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Statistical ensemble error bounds for homogenized
microheterogeneous solids

T. I. Zohdi

Abstract. Typically, in order to characterize the homogenized effective macroscopic response

of new materials possessing random heterogeneous microstructure, a relation between averages

(o)a = IE* : (€)q is sought, where (-)q def

ﬁ jﬂ -dS2, and where o and € are the stress
and strain tensor fields within a statistically representative volume element (SRVE) of volume
|Q2]. The quantity, IE*, is known as the effective property, and is the elasticity tensor used in
usual macroscale analyses. In order to generate homogenized responses computationally, a series
of detailed boundary value representations resolving the heterogeneous microstructure, posed
over the SRVE’s domain, must be solved. This requires an enormous numerical effort that can
overwhelm most computational facilities. A natural way of generating an approximation to the
SRVE’s response is by first computing the response of smaller (subrepresentative) samples, each
with a different random realization of the microstructural type under investigation, and then to
ensemble average the results afterwards. Compared to a direct simulation of an SRVE, testing
many small samples is a computationally inexpensive process since the number of floating point
operations is greatly reduced, as well as the fact that the samples’ responses can be computed
trivially in parallel. However, there is an inherent error in this process. Clearly the population’s
ensemble average is not the SRVE’s response. However, as shown in this work, the moments on
the distribution of the population can be used to generate rigorous upper and lower error bounds
on the quality of the ensemble-generated response. Two-sided bounds are given on the SRVE
response in terms of the ensemble average, its standard deviation and its skewness.

Keywords. Ensemble error bounds, homogenized properties, higher order moments.

1. Introduction

The success of many engineering designs stems from the use of microstructurally
tailored materials. A relatively inexpensive way to obtain desired macroscopic
material responses is to enhance the properties of a base matrix material by ran-
domly dispersing foreign microscopic particles. Such materials offer a lower cost of
manufacturing and greater formability compared to traditional continuous fiber-
reinforced materials. The macroscopic response of such microscopically-modified
base materials is the aggregate behavior of the assemblage of particles suspended
in the binding matrix material. In the construction of such materials, the ba-
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sic philosophy is to select material combinations in order to produce aggregate
responses possessing desirable properties from each component. For example, in
structural engineering applications, the classical choice is a particulate phase that
serves as a stiffening agent for a base matrix material, although in many modern
day designs the concerns are wide ranging, from increasing fracture toughness to
tailoring thermal, acoustical and piezoelectrical properties. In order to acceler-
ate laboratory development of new materials, it is now commonly accepted that
numerical simulation is an important component in the analysis and design of
micro-macro structural response relationships.’

1.1. Basic concepts in macro-micro modeling

We consider the case of linear elasticity. In this context, the mechanical properties
of microheterogeneous materials are characterized by a spatially variable elasticity
tensor IE. Typically, in order to characterize the (homogenized) effective macro-
scopic response of such materials, a relation between averages (o)q = IE™ : (€)q is
sought, where (-)q o ﬁ Jq - d©, and where o and € are the stress and strain ten-
sor fields within a statistically representative volume element (SRVE) of volume
|2|. The quantity, IE*, is known as the effective property, and is the elasticity ten-
sor used in usual macroscale analyses. Such regularization processes are referred
to as “homogenization”, “mean field theories”, “theories of effective properties”,
etc. See Aboudi [1], Jikov et. al. [36], Mura [45], Nemat-Nasser and Hori [46] or
Torquato [52]-[55] for reviews. In a similar manner, one can describe other effective
quantities such as conductivity or diffusivity relating other volumetrically averaged
field variables. However, for the sake of brevity, we restrict our analysis to linear
elastostatics. It is clear that for the relation between averages to be statistically
representative, it must be computed over a sample containing a significant amount
of material. Within the last 100 years, due to the complexity of such problems,
many approximate analytical methods for estimating the macroscopic responses of
materials, based on a priori adhoc assumptions on the microstructural response,
have been developed. Succinctly stated, such models require extensive experimen-
tal data to “tune” parameters that have little or no physical significance. Such
inadequacies have led to computational approaches which require relatively sim-
ple descriptions on the microscale, leaving the majority of the effort to large-scale
computing.

