point iteration, whereby the system was repeatedly re-solved until fixed-point type

convergence was achieved. A sufficient condition for the convergence of such a fixed-point scheme is that

the spectral radius of the coupled operator, which depends on the time step size, must be less than unity.
This observation was used to adaptively maximize the time step sizes, while simultaneously controlling the

coupled operator�s spectral radius, in order to deliver solutions below an error tolerance within a pre-

specified number of iterations. This recursive staggering error control allowed substantial reduction of

computational effort by the adaptive use of large time steps. Furthermore, the recursive process is insen-

sitive to the order in which the individual equations are solved, since it is self-correcting. In the next section,

the approach is extended to the wider class of more complicated problems presently considered. For the

sake of completeness the presentation is self-contained.

4.1. A recursive algorithm

Within a staggering scheme, we employ a relatively straightforward approach, which is amenable to time

step adaptivity is

€uLþ1 � _uLþ1 � _uL

Dt
¼

uLþ1 � uL

Dt
� _uL

Dt
¼ uLþ1 � uL

ðDtÞ2
� _uL

Dt
¼ uLþ1

ðDtÞ2
� uL

ðDtÞ2
� _uL

Dt
; ð4:1Þ

where the rate of change of thermal and concentration values are approximated with the same time step

size, i.e. _hLþ1 � hLþ1�hL

Dt and _cLþ1 � cLþ1�cL

Dt . During the staggering process, the geometric configuration of the
system is frozen during each iteration, and is updated only at the end of a system recursion. This is

essentially an ‘‘updated Lagrangian’’ formulation, where all variables are referred to the last calculated

configuration as opposed to a ‘‘total Lagrangian’’ formulation where all variables are referred to the initial

configuration. In this particular case, the last calculated configuration is the previously computed one

within the staggering scheme. Algorithmically, employing weak formulations, the staggering scheme is as

follows:



ðHÞ At a time stepðLÞ: Start an internal iterationI ¼ 0

ðHHÞ Update geometrical configuration: XLþ1;I ¼ XLþ1;I�1

Mass balance of diffusing species:

Find cLþ1;Iþ1 2 UcðXLþ1;IÞ; cLþ1;Iþ1jCc
¼ C; such that 8v 2 VcðXLþ1;IÞ; vjCc

¼ 0Z
XLþ1;I

rxv 	 DLþ1;I
0 e�

U
RhLþ1;I 	 rxcLþ1;Iþ1 dX

þ
Z

XLþ1;I
vð1 þ sÞcLþ1;Iþ1 1

Dt

 
þ

_JLþ1;I

J Lþ1;I

!
dX ¼

Z
XLþ1;I

v
ð1 þ sÞ

Dt
cLdX þ

Z
CG

vGLþ1 	 ndA:

Compute reactions: ðIntegrate evolution equationsÞ

_aLþ1;Iþ1 ¼ g
Lþ1;Iþ1

3
a aLþ1;Iþ1 ) aLþ1;Iþ1 ¼ aLeg

Lþ1;Iþ1
3

a DtLþ1

;

_kLþ1;Iþ1 ¼ g
Lþ1;Iþ1

3

k kLþ1;Iþ1 ) kLþ1;Iþ1 ¼ kLeg
Lþ1;Iþ1

3
k

DtLþ1 ) eLþ1;Iþ1
k ;

_uLþ1;Iþ1 ¼ g
Lþ1;Iþ1

3
u uLþ1;Iþ1 ) uLþ1;Iþ1 ¼ uLeg

Lþ1;Iþ1
3

u DtLþ1 ) eLþ1;Iþ1
u ;

where

gLþ1;Iþ1
3 ¼def gðcLþ1;Iþ1; hLþ1;I ; uLþ1;IÞ;

gLþ1;Iþ2
3 ¼def gðcLþ1;Iþ1; hLþ1;Iþ1; uLþ1;IÞ;

gLþ1;Iþ1 ¼def gðcLþ1;Iþ1; hLþ1;Iþ1; uLþ1;Iþ1Þ:
Compute heat generation: ðqzÞLþ1;Iþ1 ¼ fqLþ1;I _aLþ1;Iþ1;

