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Abstract

In this work a model and solution strategy are developed to describe a class of coupled thermo-chemo-mechanical
systems involving the solid-state diffusion of a dilute solute into a multiphase solid material, the subsequent reactions,
production of heat, changes in the stress fields, and the evolution of material degradation and inelastic strains in the
solid. The algorithm involves recursive staggering, whose convergence is dependent on the discretized time step size.
Because the multifield coupling can change, becoming stronger, weaker, or possibly oscillatory, it is extremely difficult
to ascertain a-priori the time step size needed to meet a prespecified tolerance on the staggering error, i.e. the incomplete
resolution of the interaction between the fields. The solution process involves time step size adaptivity to control the
contraction mapping constant of the multifield system operator in order to induce desired staggering rates of con-
vergence within each time step, and hence, the staggering error. Three-dimensional numerical experiments are per-
formed to illustrate the behavior of the model and the solution strategy.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In many applications, multifield models arise from a description of thermo-chemical reactions occurring
in deformable multiphase solids (Fig. 1). Relevant examples include certain problems of environmental
mechanics concerned with the detrimental chemical attack on solids by volatile gases or liquid solutes which
come in contact with structural surfaces and then diffuse into the subsurface. The subsequent reactions lead
to loss of structural integrity. In this work aspects of the modeling and numerical simulation of such
strongly coupled thermo-chemical processes in multiphase solids are discussed. A general multifield model
is developed which describes the diffusion of a dilute solute into a heterogeneous solid material, its sub-
sequent reactions, production of heat, changes in the stress fields and the evolution of material changes and
inelastic strains within the solid. The modeling and solution algorithms are general enough to be applicable
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Fig. 1. Diffusion of a small species into a heterogeneous medium.

to a wide range of long-term thermo-chemo-mechanical phenomena associated with damage in materials
with heterogeneous microstructure. For experimental and theoretical overviews, we refer the reader to the
series of works by Huet and coworkers [17-24]. For general overviews in the area of heterogeneous
materials see Nemat-Nasser and Hori [41]. Although the emphasis will be on the simulation of long-term
multifield phenomena, the analysis in this work is also applicable to shorter time-scale problems involving
thermo-chemical processing such as self-propagating high-temperature synthesis (SHS), whereby chemical
reactions are initiated on the surface of a material to be processed. In the method, the substantial heat
evolved by surface chemical reactions sustain and propagate thermo-chemical processes. This approach is a
relatively new economical way of manufacturing advanced materials. For example by initiating a highly
exothermic surface thermal reaction between bonded titanium powder in a nitrogen gas atmosphere, an
initial amount of titanium-nitride, Ti(s) + 1/2N,(g) = TiN(s), which a desirable product, is produced. This
process releases substantial heat, which produces a combustion front which propagates throughout the
solid. A wide variety of materials, ceramics, intermetallic compounds and composites can be produced by
SHS. For an introduction see the texts of Ashby and Jones [5] or Shackleford [52]. Generally speaking, such
processes are related to controlled combustion methods [50], whereby a chemical species acts as a catalyst
to promote reactions, for example in chemical separation and polymerization. A related processing method
is Shock Induced Chemical Reactions (SICR), whereby a shock wave is passed through chemical reacting
powders, which sinters them together. Some relevant work in the modeling and simulation of such pro-
cesses can be found in Thadhani [55], Nesterenko et al. [43], Vecchio and Meyers [56] and Meyers et al. [36].
For a review of such methods see Meyers [37] or Nesterenko [42].

2. A model problem involving multifield processes in multiphase solids

A structure which occupies an open bounded domain in @ € R®, with boundary 0Q, is considered. The
boundary consists of (1) I'. and I',, where the solute concentrations (c) and solute fluxes are respectively
specified, (2) I', on which the displacements (u) are prescribed and a part I', on which tractions are pre-
scribed, and (3) I'y on which the temperature (0) is prescribed, and a part I', on which thermal fluxes are
prescribed. The primary (familiar) mechanical, thermal, and diffusive properties of the heterogeneous
material are characterized by a spatially varying elasticity tensor IE € IR32X32, a spatially varying conduc-
tivity tensor IK € R**, and a spatially varying diffusivity tensor IDy € R*** (at a reference temperature), all
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of which are assumed to be symmetric bounded positive definite tensor-valued functions. Other material
properties will be introduced during the development of the overall model. For reasons of clarity, strong
forms are used to derive the governing equations, possibly assuming more regularity than warranted.
Afterwards, only the weak forms, which produce solutions which coincide with strong forms when the
solutions are smooth enough, are employed. The use of weak forms are important for this class of problems
due to the heterogeneous microstructure, which leads to particularly rough solution fields.