1 There are a variety of terms which refer to intentionally doped microheterogeneous
solids, for example, “composites”, “new materials”, “tailored solids” or “advanced solids”.
Since the terms are essentially synonymous, we use them interchangeably.
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1.2. Mathematical setting

The computation of effective properties (the IE*’s) requires a somewhat precise
mathematical statement. Consider a sample of heterogeneous material occupy-
ing an open bounded domain in Q € R3, under a given set of specified bound-
ary loadings. Its boundary is denoted 0€2. The body is in static equilibrium
under the action of body forces, f, and surface tractions, t. The boundary
00 = T, UT, consists of a part T';, and a part I'y on which displacements and
tractions are respectively prescribed. Following standard notation, H!(f2) is de-
noted as the usual space of functions with generalized partial derivatives of de-
gree < 1 in L?(Q). The symbol H'(Q) e [H1(Q)]? is defined as the space
of vector-valued functions whose components have generalized partial derivatives
< 1in L3(Q) ¥ [L2(Q)]®. The symbol “u|sq” is used for generalized bound-
ary values, for example for specified boundary displacements. Throughout the
analysis, the microstructure is assumed to be perfectly bonded. A general varia-
tional boundary value representation is: Find w € H*(Q), u|r, = d, such that
JoVv i E: VudQ = [of-vdQ+ [ t-vdA, Vo € H'(Q),v|r, = 0. The
data are assumed to be such that f € L*(Q) and t € L*(T;), however less smooth
data can be considered without complications. It is convenient to consider the
sample domain (£2) as a cube, although, strictly speaking, this is not necessary. A
commonly accepted macro/micro criterion used in effective property calculations
is the well-known Hill condition (Hill [28]), (o : €)q = (0)q : (€)q. Hill’s condition
dictates the size requirements on the sample to be statistically representative. The
classical argument is as follows. For any perfectly bonded heterogeneous body, in
the absence of body forces (f = 0), two physically relevant loading states satisfy
Hill’s condition. They are (1) pure linear boundary displacements of the form
u|pqn = &€ - x, which implies (€)q = £ and (2) pure boundary tractions in the form
tlaq = L - n, which implies (o)q = £, where & and £ are constant strain and
stress tensors, respectively. Clearly, for Hill’s condition to be satisfied within a
macroscopic body under nonuniform external loading, the sample must be large
enough to possess small boundary field fluctuations relative to its size. There-
fore applying either of the two mentioned types of boundary conditions to a large
sample is a way of reproducing approximately what may be occurring in a sta-
tistically representative mesoscopic subdomain of material within a macroscopic
body.? Explicitly, to determine IE*, one specifies six linearly independent loadings
of the form, (1) ulpg = EL=VD .z or (2)t|sq = LIVD . n, where £~V and
LU=V are symmetric second order strain and stress tensors, with spatially con-
stant components. Each independent loading state provides six equations, for a
total of 36, which are used to determine the tensor relation between average stress
and strain, IE™. If the effective response is assumed isotropic, then only one test

loading (instead of the usual six), possessing non-zero dilatational (7 and “€)