ð4:2Þ
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with the algorithm proceeding with
Energy equation:

Find hLþ1;Iþ1 2 UhðXLþ1;IÞ; hLþ1;Iþ1jCLþ1;I
h

¼ HLþ1 such that 8v 2 VhðXLþ1;IÞ; vjCLþ1;I
h

¼ 0Z
XLþ1;I

rxv 	 KLþ1;Iþ1 	 rxh
Lþ1;Iþ1 dX þ 1

Dt

Z
XLþ1;I

vqLþ1;ICLþ1;Iþ1hLþ1;Iþ1 dX

¼ 1

Dt

Z
XLþ1;I

vqLþ1;ICLþ1;Iþ1hL dX �
Z

XLþ1;I
v qLþ1;I _CLþ1;Iþ1

�
þ 1

JLþ1;I
_FðcLþ1;Iþ1ÞCLþ1;Iþ1

�
hLþ1;Iþ1 dX

þ
Z

XLþ1;I
vðqzÞLþ1;Iþ1

dX þ
Z

CLþ1;I
q

vqLþ1 	 ndA

�
Z

XLþ1;I
v _eLþ1;I

��
� _bLþ1;Iþ1

3

�
: ELþ1;Iþ1 : eLþ1;I

�
� bLþ1;Iþ1

3

��
dX

�
Z

XLþ1;I
v

1

2
eLþ1;I
��

� bLþ1;Iþ1
3

�
: _ELþ1;Iþ1 : eLþ1;I

�
� bLþ1;Iþ1

3

��
dX

þ
Z

XLþ1;I
v rx _u

Lþ1;I : ELþ1;Iþ1 : eLþ1;I
���

� bLþ1;Iþ1
3

���
dX



þ
Z

XLþ1;I
v

_qLþ1;I

qLþ1;I

1

2
eLþ1;I
� 

� bLþ1;Iþ1
3

�
: ELþ1;Iþ1 : eLþ1;I

�
� bLþ1;Iþ1

3

�!
dX

þ
Z

XLþ1;I
v

1

JLþ1;I
_FðcLþ1;Iþ1Þ 1

2
_uLþ1;I 	 _uLþ1;I

�
þ 1

2qLþ1;I
ðeLþ1;I � bLþ1;IÞ : ELþ1;Iþ1 : ðeLþ1;I � bLþ1;IÞ

�
dX:

Balance of momentum:

Find uLþ1;Iþ1 2 UuðXLþ1;IÞ; uLþ1;Iþ1jCLþ1;I
u

¼ dLþ1 such that 8v 2 VuðXLþ1;IÞ; vjCLþ1;I
u

¼ 0Z
XLþ1;I

rxv : aLþ1;Iþ1E0 : rxu
Lþ1;Iþ1

�
� 1

2
ðrxu

Lþ1;IÞT 	 rxu
Lþ1;I � bLþ1;Iþ2

3

�
dX

þ
Z

XLþ1;I
qLþ1;I u

Lþ1;Iþ1

ðDtÞ2
	 vdX �

Z
XLþ1;I

qLþ1;I uL

ðDtÞ2

 
þ _uL

Dt

!
	 vdX

�
Z

XLþ1;I
f Lþ1;I 	 vdX �

Z
CLþ1;I

t

tLþ1;I 	 vdA ¼ 0:

Check for convergence:

kuLþ1;Iþ1 � uLþ1;IkL1ðXLþ1;I Þ

kuLþ1;Iþ1kL1ðXLþ1;I Þ
6TOLu;

kcLþ1;Iþ1 � cLþ1;IkL1ðXLþ1;I Þ

kcLþ1;Iþ1kL1ðXLþ1;I Þ
6TOLc;

khLþ1;Iþ1 � hLþ1;IkL1ðXLþ1;I Þ

khLþ1;Iþ1kL1ðXLþ1;I Þ
6TOLh:

If tolerances not met then I ¼ I þ 1; go to ðHHÞ
If tolerances met then increment time: L ¼ Lþ 1 and update all variables; go to ðHÞ:

ð4:3Þ
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Here UcðXÞ, UhðXÞ and UuðXÞ are spaces of admissible trial functions, while VcðXÞ, VhðXÞ and VuðXÞ are

spaces of admissible test functions. For most loading cases and data these spaces will correspond to H 1ðXÞ
and H1ðXÞ. In an abstract setting, one can consider the following staggering solution strategy where only

the underlined variable is allowed to be active, the corresponding field equations solved, the active variable

updated, and the process repeated for the next field equation:
A1ðcIþ1; aI ; eIk; e
I
u; h

I ; uIÞ ¼ F1ðcI ; aI ; eIk; e
I
u; h

I ; uIÞ ðMass transferÞ;
A2ðcIþ1; aIþ1; eIk; e

I
u; h

I ; uIÞ ¼ F2ðcIþ1; aI ; eIk; e
I
u; h

I ; uIÞ ðDegradationÞ;
A3ðcIþ1; aIþ1; eIþ1

k ; eIu; h
I ; uIÞ ¼ F3ðcIþ1; aIþ1; eIk; e

I
u; h

I ; uIÞ ðDev: eigenstrainsÞ;

A4ðcIþ1; aIþ1; eIþ1
k ; eIþ1

u ; hI ; uIÞ ¼ F4ðcIþ1; aIþ1; eIþ1
k ; eIu; h

I ; uIÞ ðDil: eigenstrainsÞ;

A5ðcIþ1; aIþ1; eIþ1
k ; eIþ1

u ; hIþ1; uIÞ ¼ F5ðcIþ1; aIþ1; eIþ1
k ; eIþ1

u ; hI ; uIÞ ðEnergyÞ;
A6ðcIþ1; aIþ1; eIþ1

k ; eIþ1
u ; hIþ1; uIþ1Þ ¼ F6ðcIþ1; aIþ1; eIþ1

k ; eIþ1
u ; hIþ1; uIÞ ðMomentumÞ:

ð4:4Þ
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Remark I. Consistent with the fully staggered solution approach introduced in Box (4.2), we freeze the ga,

gk and gu, using the most current state variable values, and integrate analytically.

Remark II. Writing the system in the form presented leads to algebraic systems which are symmetric and

positive definite. Therefore, somewhat standard iterative solvers, such as the preconditioned Conjugate

Gradient Method, can be used. Such solvers are highly advantageous since any starting solution, from a

previous time step or staggered iteration can be used as the first guess in the solution procedure, thus

providing a ‘‘head start’’ in the process.

4.2. Convergence and contraction-mapping time stepping control

Consider the general abstract equation

AðwÞ ¼ F; ð4:5Þ
where w represents all of the fields in the analysis:

w ¼def ðc; a; ek; eu; h; uÞ; ð4:6Þ
It is advantageous to write this in the form

PðwÞ ¼ AðwÞ �F ¼ GðwÞ � wþ r ¼ 0: ð4:7Þ
A straightforward fixed point iterative scheme is

GðwI�1Þ þ r ¼ wI : ð4:8Þ
The convergence of such a scheme is dependent on the behavior of G. Namely, a sufficient condition for

convergence is that G is a contraction mapping for all wI , I ¼ 1; 2; 3; . . . Convergence of the iteration can be

studied by defining the error vector eI ¼ wI � w. A necessary condition for convergence is iterative self-

consistency, i.e. the exact solution must be represented by the scheme GðwÞ þ r ¼ w. Enforcing this con-

dition, a sufficient condition for convergence is the existence of a contraction mapping

keIk ¼ kwI � wk ¼ kGðwI�1Þ � GðwÞk6 gkwI�1 � wk; ð4:9Þ
where, if g < 1 for each iteration I , then eI ! 0 for any arbitrary starting solution wI¼0 as I ! 1.