3. Constitutive assumptions

We consider the case of moderate finite deformations involving elastic and inelastic strains. Later in the
work, an updated Lagrangian staggering type scheme, formulated directly in the (deformed) current
configuration, will be developed, and thus Eulerian-based material laws are advantageous. A relatively
straightforward extension to classical isotropic infinitesimal deformation constitutive models is to employ
the Eulerian (or Almansi) strain tensor '

=0, :(e—p), (3.1)

nge%re o is the Cauchy stress, where e =1 (V.u + (Vo) — (V)" - V), where p= ey + e, +e,, where
ep=y - (0 — 0y)1, where e, represents deviatoric-like inelastic strains, for example plastic-like strains, where
e, represents dilatational-like inelastic strains, for example representing gas that occurs as a reaction
byproduct, and where ey represents thermal strains. Here, the current value of the elasticity tensor is
[E = «lEy, where [, represents the virgin isotropic undamaged material, where 0 <« <1 is the scalar
continuity (isotropic damage) parameter [31], where (¢ = 0) = 1 indicates the initial undamaged state and
where o — 0 indicates a completely damaged state. The introduced quantities are modeled as being gov-
erned by evolution over-stress functions of the form
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where § is the second Piola—Kirchhoff stress, where the normalized concentration of the solute is ¢, given in

: def / . def . .
molecules per unit volume, where &, =k 127, "%t =k, ky and k, being material constants, ¢’ = ¢ — %1,

S =JF'.¢ - FT,8 =JF"' -6  FT, where F = Vyxis the deformation gradient, where J = det F is

crit crit
the Jacobian of the deformation, where the displacement is given by # = x — X, where X are referential

! Such a law is frame indifferent under rigid body rotations and translations for isotropic IE.
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coordinates, where x are current coordinates and where a; through as are spatially variable material
parameters governed by the following activation conditions:

If ¢ < ¢y then a; = a5 =0,

If ¢ > cgit then a) = aj, as = az,

If ||6’ ||dif\/0" 10’ < || then a = as =0,

d t / * *
If ||O'/|| = ||acr1t” then ay = 4y, 44 = dy, (33)
tro troi
If |— | then a3 =0
3 3 “=n
tro tro it *
If T = % then as = dj,

where ¢ is a spatially variable critical (threshold) concentration parameter. The parameters aj through
a; are given material parameters that are specified later in the analysis. For further details on these types
of phenomenological (damage) formulations, the interested reader is referred to the seminal work of
Kachanov [31]. Clearly, further evolution laws can be written for other material property changes, such as
K or Dy, although only changes in [E are considered during the simulations to follow.

3.1. An energy balance including growth

The interconversions of mechanical, thermal and chemical energy are governed by the first law of
thermodynamics, which states that the time rate of change of the total energy, #" + .7, is equal to the work
rate, 2, and the net heat supplied, # + .7, i.e.

d
G I =P LA+ T (3.4)

Consider a subvolume of material contained within Q, referred to as w, and

¢ the kinetic energy glven by Y fo , 5P wdow,

e the stored energy is 7Y f( ,pwdo,

J thg fmte of work or power of external volumetric (pb) and surface (o - n) forces acting on w is given by
2= [ pb-iudw+ [, o-n-uda,

. the heat flow into the volume by conduction is 7 % — Jood-nda=— [ V. gdo,

o the heat generated due to sources, such as chemical reactions, is H ] f pzdw.

Combining the expressions leads to

1
%/p(ia-h—i—w)dw:/pb-itdw—i—/ a-n-ilda—/Vx-qdw—i—/pzdw. (3.5)
® w 0w ® ®

Converting the first integral to a reference configuration leads to

%/ p(%l'l'il-FW)deo: j(pJ)(lu u+w)dwo+/ (pJ) (it - it + w) day. (3.6)
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The third integral in Eq. (3.5) can be converted via Gauss’s divergence theorem:

/ a~n-i4da:/Vx~(o'il)dco:/(Vx~0'~il+0':int)dw. (3.7)

0
Thus, writing all relations in the current configuration, and since the subvolume o is arbitrary, yields the
following local form yields

1d 1

j$(pJ)(§il-il+w> +pG-iu+w)—(Vy-o-it+pb-it+6:Vai)+V,-q—pz=0. (3.8)
Substituting a balance of linear momentum

V. -6+ pb = pu, (3.9)

leads to *

1d(J) L L+ w | + p Vi +V =0 (3.10)

Jdtp 2uuw pw—a6 : Vi v q—pz=0. .
The mass of the solid in the current configuration is given by

/pdw:/ pJ doy z/ (po + F (¢)) day, (3.11)

