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Charge-induced clustering in multifield particulate flows

T. . Zohdi* T

Department of Mechanical Engineering, University of California, 6195 Etcheverry Hall,
Berkeley, CA 94720-1740, U.S.A.

SUMMARY

The present work extends recent results in Zohdi (Int. J. Solids Struct., in press; Proc. Roy. Soc., in
press) to develop models and robust solution strategies for the direct simulation of the dynamical flow
of charged particles undergoing simultaneous contact, surface reactions and heat transfer. Emphasis is
placed on the possibility of particle clustering which can lead to the formation of cluster-structures
within the particulate flow. A recursive ‘staggering’ solution scheme is developed, whereby the time-
steps are adaptively adjusted to control the rates of convergence within each time-step, and hence, the
error associated with the incomplete resolution of the coupled interaction between the various fields
and associated constraints. Representative numerical simulations are provided in order to illustrate the
character of the model and the solution strategy. Copyright © 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There has been a steady increase in analysis of complex particulate flows, where multifield
phenomena, such as electrostatic charging and thermo-chemical coupling, are of interest. Such
systems arise in the study of clustering and aggregation of particles in natural science appli-
cations where particles collide, cluster, and grow into larger objects. For reviews, see Ref-
erences [1-23]. For general overviews, we refer the reader to Behringer and collaborators:
References [24-27]; Hutter and collaborators: References [28—41] and Jaeger and collabora-
tors: References [42-51]. Understanding coupled phenomena in particulate flows is also of
interest in modern industrial processes which involve epitaxy, sprays, dust control, etc. For
example, in many processes, intentional charging and heating of particulates, such as those in
inkjet printers, is critical. Thus, in addition to the calculation of the dynamics of the parti-
cles in the particulate flow, the electrostatic and thermo-chemical fields must be determined
simultaneously to be able to make accurate predictions of the behaviour of the flow.
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PARTICULATE CLUSTERING 871

Figure 1. Clustering within a particulate flow.

The present work extends recent results in References [52,53] to develop models and ro-
bust solution strategies to perform direct simulation of the dynamics of particulate media in
the presence of multifield effects. In particular, the emphasis placed on developing models
and physically-based high-performance solution strategies incorporating near-field interaction
between charged particles, interparticulate contact and thermo-chemical coupling due to surface
reactions simultaneously, with an eye towards describing particulate clustering (Figure 1).

2. CHARGED INTERACTION BETWEEN PARTICLES

Building on the work found in References [52,54], we treat the grains as spherical particles,
i.e. their rotation with respect to their mass centres is deemed insignificant.* We consider a
group of non-intersecting particles (n in total). The equations of motion, for the ith particle in
a particulate flow, is

miF; =Y (r1,r, ... 1) )

where r; is the position vector of the ith particle and where ‘I’fm represents all forces acting

on particle i. In particular, ¥i*' = ‘l’?f + peon 4 ‘I’if " represents the forces due to near-field
interaction, discussed presently, and normal contact forces and friction, which are discussed
afterwards.

2.1. Attraction—repulsion forms

We consider the following relatively general central-force attraction-repulsion form for the
near-field forces induced by all particles on particle i

n — —
D Sl B e o et e 1 B )
J# —
attractive part repulsive part unit vector

*Henceforth, we use the term ‘grain’ and ‘particle’ interchangeably.
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872 T. I. ZOHDI

where || - || represents the Euclidean norm in R3, where all of the parameters, o’s and f’s, are
non-negative, and where the normal direction is determined by the difference in the position

vectors of their centres, n;; défr i — ri/llri —rjl|l. The force interaction of the form chosen is
stable, in the sense that for small disturbances, the system will remain near an equilibrium
position, whereas unstable equilibrium will cause the system to move away from an equilibrium
position, with an increasing velocity, provided that the exponents are suitably chosen in Equation
(2). In order to motivate the concept of stability for such systems we refer to the classical
theory of conservative forces. A force field ¥/ is said to be conservative if and only if there
exists a continuously differentiable scalar field V such that Y/ = —VV. If the force field is
conservative, with potential V, then a necessary and sufficient condition for a particle to be in
equilibrium at that point is that ¥/ = —VV = 0, in other words 0V /dx; = 0,0V /dx; = 0
and 0V /0x3 = 0. Forces acting on a particle that are in the direction of a vector connecting the
centre of the particle and a point, perhaps the centre of another particle, and whose magnitude
depend only on the distance between the particle and the point in question, are called central
forces. The forces have the following form:

ro
——— =%(lr —rolhn 3)
lr —roll
where r is the position of the particle, where ry is the position of the point of attraction/
repulsion. The normal direction, connecting the two points, is given by n = ro — r/||r — ro||.
The central force is one of attraction if € (||r —rg||) > O and one of repulsion if €(||r —rg|) <
0. We remark that a central force field is always conservative, since V X y'/ = 0. For
example, consider V = (oq||r — r0||*/31+1)/ — B+ 1 —[(a2]lr — ro||*ﬁ2+1)/ — f» + 1], where
all of the parameters, o’s and f’s, are non-negative. The gradient yields —VV = yil =
(op||lr — r0||_ﬁl —wp|r — r0||_ﬁ2)n, which is the form introduced previously. If a particle which
is displaced slightly from an equilibrium point tends to return to that point, then we call that
point a point of stability or stable point and the equilibrium is said to be stable. Otherwise, we
say that the point is one of instability and the equilibrium is unstable. A necessary and sufficient
condition that an equilibrium point be one of stability is that the potential V at the point be a
minimum. The general condition by which a potential is stable for the multidimensional case
can be determined by studying the properties of the Hessian,

r —
¥ = —6(Ir = rol)) ——

v v v
0x10x1 0Ox10xp  0x10x3
2 2 2
[H] def oV oV oV @)
Oxp0x1  0x20xp  0xp0x3
v v v
| Ox30x1 0x30xp  0Ox30x3

around an equilibrium point. A sufficient condition for V to attain a minimum at an equilibrium
point is that the Hessian be positive definite (which implies that V is locally convex). For more
details see Reference [55]. The central force potential chosen in this work is near-field stable
for motion in the normal direction, i.e. the line connecting the centres of the particles. For
disturbances in directions orthogonal to the normal direction, the potential is neutrally stable,
i.e. the Hessian’s determinant is zero, thus indicating that the potential does not change for such
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PARTICULATE CLUSTERING 873

perturbations. Thus, in order to determine stable parameter combinations, consider a potential
function for a single particle, in one-dimensional motion, representing the motion in the normal
direction, attracted and repulsed from a point ro measured by the co-ordinate r,

I ST I S DU s 5
=l =l )

whose derivative produces the form of interaction forces introduced earlier:

Vv

ov
W = — = = (ulr —ro| P = ealr = rol )n ©)

A

where n = rg — r/|r — ro|. We remark that the motion in the normal direction is relevant for
central forces of this type. For stability, we require

2
oV . o
— = —aBilr = rol T oo fylr — o 77> 0 @)
A static equilibrium point, r = re, can be calculated from ¥/ (|re — ro|) = —ay|re — ro| 7Pt +
o|re — ro| P2 = 0, which implies
o 1/(=B1+5)
lre —rol = — )
o]

Inserting Equation (8) into Equation (7) yields a restriction for stability, 5,/f; > 1.

One can consider the convexity requirement on the potential to insure that the perturbed
motion to a dynamical state remain small. Consider the dynamics of a particle in the normal
direction, with a perturbation, 7 = r + or,mr = pnf (7), where r is the perturbation-free
position vector of the particle, governed by mi = ¥ (r). Taking the difference between these
two differential equations yields
nf nf
or 4+ = mor— o

F=r r=r

. o
mor =W (7) — ¥ (r) ~

0

If 6‘1’"f (r)/0r is positive, there will be exponential growth of the perturbation, while if
W™ (r)/or is negative, there will be oscillatory behaviour of the perturbation. Thus, since

—(32V/6r2 = 0¥ /or, we have

otV

S e
mor + Pl

r=r

IS%
N
&
=

(10)

The convexity of the potential simply corresponds to the positiveness of the stiffness at r. In
addition to the instabilities about an equilibrium point, the point at which the potential changes
from a convex to concave character is a source of long-range instability (Figure 2). For motion
in the normal direction, we have

v

— =Bl —rol T+ Byl — o T =0 (11)
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874 T. I. ZOHDI

POTENTIAL

: LOSS OF CONVEXITY
t*-—d.—-i SEPARATION
l'I'II ml

Figure 2. Identification of an inflection point (loss of convexity).

thus leading to

1/(=B1+B2)
o
Ir = rol = (—ﬁ2 2) =d* (12)
Broa
Thus, the preceding analysis indicates that, for the three-dimensional case, the interaction should
be cut-off beyond ||r; —r;|| = d* to avoid long-range (central-force) instabilities.