Therefore, unconditional convergence is attained if for wI , I ¼ 1; 2; 3; . . . ; gI < 1. This type of convergence

criteria is common for linear iterative (Gauss–Jacobi–Seidel) solution methods of relaxation type
[6,11,53,54,57]. For reviews of nonlinear techniques, we refer the reader to Perron [48], Ostrowski [45,46],

Ortega and Rockoff [44], Kitchen [32] or Ames [4]. The algorithm outlined in Eqs. (4.2) and (4.3) can be

considered as fixed-point scheme, whose convergence within each time step is dependent on the time step

size itself. The step size can be manipulated, enlarged or reduced, to induce the desired rates of convergence

within a time step, in order to achieve an error tolerance within a prespecified number of iterations. Fol-

lowing the approach in Zohdi [59,60], one approximates the contraction constant g � SDt, where one

expects the error within an iteration to behave according to ðSDtÞIe0 ¼ eI , I ¼ 1; 2; . . ., where e0 is the initial

error and S is a function intrinsic to the system. Our target or ideal condition is to meet an error tolerance in
a given number of iterations, not more, and not less. One writes this in the following approximate form,

ðSDttolÞId e0 ¼ TOL, where Id is the number of desired iterations. Therefore, if the error tolerance is not met

in a desired number of iterations, the contraction constant g is too large. Accordingly, one can solve for a

new smaller step size, under the assumption that S is constant 4
4 The assumption that S is constant is not overly severe, since the time steps are to be recursively refined and unrefined.
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Dttol ¼ Dt

TOL

e0

� � 1
Id

eI
e0

� �1
I

0BBB@
1CCCA: ð4:10Þ

Clearly, the expression in Eq. (4.10) can be used for time step enlargement, if convergence is met in less

than Id iterations. One sees that if eId > etol and I ¼ Id , then the expression in Eq. (4.10) collapses to a ratio

of the error tolerance to the achieved level of iterative error after Id iterations, Dttol ¼ Dt TOL
eId

� �Id
, and thus

the step size will be scaled by the ratio of the error to the tolerance. For the multifield system, we define the

normalized errors within each time step (L), for the three primary fields, 5

euI ¼def kuLþ1;I � uLþ1;I�1kL1ðXÞ

kuLþ1;IkL1ðXÞ
;

ecI ¼def kcLþ1;I � cLþ1;I�1kL1ðXÞ

kcLþ1;IkL1ðXÞ
;

ehI ¼def khLþ1;I � hLþ1;I�1kL1ðXÞ

khLþ1;IkL1ðXÞ
;

ð4:11Þ

and their corresponding violation ratios

wuI ¼def euI
TOLu

; whI ¼def ehI

TOLh
; wcI ¼def ecI

TOLc
: ð4:12Þ

One then determines the maximum violation WI¼def
maxðwuI ;wcI ;whIÞ and a minimum scaling factor

UI¼def
minð/uI ;/cI ;/hIÞ from

/uI ¼def

TOLu

eu0

� � 1
Id

euI
e0
u

� �1
I

0BBBB@
1CCCCA; /cI ¼def

TOLc

ec0

� � 1
Id

ecI
ec0

� �1
I

0BBB@
1CCCA; /hI ¼def

TOLh

eh0

� � 1
Id

ehI

eh0

� �1
I

0BBB@
1CCCA: ð4:13Þ

Thereafter, the following criteria for temporal adaptivity is adopted:
If tolerances metðwuI and whI and wcI 6 1Þ and I < Id then:

ðaÞ Construct new time step: Dt ¼ UIDt

ðbÞ Select minimum: Dt ¼ MINðDtlim;DtÞ
ðcÞ Step time forward: t ¼ t þ Dtand start at time stepðLþ 1Þ

If any tolerance not metðwuI or whI or wcI > 1Þ or I ¼ Id then:

ðaÞ Construct new time step : Dt ¼ UId Dt

ðbÞ Select minimum: Dt ¼ MINðDtlim;DtÞ
ðcÞ Restart at old time

ð4:14Þ

5 The other quantities, a, ek, and eu are controlled by the three primary fields (c; h; u), thus we monitor only their convergence.
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The overall goal is to deliver solutions where staggering (incomplete coupling) error is controlled and the
temporal discretization accuracy dictates the upper limits on the time step size (Dtlim).
5. Numerical experiments

To illustrate the algorithm, we considered a microscale cube of matrix material, with dimensions 10�4

m · 10�4 m · 10�4 m, with embedded randomly distributed inhomogeneities. The various physical prop-

erties of the two materials are shown in Table 1, and correspond to a commonly used lightweight aluminum
matrix-boron particle industrial composite. We consider a set of topological microstructural variables

which can be conveniently parametrized by a generalized ‘‘ellipsoid’’

jx� x0j
r1

� �s1

þ jy � y0j
r2

� �s2

þ jz� z0j
r3

� �s3

¼ 1: ð5:1Þ

The types of suspensions to be introduced in the matrix binder can be controlled by (1) the polynomial

order, s1, s2 and s3, where values of s < 1 produce non-convex shapes, s ¼ 1 produce convex eight-sided

diamond shapes, s ¼ 2 standard ellipsoids and s > 2 values produce ‘‘blocklike’’ shapes, (2) the aspect

ratios defined by AR¼def r1

r2
¼ r1

r3
, where r2 ¼ r3, AR > 1 for prolate geometries and AR < 1 for oblate shapes

and (3) the volume fractions, via particle/sample size ratio, which is defined via a subvolume size V ¼def L�L�L
N ,

where N is the number of particles in the entire sample and where L ¼ 10�4 m is the length of the (cubical)

sample, L� L� L. A generalized diameter is defined, d ¼ 2r, which is the diameter of the smallest sphere
Table 1

Material properties used in the computational examples

Material property Matrix Particles

Mechanical

j (GPa) 77.9 230.0

l (GPa) 25.9 172.0

c (1/�K) 9.71· 10�6 8.92· 10�6

Thermal

K (J/s m �K) 237 148

q (kg/m3) 2700.84 2330.28

C (J/kg �K) 903 712

Diffusive

D0 (m/s2) 1.0· 10�6 1.0· 10�7

U (kN m/mole) 142 300

s (1/s) 5.0· 10�2 1.0· 10�2

Damage evolution

a�1 (m3/molecules s) )7.3· 10�8 )3.0 · 10�9

a�2 (m3/molecules s) )7.3· 10�8 )3.0 · 10�9

a�3 (m3/molecules s) )7.3· 10�8 )3.0 · 10�9

a�4 (1/s) 6.27· 10�10 3.15· 10�10

a�5 (1/s) 6.27· 10�11 3.15· 10�11

k1 (MPa) 120 3000

k2 (MPa) 120 3000

ccrit (molecules/m3) 0.0 0.0

f (N m) )1· 1011 )5 · 1011
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that can enclose a single particle of possibly non-spherical shape. The ratio between the generalized

diameter and the subvolume are related by n¼def r

V
1
3

. In order to illustrate the behavior we used the disk-like

microstructure shown in Fig. 2. For any microstructural combination, volume fractions, phase contrasts,

etc. . ., the samples must be tested and enlarged, holding the volume fraction constant, but increasing the

number of particles, for example from 2; 4; . . . ;etc.; . . ., until the macroscopic results stabilize. Approxi-

mately a 20 particle sample gave relatively stable results. A more detailed and rigorous analysis of size

effects for such systems is beyond the scope of this presentation. The reader is referred to the following

series of works Huet [25–29], Huet et al. [30], Guidoum and Navi [13], Amieur et al. [1], Guidoum [14],
Amieur [2] Hazanov and Huet [15], Hazanov and Amieur [16], Amieur et al. [3] and Huet [22–24], as well as

some recent work of the author [59,63–66].