0] wo wo

where Z (c) represents the density changes due to uptake of c. Since the subvolume w, is arbitrary, this
implies

pJ%p0+f(c)$%(pJ):§(C). (3.12)
Finally, we have the following local form,

},}f(c)(%mww)+p»‘v—o:vxa+v.q—pz:o. (3.13)
We make the following non-hyperelastic, moderate-finite-strain, approximation for the stored energy

pw=W=1ie—B):E: (e— p)+ p%0, L (3.14)

where B are all of the eigenstrains, which implies, since w = (%) = ¥_¥ 0,
p PP

pv'v:W—W%z%(e—ﬂ):IE:(e—ﬁ)+(é—ﬁ):E:(e—ﬁ)+p(€0+p(€0+b(€0
—£<—(e—ﬁ):IE:(e—ﬁ)+p(€0>, (3.15)

and thus the first law becomes

1. 1 1 .
Vx-(]K-Vx()):Jﬁ(c)(zil-il—kzp(e—[f):IE:(e—ﬂ)+(60>+(é—ﬁ):IE:(e—ﬁ)
+%(e—p);11'5;(e—/f)+p(<'g9+fgé)—pz—vxu;m;(e—/;)
L(p E (e —
—§<;>(3—ﬂ)-]E~(e B), (3.16)
where Fourier’s law, ¢ = —IK - V.0, has been employed.

2 Normally, if the mass was conserved, then d(pJ)=0.



684 T.1. Zohdi | Comput. Methods Appl. Mech. Engrg. 193 (2004) 679-699

Remark. The chemical production of energy at a point is modeled as being related to the change in the rate
of damage, pz = p{|é|, where ( is a spatially variable material parameter. The parameter { is negative for
exothermic reactions and positive for endothermic reactions.

3.2. Mass transfer and reaction—diffusion models

The mass balance for a small diffusing species consists of a storage term (¢), a reaction term (5), and an
inward normal flux term (—G - n). Since the domain is undergoing simultaneous finite deformations,
consider a control volume for the dilute mass (m) written in the current (deformed) configuration

dm d _ d(4J) _ y ] —
E_$/w!%dw_/wo ar dwo—/wo(/%J+.ﬂJ)da)o—/

(0]

(%—l—%;)da): — | G-nda.

(3.17)

After using the divergence theorem and since the volume w is arbitrary, one has the local form
: J
//+E/%j:—vx.(:. (3.18)

We decompose the total dilute mass into two parts, the concentration ¢ and the products of reaction s,
M = c+s. 1t is a classical stoichiometrically inexact approximation to assume that the diffusing species
reacts (is created or destroyed) in a manner such that the production of the reactant (s) is directly pro-
portional to the concentration (c¢) of the diffusing species itself [7],

s = 1. (3.19)

Upon substitution of this relation into the conservation law for the diffusing species, one has a diffusion—
reaction model in strong form

J v
c(141)+ce(l+ r)j =V, (IDge™® - V,c). (3.20)

When 1 > 0, the diffusing species is destroyed as it reacts, while 1 < 0 means that the diffusing species
is created as it reacts, i.e. an autocatalytic reaction occurs. In Eq. (3.20), the familiar Arrhenius
form D = Dye # has been used, where D is the diffusivity tensor at a reference temperature and where U
is the activation energy per mole of diffusive species, R is the universal gas constant and 6 is the temper-
ature.

Remark 1. It is sometimes observed that, in regions of relatively high positive triaxial stress, the diffusion is
accelerated, while in regions of high negative triaxial stress, diffusion is decelerated. Diffusion models with
explicit pressure dependency will not be considered in the present work, however, we remark that a
particularly simple constitutive moglbg%}) to incorporate stress-dependency phenomena is given by a pseudo-
Fickian/Arrhenius law, G = —IDge ® - Ve, motivated by thermodynamical arguments found in the clas-
sical works of Flynn [10] or Crank [7]. *

3 An additive split for stress dependency of the form U(s) = Uy + U(P), where U is a stress-independent reference activation
energy and p = — %% is the pressure, has been given in Zohdi [61,62] for certain applications.
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Remark 2. It is important to note that instabilities can be induced by diffusion, i.e. a coupled mechano-
chemical system can be stable when no diffusion is present and unstable in the presence of diffusion. An
indepth mathematical analysis of such effects has been conducted by Markenscoff [33-35].