2If the sample were infinite in size in comparison to the length scales of the microstructure,
and £ = IE* : £, then these test loading would be identical.
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and deviatoric components (o and €'), is necessary to determine the effective bulk

def (txO « def No (O

and shear moduli, 3x*

1.3. Size effects in computational materials testing

In order to perform meaningful characterizations of new materials with inherently
heterogeneous microstructure, one needs reliable effective responses. It is clear that
for the relation between averages to be useful, i.e. statistically representative, the
sample must be so large that, for further enlargements, IE* changes minimally. Un-
fortunately, detailed boundary value representations resolving the heterogeneous
microstructure require an enormous numerical effort that can overwhelm even the
most modern computational facilities. In short, solutions to partial differential
equations posed over statistically representative samples of irregular microhetero-
geneous material are still open problems, even in the case of linearized elasticity.
Therefore, due to the inability to directly simulate a statistically representative
volume element, one must settle for computing responses of sub-statistically rep-
resentative, finite sized, samples. Computationally, it is clear that testing many
small samples is less expensive since the number of floating point operations is less,
as well as the fact that the samples’ responses can be computed in parallel. For
example, if one considers a large cubical domain, whose response is simulated using
n numerical unknowns, for example employing a finite element discretization, ap-
proximately O(n") floating point operations are needed to solve the system. The
value of ~, typically 2 < v < 3, depends on the type of algebraic system solver
used. If the cube was divided into N equal subdomains (subcubes), the number of
floating point operations needed would be approximately on the order of (%)’Y N,
and thus DIRECT COSTS/DECOMPOSED COSTS ~ N”~!. For example,
if one had 1000 subdomains, the “broken” solution costs between 1000 and 1000000
times less to compute than the globally exact solution. The advantages are not
limited to the possible reduction of operation counts. If one includes the inherent
trivial paralellization, then the ratio of costs becomes PNY~!, where P denotes
the number of processors. However, a primary problem associated with computing
macroscopic effective mechanical responses of relatively small finite sized samples
of materials, possessing heterogeneous irregular microstructure is that equal sized
samples exhibit mutual fluctuations from one another, i.e. no single effective re-
sponse (IE™) will be obtained, but rather a distribution of responses, IE* + AIE*,
even for relatively large groups of particles.?

Following Zohdi and Wriggers [62], we considered a set of tests where the
number of (spherical) randomly dispersed particles contained in a sample were
increased holding the volume fraction constant. During the tests, we repeatedly

31t is obvious that if the samples were infinite in size relative to the particles, there would be
no fluctuations in the responses, but clearly this is impossible to test from either a
computational or experimental point of view.
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Figure 1. RIGHT: The shear responses, u*, of 512 equally sized samples each with 20
randomly distributed Boron spheres embedded in an Aluminum matrix. Each point represents
the results of one test. LEFT: The corresponding histogram for the variations in the effective
shear responses, p*. The data are from Zohdi et al. [64].

refined the mesh to obtain invariant macroscopic responses. For illustration pur-
poses, we used an Aluminum (matrix)/Boron (particle) combination, which of-
fers a high strength lightweight alternative to steels. The Boron (k = 230 GPa,
@ = 172GPa) is used as a stiffener for the Aluminum matrix (x = 77.9 GPa,
i =24.9GPa). We used a moderate particulate volume fraction of approximately
22 %. For a variety of numerical tests, discussed momentarily, the typical mesh
density to deliver mesh insensitive volumetrically ensemble averaged responses was
9 x 9 x 9 trilinear finite element hexahedra (approximately 2200-3000 degrees of
freedom (DOF)) per particle. The following particle per sample sequence was used
to study the dependence of the effective responses on the sample size: 2 (5184
DOF), 4 (10125 DOF), 8 (20577 DOF), 16 (41720 DOF), 32 (81000 DOF) and
64 (151959 DOF) particles. In order to get more reliable response data for each
particle number set, the tests were performed 100 times for each sample size (each
time with a different random particulate distribution) and the responses averaged.
A meaningful parameter to track was the ratio of the diameter of the individual
particles (d) to the length of the sample (L). Throughout the tests, we consid-
ered a single combined boundary loading satisfying Hill’s condition, u|sq = £ - @,
&i; =0.001,4,5 = 1,2,3. We tracked the effective bulk and shear moduli, x* and
w*, respectively. Since the effective bulk and shear responses behave in a quan-
titatively similar manner, for brevity, we show only the effective shear responses.
Motivated by the fact that for three successive enlargements of the number of par-
ticles, i.e. 16, 32 and 64 particle samples (the responses differed from one another,
on average, by less than 1 %), we selected the 20-particle microstructures for fur-
ther tests.? Following Zohdi et al. [64], we then simulated 512 different samples,