Over the course of such tests the finite element meshes were repeatedly refined, and a mesh density of

approximately 9 · 9 · 9 trilinear hexahedra (approximately 800–1000 degrees of freedom (DOF) for the

diffusion–reaction and energy balance equations, and between 2200 and 3000 DOF for the vector-valued

balance of momentum) per particle was found to deliver mesh independent results. Therefore, for example

for a 10 particle test, 8000 DOF were needed for the diffusion–reaction and energy balance equation, and

24,000 DOF for the balance of momentum equation, for 20 particles, 15,625 DOF/46,875 DOF, etc. During
the computations, a ‘‘2/5’’ Gauss rule was used, whereby elements containing material discontinuities had

increased Gauss rules (5 · 5 · 5) to enhance the resolution of the internal geometry, while elements with no

material discontinuities had the nominal 2 · 2 · 2 rule. The numerical resolution of the microstructure is

shown in Fig. 2, for a topological exponent of s1 ¼ s2 ¼ s3 ¼ 2 for oblate spheroids. For related work in the

optimization of the material microstructure, controlling the parameters such as s, see Zohdi [63,65,66].

The boundary conditions for the cubical domain were: (1) cjoX ¼ C ¼ 1, cðx; t ¼ 0Þ ¼ 0, (2) hjoX ¼ H ¼
30� Celcius¼ 303.13� Kelvin, hðx; t ¼ 0Þ ¼ 0� Celcius and (3) ujoX ¼ t

T E 	 X , Eij ¼ 0:02, i, j ¼ 1, 2, 3, where

X is a referential position vector to the boundary of the cube, t is the time, and T is the total simulation
time. The material parameters, selected only for the purposes of numerical experiment, are shown in Table 1.

From a practical engineering point of view, macroscopic quantities, which are volumetrically averaged

outcomes of the simulated microstructural events, are of interest. Such quantities include, (1) the

mechanical response, hriX, (2) the average change in the material, for example damage, haiX, (3) the average
Fig. 2. The numerical resolution of s1 ¼ s2 ¼ s3 ¼ 2 particles, with n ¼ 0:375, and an aspect ratio of 1
3
, i.e. r1 ¼ 1

3
r2 ¼ 1

3
r3 resulting in a

volume fraction of v2 � 0:076 (20 particles shown).
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temperature, hhiX, and (4) the average concentration hciX. The deterioration rates of all material parameters
other than E such as K, D0, etc., were set to zero in the present simulations. Clearly, in this external pure

displacement controlled regime, the stresses will relax over time, since the material stiffness is deteriorating

in the interior.

The algorithmic staggering tolerance was set to maxðeu; eh; ecÞ6 0:0001 for the normalized/global error

control. The designated maximum number of internal iterations, Id , was set to five. The starting time step

size was Dt ¼ 103 s. In order to smoothly refine and unrefine the time steps, the adjustments were bounded

between successive time steps (L) to be 0:9 < DtLþ1

DtL 6 1:1. The total simulation time was set to 1 year. For the

purposes of numerical experiment only, the damage rate parameters were chosen such that for a material
point undergoing constant damage at unit concentration, with no stress, after one year aðt ¼ T Þ ¼
0:1 ¼ ea�

1
t, T ¼ 31; 536; 000 s, which led to a�1 ¼ �7:3 � 10�8 (m3/molecules s). This rate was used for the

matrix. For the particulate material, we set the rate parameter to be significantly smaller, a�1 ¼ �3 � 10�9
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Fig. 3. The volumetric average of the concentration over time.
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Fig. 4. The volumetric average of the temperature over time.
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(m3/molecules s). These values were also selected for the a�2 and a�3 rates as well. The deterioration rates of all
material parameters other than E, such as C, K, D0, etc., were set to zero. For the deviatoric eigenstrain,

the rate coefficient a�4 was calibrated in such a way that k ¼ 0:02 in the matrix and k ¼ 0:01 in the particle,

for constant _k�s, at t ¼ T . A value of one-tenth was used for the dilatational eigenstrain. Finally, the

function for the changes in density due to the uptake of the diffusing species was modeled as FðcÞ � ac,

with a ¼ 0:1 kg/molecule. The time step limit size was set to 5 · 105 s, which was set as the upper bound for

reasons of truncation error control. The total number of system solves needed was 462, as opposed to