4. Staggered multifield weak formulations

Staggering schemes are a natural choice for the solution of the multifield system developed thus far.
Generally, such approaches proceed, within a discretized time step, by solving each field equation indi-
vidually, allowing only the corresponding primary field variable to be active. This effectively decouples the
system of differential equations. After the solution of each field equation, the primary field variable is
updated, and the next field equation is solved in a similar manner, with only the corresponding primary
variable being active. Usually, after this process has been applied only once to all of the field equations, the
time step is incremented and the procedure is repeated. This non-recursive process can be highly sensitive to
the order in which the field variables are determined. For accurate numerical solutions, the approach re-
quires small time steps, primarily because the staggering error accumulates with each passing increment.
For details, see Park and Felippa [47], Zienkiewicz [58], Schrefler [51], Lewis et al. [40], Doltsinis [8,9],
Piperno [49], Lewis and Schrefler [39] and Le Tallec and Mouro [38]. In an attempt to improve such ap-
proaches, a recursive staggering strategy which allowed the adaptive control of time step sizes was devel-
oped in Zohdi [59] for a restricted class of coupled geometrically linear/materially nonlinear problems. In
that approach, in order to reduce the error within a time step, the staggering methodology was formulated
as a recursive fixed-point iteration, whereby the system was repeatedly re-solved until fixed-point type
convergence was achieved. A sufficient condition for the convergence of such a fixed-point scheme is that
the spectral radius of the coupled operator, which depends on the time step size, must be less than unity.
This observation was used to adaptively maximize the time step sizes, while simultaneously controlling the
coupled operator’s spectral radius, in order to deliver solutions below an error tolerance within a pre-
specified number of iterations. This recursive staggering error control allowed substantial reduction of
computational effort by the adaptive use of large time steps. Furthermore, the recursive process is insen-
sitive to the order in which the individual equations are solved, since it is self-correcting. In the next section,
the approach is extended to the wider class of more complicated problems presently considered. For the
sake of completeness the presentation is self-contained.

4.1. A recursive algorithm

Within a staggering scheme, we employ a relatively straightforward approach, which is amenable to time
step adaptivity is

uttl — oyt i
At At (At)2 At (At)2 (At)2 At’

where the rate of change of thermal and concentration values are approximated with the same time step
size, i.e. 0! & W and ¢!~ “HA;"L. During the staggering process, the geometric configuration of the
system is frozen during each iteration, and is updated only at the end of a system recursion. This is
essentially an ““updated Lagrangian’ formulation, where all variables are referred to the last calculated
configuration as opposed to a “total Lagrangian” formulation where all variables are referred to the initial
configuration. In this particular case, the last calculated configuration is the previously computed one
within the staggering scheme. Algorithmically, employing weak formulations, the staggering scheme is as

follows:
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(%) At a time step(L): Start an internal iteration/ = 0

(%%) Update geometrical configuration: Q“*!/ = Q1!

Mass balance of diffusing species:

Find ¢t e U (@), MY =€, such that Vv € V.(@"), |, =0

L+17 —Y—
va . ﬂ)0+ A o Rl TT . VXCL+1AI+1 do

QL+LI

1 Ji+ul (1+1)
L+LI+L [ L L+1
* /{;LHJ U(l + ‘E)C (At + o JEHL ) e = /QL+1.1 v At cde /FG ve ndd.

Compute reactions: (Integrate evolution equations)

1 L+1+L 4.2
cL4+1,1+1 LALIA3 [4+1,01+1 L+171+1 SAL] ( .
GEALL — o ot = o = otes ,
AR LAl I+, 141 141 L1041 LMy L1041
AT =g, AT = = 1"e% = e ,
1 L+10+L
AR AR T S Me s S AR A L1+l _ L g IAdH L1741
@ =&o @ =@ = Qe =e, )
where

gL+141+% def g(CL+1,1+170L+1,17uL+1,1)7

gL+1,1+§ def gt gL u,

L+1,1+1 def L+11+1 pL+1I+1  L+171+1
= g(c s U ).

g

Compute heat generation: (pz)"™"""" = (pl+H g1+

)

with the algorithm proceeding with

Energy equation:
Find 0" € Uy(@“1), 07! 1 = @' such that Yo € 1p(Q), v]zas =0
0 0

V»U . ]KL+1,1+1 . V 9L+1 J+1 dQ+ l UpL+l,l(gL+l,1+10L+l,l+l dQ
QLTI ! At Joriir
1

1 . .
—_ UpL+1,I(gL+l,1+19L dQ _ v pL+1A1(€L+1,1+1 + /gf(cL+l,]+l)(gL+l,l+l 0L+1,1+1 dQ
At oL+l oL+ JL+LI

+/ U(pZ)L+l,I+1 dQ+/ UqL+l
QLJrll L+1,1
U(( LT L+1 I+;) . RLALIHL . (e“” - pL+1,l+;))dQ
QL+11
L+11 L+1,I+§> CJRLLL (eL+1,I _ ﬂL+1J+g) 40
QL+11 : ’