2.2. Clustering via binding forces

In many applications the near-fields can dramatically change when the particles are very close
to one another, leading to increased repulsion or attraction. Of specific interest in this work is
interparticle binding leading to clustering® (Figure 1). A particularly easy way to model this is
via an activation of a near-field attractive augmentation of the form, if ||r; —r;|| < (b; +b;)0,
\a def _
A R L (13)
——
v ' BINDING FORCE

where b; and b; are the radii of the particles,('[ and where 1<, is the critical distance
needed for the augmentation to become active. The corresponding binding potential is (active,
if ||r; —rjll < (bi +bj)da)

dallri — rjl|~Pat!
_ﬁa +1

Valllri —rjl) = (14)

8Sometimes the term ‘agglomeration’ is used in the literature.
‘][They will be taken to be the same, later in the simulations.
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Denoting the nominal (unclustered) equilibrium distance by d. and the equilibrium distance,
when clustering is active, by d,, we have, with f, = f5;

o 1/(=p1+B2) 0 1/(=B1+B2)
lri —ril=|—— =dy<de = | — (15)
o1 + oy o1

Clearly, with such a model, the magnitude of o, must be limited so that no inter-penetration
of the particles are possible, i.e. ||r; —rj|| = b; +b;.

Remark 1

For many engineering materials, some surface adhesion persists, which can lead to a sticking
phenomena between surfaces, even when no explicit charging has occurred. For more details,
see Reference [56].

Remark 2

There are similarities between particulate flow models and those found in the field of molecular
dynamics (MD), where the motion of individual atoms is described by the Newton’s second law
with the forces computed from a prescribed potential energy function, V(r), m¥ = —VV (r).
For reviews of MD, see References [57-60]. More complex (tertiary and binary) potential
are possible, and take the form of familiar Mie, Lennard-Jones, and Morse potentials [61].
The expansions beyond the binary interactions introduce either three-body terms directly [62]
or as modification of the two-body representations [63]. For reviews, we refer the reader to
Reference [64].

Remark 3

Depending on the degree of near-field strength, the particulate system can exhibit vibratory
motion. This can be qualitatively explained by recognizing that the governing equations are
formally similar to classical second order equations describing harmonic oscillators. For more
details, see Reference [52].

3. IMPACT AND MOMENTUM TRANSFER

Following Zohdi [52], cases where mechanical contact occurs between particles, in the presence
of near-field interaction forces, which can be quite strong, and comparable in magnitude to
the contact forces, are now considered. We assume that the particles remain spherical after
impact, i.e. any permanent deformation is negligible. Also, in contrast with the usual analyses
of impacting particles, which neglect all other forces except those of mechanical contact, we
include the near-field effects.|

3.1. Normal contact

For two impacting particles i and j, normal to the line of impact, a statement for a balance of
linear momentum relating the states before impact (time = ¢) and after impact (time = ¢ + Jr)

IDue to the non-standard analysis found inthis section, we concisely re-iterate parts of an analysis found in
press in Reference [52].
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876 T. 1. ZOHDI
reads as
140t t+0t
mivm(t)—i-mjvjn(t)—i—/ Ei-n,-jdt—i—/ Ej-nl-jdt
t t
:mivin(t—{—ét)—i-mjvjn(t—i—ét) (16)

where the subscript n denotes the normal component of the velocity (along the line connecting
particle centres) and the E’s represent all forces induced by near-field interaction with other
particles, as well as all other external forces, if any, to the pair. If one isolates one of the
members of the colliding pair, then

t+0t t+0t
m;vin (1) +/ I, dt +/ E; -n;ijdt = m;v;, (t + ot) (17)
t 1

where ftt+6t I, dt is the total normal impulse due to impact. For a pair of particles undergoing
impact, let us consider a decomposition of the collision event into a compression (d¢;) and
recovery (0fy) phase, i.e. ot = dt; + Jtp. Between the compression and recovery phases, the
particles achieve a common velocity, denoted v.,, at the intermediate time 7 + J¢f;. A common
normal velocity for particles should be interpreted as indicating that the relative velocity in
the normal direction between particle centres is zero. We may write for particle i, along the
normal, in the compression phase of impact

t+0t t+61
m;vin (1) +/ I, dt +/ E;-n;jdt = mjvg, (13)
t t

and in the recovery phase

t+0t t+0t
m;Vep +/ I, dt +/ E; . njj dt = m;vi (t + O1) (19)
t+0t t+0t

For the other particle (j), in the compression phase,

140t t+0t
mjvjn(t)—/ Indl‘-f—/ Ej-nijdtzmjvcn (20)
t t

and in the recovery phase

t+0t t+0t
mjvm—/ Indl+/ Ej~n,-jdt=mjvj,,(t—|—5t) 21
4611 14011
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This leads to an expression for the coefficient of restitution

t+0t
[ ha
pdef Jron ~ miin(t + 01) — Ven) — Ein(t + 011, 1 + 1)