4A “2/5” Gauss rule was used, whereby elements with discontinuities had increased Gauss
rules (5 X 5 x 5) to increase the resolution of the internal geometry, while elements with no
discontinuities had the nominal 2 X 2 X 2 rule. For more details on such simulation techniques
see Zohdi and Wriggers [62].
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each time with a different random distribution of 20 nonintersecting particles oc-
cupying 22 % of the volume. Consistent with the previous test’s mesh densities,
we found that beyond approximately 2344 DOF per particle (24 x 24 x 24 mesh
or 9 x 9 x 9 trilinear hexahedra or 46875 DOF per test sample), the numerical
simulations were insensitive to further mesh refinements. As one can see in Fig-
ure 1, the fluctuation in the response is roughly seven percent. Detailed studies
and reviews addressing size effects in effective responses of heterogeneous media
can be found in Huet [30]-[32], Hazanov and Huet [26], Hazanov and Amieur [27]
and Huet [34], [35]. It is clear that the effects of fluctuations due to sample size
can undermine the ability to accurately compare responses for material design
changes, for example changes in the particulate material’s volume fraction, phase
contrasts (stiffness mismatches) or topologies. We refer the interested reader to
Zohdi [65] for design case studies. A natural way of generating an approximation
to the SRVE’s response is by ensemble averaging the responses of smaller samples,
such as the ones just presented. However, the population’s ensemble average is
not the SRVE’s response. However, as we proceed to prove, the moments of the
distribution of the population can be used to generate rigorous upper and lower
error bounds of the quality of the ensemble-generated response. Two-sided bounds
are given on the ensemble average, its standard deviation and its skewness, i.e. the
symmetry of the distribution.

Remarks: The upcoming results can be used in conjunction with a variety of
methods to perform large-scale micro-macro simulations. Noteworthy are the mul-
tiscale methods: Fish and Wagiman [6], Fish et. al [7], Fish and Belsky [8], Fish
and Belsky [9], Fish and Belsky [10], Fish et. al [11], Fish et. al [12], Fish and
Shek [13], Fish and Ghouli [14], Fish and Yu [15], Fish and Chen [16], Chen and
Fish [5] and Wentorf et. al [58], Voronoi cell methods: Ghosh and Mukhopad-
hyay [18], Ghosh and Moorthy [19], Ghosh et. al [20], Ghosh and Moorthy [21],
Ghosh et. al [22], Ghosh et. al [23], Lee et. al [38], Li et. al [40], Moorthy and
Ghosh [43] and Raghavan et. al [50], transformation methods: Moulinec et. al
[44] and Michel et al. [41], partitioning methods: Huet [30], [31], [32], Hazanov
and Huet [26], Hazanov and Amieur [27] and Huet [34], [35] and the adaptive
hierarchical modeling methods: Zohdi et. al [59], Oden and Zohdi [47], Moes et.
al [42], Oden and Vemaganti [48], Oden et. al [49] and Vemaganti and Oden [56]
and finally multipole methods adapted to such problems by Fu et. al [17]. Par-
ticularly, attractive are iterative domain decomposition type strategies, whereby
a global domain is divided into nonoverlapping subdomains. On the interior sub-
domain partitions an approximate globally kinematically admissible displacement
is projected. This allows the subdomains to be mutually decoupled, and therefore
separately solvable. The subdomain boundary value problems are solved with the
exact microstructural representation contained within their respective boundaries,
but with approximate displacement boundary data. The resulting microstructural
solution is the assembly of the subdomain solutions, each restricted to its corre-
sponding subdomain. As in the ensemble testing, the approximate solution is far
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more inexpensive to compute than the direct problem. Numerical and theoretical
studies of such approaches have been studied in Huet [30], Hazanov and Huet
[26], Zohdi et. al [59], Oden and Zohdi [47], Zohdi and Wriggers [60],[62],[63],
Zohdi [61] and Zohdi et. al [64]. Clearly, when decomposing the structure by a
projection of a kinematically admissible function onto the partitioning interfaces,
regardless of the constitutive law, the error is due to the jumps in tractions at the
interfaces (statical inadmissibility). If the interfaces would be in equilibrium, then
there would be no traction jumps. Therefore, if the resulting approximate solution
is deemed not accurate enough, via a posteriori error estimation techniques, the
decoupling function on the boundaries of the subdomain is updated using infor-
mation from the previously computed solution, and the subdomains are resolved.
Methods for updating subdomain boundaries can be found in Zohdi et. al [64].
They bear a strong relation to alternating Schwarz domain decomposition meth-
ods (see Le Tallec [39] for reviews) and methods of equilibration, i.e. balancing
traction jumps at subdomain interfaces (see Ainsworth and Oden [2]).