Jr/ o( Vit (IEL+1I+1 . (eL+1,1 _ ﬁL+1,1+§>))dQ

<
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prtl LI pL+li+d L1741 LI _ pL+li+i
+ NEE AT . . +10 J+1
+/Wu Lmz("L .y 3).IE .(eL B z) 4o
Qs P
I . 1
1041 U g I pLALIY L RLALIFL L L pLtLT
+/Q . )(EML i L (o1 gy b (g ))dQ.
Balance of momentum:
Find «“""* € U, (@), s = d*' such that Vv € V,(Q"™), |00 =0
Vo oc”l”“IEO N AvAT A tes —l(V uL+1,I)T Vot — ﬂL+1,1+§ do
QL+ o ' ¥ 2 ¥ ¥
L+1,7+1 I . r
AL ARV u
’ vdQ — ’ — -vdQ
+ /QL+1.I p (At)2 /QL+1.1 p ((At)z * At)
_/ fL+141.de_/ L+11 VdA_O
QL+1I I"f‘“l
Check for convergence:
||uL+1,1+1 _ L+1,1||LI(QL+”)
L+1,1+1 < TOL,,
[ 1@y
||CL+1,1+1 _ CL+1’1||L1(QL+1.1)
([T 1 gt <TOL,,
L (QL+ B )
||0L+1J+1 _ 9L+1J||L1(QL+1J)
L1141 < TOL,.
|6 |1 (geer
If tolerances not met then / =7+ 1,go to (k%)
If tolerances met then increment time: L = L + 1 and update all variables, go to (%).
(4.3)

Here U.(Q), Up(Q) and U,(Q) are spaces of admissible trial functions, while V.(Q), V5(Q) and V,(Q) are
spaces of admissible test functions. For most loading cases and data these spaces will correspond to H'(Q)
and H'(Q). In an abstract setting, one can consider the following staggering solution strategy where only
the underlined variable is allowed to be active, the corresponding field equations solved, the active variable

updated, and the process repeated for the next field equation:

42/1(0”1, e, lp,Hl u')=7(c, o e, e 0" u") (Mass transfer),

(o el el 0" u') :fz(c’“,oc'7eﬁ,efp,9’,u[) (Degradation),

o3 (c" ol e’fl,efp,é)’ u') =F5( o el el 0" ') (Dev. eigenstrains),

A (M e e 0w = Fu( o e el 0 u') (Dl eigenstrains),
(o +7 el e Zpﬂ 0 ) = Fs(dH o e e 1¢+1 ¢',u') (Energy),
A 0 W) = (e 0 W) (Momentum),
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Remark I. Consistent with the fully staggered solution approach introduced in Box (4.2), we freeze the g,,
g; and g, using the most current state variable values, and integrate analytically.

Remark II. Writing the system in the form presented leads to algebraic systems which are symmetric and
positive definite. Therefore, somewhat standard iterative solvers, such as the preconditioned Conjugate
Gradient Method, can be used. Such solvers are highly advantageous since any starting solution, from a
previous time step or staggered iteration can be used as the first guess in the solution procedure, thus
providing a “head start” in the process.

4.2. Convergence and contraction-mapping time stepping control

Consider the general abstract equation
A (w)=F, (4.5)
where w represents all of the fields in the analysis:
w (c,a,ey,e,,0,u), (4.6)
It is advantageous to write this in the form
Ow)=oA(w)—F =%(w)—w+r=0. (4.7)
A straightforward fixed point iterative scheme is
Gw' ) +r=w. (4.8)

The convergence of such a scheme is dependent on the behavior of 4. Namely, a sufficient condition for
convergence is that ¢ is a contraction mapping for all w/, I = 1,2,3,... Convergence of the iteration can be
studied by defining the error vector ¢ = w/ — w. A necessary condition for convergence is iterative self-
consistency, i.e. the exact solution must be represented by the scheme %(w) + r = w. Enforcing this con-
dition, a sufficient condition for convergence is the existence of a contraction mapping

lerll = [[w" —wll = [F(w' =) = G(w)ll <nlw'=" — wl], (4.9)

where, if # < 1 for each iteration I, then & — 0 for any arbitrary starting solution w'=" as I — occ.

Therefore, unconditional convergence is attained if for w/, I = 1,2,3,..., ' < 1. This type of convergence
criteria is common for linear iterative (Gauss—Jacobi—Seidel) solution methods of relaxation type
[6,11,53,54,57]. For reviews of nonlinear techniques, we refer the reader to Perron [48], Ostrowski [45,46],
Ortega and Rockoff [44], Kitchen [32] or Ames [4]. The algorithm outlined in Egs. (4.2) and (4.3) can be
considered as fixed-point scheme, whose convergence within each time step is dependent on the time step
size itself. The step size can be manipulated, enlarged or reduced, to induce the desired rates of convergence
within a time step, in order to achieve an error tolerance within a prespecified number of iterations. Fol-
lowing the approach in Zohdi [59,60], one approximates the contraction constant n ~ SAf, where one
expects the error within an iteration to behave according to (SAt)[so =¢,1=1,2,..., where g is the initial
error and S is a function intrinsic to the system. Our target or ideal condition is to meet an error tolerance in
a given number of iterations, not more, and not less. One writes this in the following approximate form,
(SAttol)I" & = TOL, where I, is the number of desired iterations. Therefore, if the error tolerance is not met
in a desired number of iterations, the contraction constant 5 is too large. Accordingly, one can solve for a
new smaller step size, under the assumption that S is constant *