31,536, had the system been solved non-recursively with no time step adaptation. Figs. 3–8 illustrate the

results for the major quantities of interest. The volumetric average of the concentration (Fig. 3) exhibits a
quasilinear growth over time. The volumetric average of the temperature (Fig. 4) exhibits a nonlinear, non-

monotone, behavior over time, representing initial heating then cooling off. The volumetric average of the
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Fig. 5. The volumetric average of the degradation over time.
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damage is also highly nonlinear (Fig. 5), and the stresses growth, then relax in a manner that is charac-
teristic of solids undergoing softening (Figs. 6 and 7). In Fig. 7 minor anisotropic texture is exhibited,

indicating that the sample is slightly non-statistically representative. Finally, Fig. 8 shows the variation in

the time step sizes to meet the staggering and discretization error requirements. A spatial time history of the

degradation throughout the solid is shown in Figs. 9 and 10.
6. Concluding remarks

In this work, the (staggering) error due to incompletely resolving the coupling between multifield

equations, describing time-dependent thermo-chemo-mechanical processes in solids possessing irregular

heterogeneous microstructure, was characterized in such a way to be amenable to a relatively simple

method of adaptive control. A solution strategy was developed, whereby the time step size was manipu-

lated, enlarged or reduced, to control the contraction mapping constant of the system operator in order to



Fig. 9. Starting from the top, left to right: The time history of the degradation (a) throughout the solid, in increments of 0.1 years.
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induce desired staggering rates of convergence within each time step. The overall goal was to deliver
accurate solutions where the staggering error was controlled while simultaneously obeying time-step size

limits dictated by discretization error concerns.

Generally speaking, the staggering error, which is a function of the time step size, is temporally variable

and can become stronger, weaker, or possibly oscillatory, is extremely difficult to ascertain a-priori as a

function of the time step size. Therefore, to circumvent this problem, the adaptive strategy presented in this
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work was developed to provide accurate solutions by iteratively adjusting the time steps. Specifically, a
sufficient condition for the convergence of the presented fixed-point scheme was that the spectral radius or

contraction constant of the coupled operator, which depends on the time step size, must be less than unity.

This observation was used to adaptively maximize the time step sizes, while simultaneously controlling the

coupled operator�s spectral radius, in order to deliver solutions below an error tolerance within a pre-

specified number of desired iterations. This recursive staggering error control can allow for substantial

reduction of computational effort by the adaptive use of large time steps. Furthermore, such a recursive

process has a reduced sensitivity, relative to an explicit staggering approach, to the order in which the

individual equations are solved, since it is self-correcting.
In the ideal case, one would like to make predictions of whether a certain type of matrix-particulate

combination will have poor multifield and inelastic behavior via numerical simulations, in order to mini-

mize expensive laboratory tests. As an extension to this work, emphasis should be placed on microstruc-

tural optimization to resist severe-loading environments. For example, this could involve the construction

of an inverse problem, where combinations of particulate and matrix materials are sought to minimize the

following history-dependent objective function:

P ¼
Z T

0

khrðx; tÞiX � rDðtÞk
krDðtÞk

� �
dt þ Constraints; ð6:1Þ
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where rðx; tÞ is the microscopic stress response of the material, rDðtÞ is a prespecified desired effective

macroscopic stress response, T is the total time interval of interest, and where k 	 k is an appropriate norm.

Such an objective function depends in a non-convex and non-differentiable manner on the design

parameters. One approach is to employ algorithms which combine gradient methods for local searches with

genetic algorithms for global searches. A recent overview of the state of the art of genetic algorithms can be

found in a collection of articles edited by Goldberg and Deb [12]. There are a variety of such methods,

which employ concepts of species evolution, such as reproduction, mutation and crossover. The application

of such ideas to non-multifield material design can be found in Zohdi [65,66].
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