2. Statistical shifting theorems

Consider any tested quantity, @, with a distribution of values (Q;, i =1,2,..N =
samples) about an arbitrary reference point, denoted Q*, as follows:

N . O*\T
MO ! Zi:l(%\lf Q)" der CERR (1)
where # def (-) and A def Q;. The various moments characterize the distri-

bution, for example: (1) M ?"’_A measures the first deviation from the average,
which equals zero, (2) M2i7° def W def (Q; —0) = A, (3) M is the
standard deviation and (4) M ?’”A is the skewness. The skewness measures the
bias, or asymmetry of the distribution of data. The moments of the data can be
expressed about the average and related to any other reference point, denoted here
as @*, using parallel axis type theorems. Using the notation in Equation 1, let us
define ¢ =Q; —A= Qi =A+q¢=Qi=A+7 = Q; — Q; = ¢; — G;. There are
useful properties associated with these relations, in particular a shifting property
for the standard deviation

M Q= A7 = (6 — @) = & — 20 + T,
=¢2 - 232 + @2,
= ¢ — T
= MY - (MY,

as well as for the skewness
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;—A def — — — —
MG = (Qi— AP = (4 — G)° = ¢ — 362G + 360 — T
=q} - 3¢;G + 23, (3)
= M7 3(METO MG 2oAMPT)

From Equation 2 we may write

)

BMET ) (M) oMLY = MPY (3(MF ) —2MP))
= M (M oM ) oM P,

_ M?i*Q* (M2Qi*Q* +2M§2i7‘4)7
4)

and therefore,

M?C)?i—A + M?i—Q* (M?L_Q* 4 2M2Q1—A) _ M3QL_Q* (5)

We now proceed to bound the average, standard deviation and skewness associated
with the ensemble averaging of a population of samples.

3. Domain decomposition and ensemble averaging

3.1. Primal partitioning

1
N

Qg

Figure 2. A regular partitioning of a large sample of material.
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Consider a (statistically representative) sample of material with the following
general boundary value representation

Find v € H'(Q),u

r, = d, such that

(6)
/Vv:lE:VudQ:/f'deJr/ t-vdA, Yve H (Q),v|r, = 0.
9] O_V Q Iy

Now partition the domain into S subdomains, €2 = U}’}Zlﬁ k- The pieces do not
have to be the same size or shape, although for illustration purposes it is conve-
nient to use a uniform (regular) partitioning (Figure 2). Consider a kinematically
admissible function, U € H*(Q) and U|r, = d, which is projected onto the inter-
nal boundaries (0Qk) of the subdomains. Any subdomain boundaries coinciding
with the exterior surface retain their original boundary conditions (Figure 2). Ac-
cordingly, we have the following virtual work formulation, for each subdomain,
1I<KLS:

Find @y € H'(Qk), @kloqxnour,) = U € H'(R), such that

/ V’UKZIEZV’ELKdQ:
Qx N——r

Gk

f'deQ+/ t-vgdA (7)

Qe O NIy

Yoi € H (Qx), vi|oaxn@ur,) = 0.