4 The assumption that S is constant is not overly severe, since the time steps are to be recursively refined and unrefined.
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TOL)#

Aty = At g—@—7— . (4.10)

&y !
&
Clearly, the expression in Eq. (4.10) can be used for time step enlargement, if convergence is met in less
than I, iterations. One sees that if ¢;, > &, and / = I,, then the expression in Eq. (4.10) collapses to a ratio
. . . . . Id
of the error tolerance to the achieved level of iterative error after I, iterations, At = At (%) , and thus
d

the step size will be scaled by the ratio of the error to the tolerance. For the multifield system, we define the
normalized errors within each time step (L), for the three primary fields, °

et ||uL+1,1 _ "LH'I_IHU(Q)
T e
wr HCLHJ _ CLJr]J?l”Ll(Q)
ey & 4.11
‘ [ - @1
1, 1,71
c def ||9L+ T ||L1(Q)
0] —

l. b
HQH '1||L'(g)

and their corresponding violation ratios

def  €us def o1 def &t

Y = ToL,® ww::f61; Vo = TOL." (4.12)

. . e def . .
One then determines the maximum violation ¥,= max(y/,;, V., ;) and a minimum scaling factor
def

(pl = min(¢u[7 ¢c]7 ¢01) from

(TOLu>é (TOLiyb (T0L9>i
def &y def & def &
by = | 02— by = | 2 by = | 24—

% 9 % ) o1 %
(8u1> <Scl> (801>
62 Ec0 )

Thereafter, the following criteria for temporal adaptivity is adopted:

(4.13)

If tolerances met(y,, and ¥, and ¥, <1) and I < I, then:

(a) Construct new time step: Az = @At

(b) Select minimum: Az = MIN(A/™ Ar)

(c) Step time forward: ¢t = 7 + Arand start at time step(L + 1)
If any tolerance not met(y,; or y, or Y, > 1) or I = I; then:

(a) Construct new time step: At = @, At

(b) Select minimum: Az = MIN(A/™ A7)

(c) Restart at old time

(4.14)

5 The other quantities, «, e;, and e, are controlled by the three primary fields (c, 0, u), thus we monitor only their convergence.
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The overall goal is to deliver solutions where staggering (incomplete coupling) error is controlled and the
temporal discretization accuracy dictates the upper limits on the time step size (Afi™).

5. Numerical experiments

To illustrate the algorithm, we considered a microscale cube of matrix material, with dimensions 10~*
mx10~* mx10~* m, with embedded randomly distributed inhomogeneities. The various physical prop-
erties of the two materials are shown in Table 1, and correspond to a commonly used lightweight aluminum
matrix-boron particle industrial composite. We consider a set of topological microstructural variables
which can be conveniently parametrized by a generalized “ellipsoid”

<|x—x0|> +<|y—yo|>‘+<2—zo|>':1. (5.1)
r r rs

The types of suspensions to be introduced in the matrix binder can be controlled by (1) the polynomial
order, sy, s, and s3, where values of s < 1 produce non-convex shapes, s = 1 produce convex eight-sided
diamond shapes, s = 2 standard ellipsoids and s > 2 values produce “blocklike” shapes, (2) the aspect
ratios defined by ARdef 1= " , where r, = r;, AR>1 for prolate geometries and 4R < 1 for oblate shapes
and (3) the volume fractlons via particle/sample size ratio, which is defined via a subvolume size V = &t LXLXL
where N is the number of particles in the entire sample and where L = 10~* m is the length of the (cublcal)
sample, L x L x L. A generalized diameter is defined, d = 2r, which is the diameter of the smallest sphere

Table 1

Material properties used in the computational examples
Material property Matrix Particles
Mechanical
K (GPa) 71.9 230.0
u (GPa) 25.9 172.0
y (1/°K) 9.71x10°¢ 8.92x107°
Thermal
K (J/sm°K) 237 148
p (kg/m®) 2700.84 2330.28
% (J/kg°K) 903 712
Diffusive
Dy (m/s?) 1.0x107° 1.0x 1077
U (kN m/mole) 142 300
7 (1/s) 5.0x1072 1.0x1072