The individual subdomain solutions, @y, are zero outside of the corresponding
subdomain Q. In this case the approximate solution is constructed by a direct
assembly process, @ LC g (w1 —U)lq, + (a2 —U)lq, + ... + (s — U)|qy- The
approximate displacement field is in H 1((2), however, the approximate traction
field may possibly be discontinuous. Logical choices of U, i.e. U = &£ - x, will
be given momentarily. It should be clear that if U = w on the internal partition
boundaries, then the approximate solution is exact. Since we employ energy type

variational principles to generate approximate solutions, we use an induced energy

def ~
= [oV(u—a) :

IE : V(u—a)dQ. It is convenient to cast the error in terms of the potential
energy, J(w) o s JoVw  IE : VwdQ — [, f - wdQ — Jr, t-wdA, where w is
any kinematically admissible function. This leads to ||u — 'w||%(9) = 2(J(w) —
J(u)) or J(u) < J(w), which is a form of the Principle of Minimum Potential
Energy. In other words, the true solution possesses a minimum potential. By direct
substitution we have ||u — 11||2E(Q) =2(J(u) — J(u)). In the special case that

u|oq = € x, which is equivalent to testing each subsample with u|gq,, = £ -2 and

£ =0, then |lu—a|%q =E: (E — IE): £|Q], where (6)q, & IEy : (&),

norm to measure the solution differences 0 < |[lu — 11||2E(Q)
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i el S Qx|
and IE = ZKzlmK‘T.

3.2. Complementary partitioning

We can repeat the partitioning process for an applied internal traction set of tests.
The equivalent complementary form for the exact (undecomposed) problem is

Find o,V -0+ f =0,0 - n|r, =t such that

(8)
T:Eiliﬂ'dQ:/ T’nddA, VT,V'T:(),T'nh"t:O'

Q Ty

For the complementary problem, similar restrictions are placed on the solution
and test fields to force the integrals to make sense. In other words, we assume
that solutions produce finite global energy. When employing the applied internal
traction approach, in order to construct approximate solutions, a statically ad-
missible function, X, with the property that X - n|r, = ¢, is projected onto the
internal boundaries of the subdomain partitions. As in the applied displacement
case, any subdomain boundaries coinciding with the exterior surface retain their
original boundary conditions. Accordingly, we have the following complementary
virtual work formulation, for each subdomain, 1 < K < §':

Find 6,V -6x+f=0,6x - n‘agkm(gupt) =3 nlagkm(gupt) such that
/ TK:E—lz&KdQZ/ T -n-ddA
Qx Ty

V7,V T =0,Tk - n|so,nur,) = 0.

(9)
The individual subdomain solutions, & g, are zero outside of the corresponding
subdomain Qg. In this case the approximate solution is constructed by a direct
assembly process & s (61 =), + (62 —)|g, + ... + (65 — X)|as. The
stress field is statically admissible, however, the approximate displacement field
is possibly discontinuous. Logical choices of ¥, 3 = L = constant, will be given
momentarily. It should be clear that if 3 = o on the internal partition bound-

aries, then the approximate solution is exact. We define the complementary norm
0< |lo 61310 % [ (0 —6): ™" : (o~ &)dQ. As in the primal case, it is

convenient to cast the error in terms of the potential complementary energy for the
case of linear elasticity, where K(=) def 1 0 E': vdQ— [ y-n-udA, where
~ is any statically admissible function. The well known relationship, for a statically

admissible function =, is ||o —7||%,1(Q) =2(K(o)—K(o)) or K(o) < K(). This
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is a form of the Principle of Minimum Complementary Potential Energy. In other
words, the true solution possesses a minimum complementary potential. Choos-
ing v = &, we have ||o — 6‘||§5(Q) =2(K(6) — K(0)). In the special case that
tloo = L - m, which is equivalent to testing each subsample with t|gq, = £ - n,