Damage evolution

a; (m3/molecules s) -7.3x1078 -3.0x107
a; (m3/molecules s) -7.3x1078 -3.0x107°
a; (m*/molecules s) -7.3x1078 -3.0x107
a (1s) 6.27%10-10 3.15%10-10
a; (1/s) 6.27x10°1 3.15x10° 1
ki (MPa) 120 3000

k> (MPa) 120 3000

Cerit (molecules/m?) 0.0 0.0

¢ (Nm) —1x 10" -5x10!
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that can enclose a single particle of possibly non-spherical shape. The ratio between the generalized
diameter and the subvolume are related by 3 Z;. In order to illustrate the behavior we used the disk-like

microstructure shown in Fig. 2. For any microstructural combination, volume fractions, phase contrasts,
etc. .., the samples must be tested and enlarged, holding the volume fraction constant, but increasing the
number of particles, for example from 2,4, ... etc.,..., until the macroscopic results stabilize. Approxi-
mately a 20 particle sample gave relatively stable results. A more detailed and rigorous analysis of size
effects for such systems is beyond the scope of this presentation. The reader is referred to the following
series of works Huet [25-29], Huet et al. [30], Guidoum and Navi [13], Amieur et al. [1], Guidoum [14],
Amieur [2] Hazanov and Huet [15], Hazanov and Amieur [16], Amiecur et al. [3] and Huet [22-24], as well as
some recent work of the author [59,63-66].

Over the course of such tests the finite element meshes were repeatedly refined, and a mesh density of
approximately 9x9x9 trilinear hexahedra (approximately 800-1000 degrees of freedom (DOF) for the
diffusion—reaction and energy balance equations, and between 2200 and 3000 DOF for the vector-valued
balance of momentum) per particle was found to deliver mesh independent results. Therefore, for example
for a 10 particle test, 8000 DOF were needed for the diffusion-reaction and energy balance equation, and
24,000 DOF for the balance of momentum equation, for 20 particles, 15,625 DOF/46,875 DOF, etc. During
the computations, a “2/5” Gauss rule was used, whereby elements containing material discontinuities had
increased Gauss rules (5x5x5) to enhance the resolution of the internal geometry, while elements with no
material discontinuities had the nominal 2x2x2 rule. The numerical resolution of the microstructure is
shown in Fig. 2, for a topological exponent of s; = s, = 53 = 2 for oblate spheroids. For related work in the
optimization of the material microstructure, controlling the parameters such as s, see Zohdi [63,65,66].

The boundary conditions for the cubical domain were: (1) ¢|,o =C=1,¢(x,6=0)=0, (2) 0], = O =
30° Celcius = 303.13° Kelvin, 0(x,t = 0) = 0° Celcius and (3) u|,, = 76 - X, 6;; = 0.02, 4, j = 1, 2, 3, where
X is a referential position vector to the boundary of the cube, ¢ is the time, and T is the total simulation
time. The material parameters, selected only for the purposes of numerical experiment, are shown in Table 1.
From a practical engineering point of view, macroscopic quantities, which are volumetrically averaged
outcomes of the simulated microstructural events, are of interest. Such quantities include, (1) the
mechanical response, (6),, (2) the average change in the material, for example damage, (a),, (3) the average

NAAVAVANAN

Fig. 2. The numerical resolution of s; = s, = 53 = 2 particles, with ¢ = 0.375, and an aspect ratio of %, ie.r = %rz = %r; resulting in a
volume fraction of v, ~ 0.076 (20 particles shown).
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temperature, (0),, and (4) the average concentration (c),. The deterioration rates of all material parameters
other than [E such as K, IDy, etc., were set to zero in the present simulations. Clearly, in this external pure
displacement controlled regime, the stresses will relax over time, since the material stiffness is deteriorating
in the interior.

The algorithmic staggering tolerance was set to max(s,, &, &) < 0.0001 for the normalized/global error
control. The designated maximum number of internal iterations, /;, was set to five. The starting time step
size was At = 10% s. In order to smoothly refine and unrefine the time steps, the adjustments were bounded
between successive time steps (L) to be 0.9 < AX: < 1.1. The total simulation time was set to 1 year. For the
purposes of numerical experiment only, the damage rate parameters were chosen such that for a material
point undergoing constant damage at unit concentration, with no stress, after one year o(t=T) =
0.1 = e, T =31,536,000 s, which led to a; = —7.3 x 1073 (m*/moleculess). This rate was used for the
matrix. For the particulate material, we set the rate parameter to be significantly smaller, a; = —3 x 10~

0.8 [ 1
0.7 | 1
0.6 1
05 1
04 b
03 1
02 b
0.1 b

0 L L L L L L
0 S5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

TIME (SEC)

<c>q (MOLC./\3)

Fig. 3. The volumetric average of the concentration over time.

1.6

14r 1

<6>q (°C)

061 1

0471 1

0 . . . . . .
0 S5e+06 1le+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

TIME (SEC)

Fig. 4. The volumetric average of the temperature over time.
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(m*/molecules s). These values were also selected for the ¢} and a; rates as well. The deterioration rates of all
material parameters other than [E, such as @, K, ID,, etc., were set to zero. For the deviatoric eigenstrain,
the rate coefficient aj was calibrated in such a way that 2 = 0.02 in the matrix and 4 = 0.01 in the particle,
for constant A’s, at t = 7. A value of one-tenth was used for the dilatational eigenstrain. Finally, the
function for the changes in density due to the uptake of the diffusing species was modeled as 7 (¢) = ac,
with a = 0.1 kg/molecule. The time step limit size was set to 5x 10° s, which was set as the upper bound for
reasons of truncation error control. The total number of system solves needed was 462, as opposed to
31,536, had the system been solved non-recursively with no time step adaptation. Figs. 3-8 illustrate the
results for the major quantities of interest. The volumetric average of the concentration (Fig. 3) exhibits a
quasilinear growth over time. The volumetric average of the temperature (Fig. 4) exhibits a nonlinear, non-
monotone, behavior over time, representing initial heating then cooling off. The volumetric average of the