A —1x% e A —1x% "
o~ 6|3 =L: (I —IE™): £|Q], where (&), < Iy : (6)q, and

1% def S S 71*|QK|
B By Sl

3.3. Homogenized material orderings

If the sample is statistically representative, we have IE~** = IE*~!, then the pre-
vious results imply, under the assumption that the uniform loadings are arbitrary,
the following two sided ordering of approximate effective material responses,

(E Y, ' <IE < IE* <IE < (IE)qg, (10)

where the tensor inequality notation means, for example, that & : IE-IE:€ >0
for all admissible £, where the equality holds only if £ = 0. Since J(u) < J(U),

we also have I < (IB)q. Alternatively, since K(&) < K(L), then I <
(IE~1)q. For isotropic responses, we have

</€_1>51 S A S P S * S </€>Q
(11)

(i hg' << pt << (W

To the knowledge of the author, the result in Equation 10 was first derived in Huet
[32] by alternative means.

Remark: Voigt [57] (1889) is usually credited with the first analysis of the effective
mechanical properties of the microheterogeneous solids, with a complementary
contribution given later by Reuss [51] (1929). Voigt assumed that the strain field
within an aggregate sample of heterogeneous material was uniform, leading to
(IE)q as an expression of the effective property, while the dual assumption was
made by Reuss, who approximated the stress fields within the material as uniform.
If the Reuss field is assumed within the SRVE, then an expression for the effective
property is (IE~')o'. A fundamental result (Hill [28], 1952) is (IE~ ') < IE* <
(IE)q. These inequalities mean that the eigenvalues of the tensors IE* — (IE~ ) *
and (IE)q — IE™ are non-negative. Therefore, one can interpret the Voigt ([57]
(1889)) and Reuss ([51] (1929)) fields as providing two microfield extremes, since
the Voigt stress field is one where the tractions at the phase boundaries cannot
be in equilibrium, i.e. statically inadmissible, while the implied Reuss strains are
such that the heterogeneities and the matrix could not be perfectly bonded, i.e.
kinematically inadmissible. Typically, the bounds are quite wide and provide only
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rough qualitative information.

3.4. Embedded orthogonal monotonicities

Since @ is kinematically admissible, we have ||lu — f‘”%(g) = 2(J(u) — J(u)).
If we repartition the existing subdomains into more subdomains (Figure 3), and
use U for the local boundary conditions on the finer partition, upon solving the
local boundary value problems and assembling the local solutions together (just as
before for i), we have, denoting the solution by , |4 — | |2E(Q) =2(J(0)—J(@)).
Adding the two previous relations together yields an orthogonal decomposition

||u_a”]25‘(§2) = |la — 4|3, +[Ju = a5 q)- (12)

This implies that the error monotonically grows for successively finer embedded
partitions. Intuitively one expects this type of growth in the error, since one is
projecting more inaccurate data onto the interfaces. Simply stated, more embedded
subdomains, more error. Furthermore, the relationship is monotone. As in the
displacement controlled tests, for traction controlled tests we have

HO’*&HQEA(Q) =llo — 3’”%%(9) +llo = 6[1%-1(q)- (13)

In terms of effective properties, Equation 12 implies € : (1~E* —IE"):£=¢&:
(IE*—IE") : £+& : (IE" —IE") : £, while Equation 13 implies £ : (IEil*flEfl*) :

L=1L:(IE" —IE_l*) L+ L (IE_l* —IE~"*) : L. To streamline the notation

Z

we employ the notation IE* to denote Z embedded partitions, etc. The higher the
number the more embedded partitions exist (Figure 3). Therefore, for 1 < M < Z
and 1 < P < L, we have

L P
(IEYo' <. IE*<IE* ...
g o M A
<IE <IE<IE <. E<IE . <{(IE) (14
The results of this section generalize and extend relations found in Huet [32],

Hazanov and Huet [26], Huet [35], Zohdi and Wriggers [60], Zohdi [61] and Zohdi
et al. [64] and Zohdi [66].