08 | 1

07} 1
06 1
05t 1

<0>,

04 r b

0.1 L L L L L L
0 5e+06 1le+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

TIME (SEC)

Fig. 5. The volumetric average of the degradation over time.

140 ‘ ‘
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100 b
80 - b

60 - b

<0>q (MPa)

401 1

20 b

0 1 1 1 1 1 1
0 S5e+06 1le+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

TIME (SEC)

Fig. 6. The volumetric average of the normal stresses over time.
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Fig. 7. The volumetric average of the shear stresses over time.

500000 w w w
450000 f 1
400000 f 1
350000 f 1

Q 300000 f 1

2]

< 250000 f 1

<
200000 f 1
150000 [ 1
100000 [ 1

50000 1

0
0  S5e+06 1le+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07
TIME (SEC)

Fig. 8. The adapted time step sizes over time.

damage is also highly nonlinear (Fig. 5), and the stresses growth, then relax in a manner that is charac-
teristic of solids undergoing softening (Figs. 6 and 7). In Fig. 7 minor anisotropic texture is exhibited,
indicating that the sample is slightly non-statistically representative. Finally, Fig. 8 shows the variation in
the time step sizes to meet the staggering and discretization error requirements. A spatial time history of the
degradation throughout the solid is shown in Figs. 9 and 10.

6. Concluding remarks

In this work, the (staggering) error due to incompletely resolving the coupling between multifield
equations, describing time-dependent thermo-chemo-mechanical processes in solids possessing irregular
heterogeneous microstructure, was characterized in such a way to be amenable to a relatively simple
method of adaptive control. A solution strategy was developed, whereby the time step size was manipu-
lated, enlarged or reduced, to control the contraction mapping constant of the system operator in order to
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Fig. 9. Starting from the top, left to right: The time history of the degradation («) throughout the solid, in increments of 0.1 years.

induce desired staggering rates of convergence within each time step. The overall goal was to deliver
accurate solutions where the staggering error was controlled while simultaneously obeying time-step size
limits dictated by discretization error concerns.

Generally speaking, the staggering error, which is a function of the time step size, is temporally variable
and can become stronger, weaker, or possibly oscillatory, is extremely difficult to ascertain a-priori as a
function of the time step size. Therefore, to circumvent this problem, the adaptive strategy presented in this
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Fig. 10. Starting from the top, left to right: The time history, continued from Fig. 9, of the degradation () throughout the solid, in
increments of 0.1 years.

work was developed to provide accurate solutions by iteratively adjusting the time steps. Specifically, a
sufficient condition for the convergence of the presented fixed-point scheme was that the spectral radius or
contraction constant of the coupled operator, which depends on the time step size, must be less than unity.
This observation was used to adaptively maximize the time step sizes, while simultaneously controlling the
coupled operator’s spectral radius, in order to deliver solutions below an error tolerance within a pre-
specified number of desired iterations. This recursive staggering error control can allow for substantial
reduction of computational effort by the adaptive use of large time steps. Furthermore, such a recursive
process has a reduced sensitivity, relative to an explicit staggering approach, to the order in which the
individual equations are solved, since it is self-correcting.

In the ideal case, one would like to make predictions of whether a certain type of matrix-particulate
combination will have poor multifield and inelastic behavior via numerical simulations, in order to mini-
mize expensive laboratory tests. As an extension to this work, emphasis should be placed on microstruc-
tural optimization to resist severe-loading environments. For example, this could involve the construction
of an inverse problem, where combinations of particulate and matrix materials are sought to minimize the
following history-dependent objective function:

[T (Moo = 0 g, conseraines
n= [ (et o consnins !

la”
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where 6(x,¢) is the microscopic stress response of the material, 6”(¢) is a prespecified desired effective
macroscopic stress response, 7 is the total time interval of interest, and where || - || is an appropriate norm.
Such an objective function depends in a non-convex and non-differentiable manner on the design
parameters. One approach is to employ algorithms which combine gradient methods for local searches with
genetic algorithms for global searches. A recent overview of the state of the art of genetic algorithms can be
found in a collection of articles edited by Goldberg and Deb [12]. There are a variety of such methods,
which employ concepts of species evolution, such as reproduction, mutation and crossover. The application
of such ideas to non-multifield material design can be found in Zohdi [65,66].
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