Remark: For isotropic material responses we have
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L P M é
(DG < K<k LS RTS RS E <k <k L < (K)g
(15)
_1_1< L*<P* < or < oyt < or < ka<z* <
(W g S op'spr S Spt S S Loptspt L < (e

Figure 3. Successively embedded partitions.

4. Moment bounds on population responses

Let us take any effective property, averaged over the ith subsample, denoted by
Q;, and correspondingly then A is the average of all of the samples. Let Q* denote

the true effective property. We use the notation [IE — IE*] LT, (IE"-IE*): T,
where 7 is any arbitrary second order (strain) tensor.

4.1. First order (average) bounds

Equation 14 implies

L
—1E")

b

Z* NI* Z* * Z* p* Z*

(16)
N L ) S Lo
M[llE —IE" > M[llE —IE" > M[llE —IE" > M[llE —IE I
4.2. Second order (standard deviation) bounds

For the second order moments, the shifting theorems imply
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_ 2
Z Z
- . Lo g\’
MY TN _ - ”(ME }) ,
] N (17)
ll%*v IE lﬁ*v lé Z lﬁ
M[Q (2 ] — M[2 (2 ]+ M[l (e ] ,
. A 3 . ) 2
IE I 1B _IE B _IE
Y e ¥ I .Y o I
and
i L L 2
M[QE*i_IE*] _ M[IE*i_IE*] + (M[llE*i—lE*]) 7
. ) ) 2
L* P* L* L* L* P*
M[21E —IE") _ M[IE —IE™ I (M[llE —1IFE ]) 7
(18)
R ) X 3 2
IE I IE_IE" IE_IE
Y AN vl
R _ A ) 3 2
L* I\/I* L* L* L* I\/I*
The results in Equations 16-18 imply
z N 7 i z P 7 L
(19)
PP P i Lo o Loz
M[QIE —1IE™ < M[QIE —1IE™] < M[QIE —IE" < M[21E —IE™]

Remark: In the case of isotropy, the moment results hold for the effective shear
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and bulk moduli individually.

4.3. Third order (skewness) bounds

From Equation 5, we may write the skewnesses as

Z Z Z Z Z
MgIE —IE") _ MglE —IE") +M[11E —IE ]M[QIE —IE"

Z 7 4
+om BB B - IET)
[ i ] _ Mé i ]_1_]\4[1 i ]]\4[2 i ]

Z* M* Z* Z*
oM IE BT I - BT
Z* Z* Z* ﬁ* z* ]:*
[IE —IE"] +M[1E —IE ]M[QIE —IE"
7
+2M[1E o) ]M[IE* -IE,

ML ]_Mf I M[ Vi
+2M[1E I B I !
and as
MglE*ﬁIE I M[IE 1E ] [IE IE ]M[IE* IE")
+2M[IE IE*]M[IE IE*]
P
Mg ] [ } g ]M[ ]
* L* ﬁ*
+2M[1E IE ]M[IE —IE™
i 7 i
MEIE_IE ] M[IE —1IE") JF]V_,[IE lE ]M[ 1E ]
+2M[IE IE ]M[IE IE ]

511

(20)
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IZ* ]Cl* I;* I:*
+ ot B~ IE B - TE

)

The previous expressions imply

Z* M* Z* * Z* 13* Z* I:l*

M[SIE —IE" < MgIE —IE" < MgIE —IE") < MgIE —1IE™]
(22)

L* P* L* * L* M* L* Z*

MglE —IE™ > ML)IE —1IE™ > MglE —IE™] > MglE —1IE )

The derived results allow one to bound, above and below, the unknown SRVE
response in terms of the ensembles averages. Using similar techniques, bounds on
even higher order moments, such as the kurtosis (fourth moment), which measures
the peakedness of the distribution, are possible.
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