1+on B m;(Vep — Vin(t)) — Ein(t, t 4 0t1)
I, dt
t
_ _mj(vjn(t'i‘(st)_Ucn)+Ejn(t+5t1,t+5t) (22)
_mj(Ucn - an(t)) + Ejn(t’ t +o11)
where
def t+0t def t+0t
Ein(t+5t1,t+(3t2)=/ E; -n;;dt, Ejn(t+5t1,z+5t2)=/ E;-n;dt
t+01 1401
(23)
def 1401 def t+0t
Bttt o™ [ By B+ o™ [ ar
t t
If we eliminate v.,, we obtain an expression for e
_ Vjn(t +0t) — vin(t + 0t) + Dij(t + 0t1, 1 + 1) (24)

Vin () —vjn(t) + Dyt + ot1)

where we define the operator over any time interval (a,b) as D;;(a, b) dg(l /mi)Ei,(a, b) —

(1/m;)E,(a,b). Thus, we may rewrite Equation (24) as
Vjn(t +01) = vin(t + 01) — Dij(t + 0t1, 1 + 01) + e(Vin(t) — vju(t) + Djj(t, 1 + 011))  (25)
It is convenient to denote the average force acting on the particle from external sources as

= def 5 . . . . .. .
Ein = a‘L ftﬂrm E; -n;jdr. If e is explicitly known, then one can write, combining Equations

(24) and (25)

m;ivin(t) +mj(vj, (1) — e(in(t) — v;n()))
m; + m;

Vin(t + 01) =

+(E_in + E_jn)ét —mj(eD,-j(t,t—{—én) — D;j(t + ot1, t + Ot))

mi; +m;

(26)

where, once v;,(t + 6t) is known, one can subsequently also solve for vj,(r + 6t) via
Equation (25).

Remark 1

Clearly, the forces needed to compute terms in coefficient of restitution e, such as E;;, E;, and
D;; depend on the particle kinetics during impact, i.e. the outcome of the system dynamics,
and thus implicitly on e. In other words, an implicit system of non-linear coupled equations
arises. In order to solve the system of coupled non-linear equations, later in this work, an
iterative (fixed-point type) staggering process is developed.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 62:870-898
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Remark 2
Equation (24) collapses to the classical expression for the ratio of the relative velocities before
and after impact, if the near-field forces are negligible,

o def Vin(t + 0t) — vin(t + 01)
Vin (1) — an(t)

Later, it will be useful to define the average impulsive normal contact force between the
particles acting during the impact event as

- aef | /f”f 1 dr = Qi+ 00 —vin @)
t

27

= =< in 2
5 (28)

T o
In particular, as will be done later in the analysis, when we discretize the equations of motion
with a discrete (finite difference) time-step of Af, where dr < At, we shall define the impulsive
normal contact contribution to the total force (Equation (1)) to be

1,0t
At

ypeon

n;j 29)

which will be included in the total force acting on a particle, ¥ = ‘l’?f @ peen ‘Pl.f ne.
Furthermore, at the implementation level, we choose o = yAr, where 0 < y<1 and where At
is the time-step discretization size, which will be introduced later in the work.*™™ We assume
ot] + oty = dt] + edty, which immediately allows the following definitions:

511 =

and 0 = (30)

These results are consistent with the fact that the recovery time vanishes (all compression and
no recovery) for e — 0 (asymptotically plastic) and, as e — 1, the recovery time equal the
compression time (df, = Jt, asymptotically elastic). For a more detailed treatment of impact
duration times, see Reference [65].

3.2. Friction

To account for frictional stick-slip phenomena, during impact for an arbitrary particle pair
(i and j), the tangential velocities at the beginning of the impact time interval, time = ¢, are
computed by subtracting the relative normal velocity away from the total relative velocity,

v (1) — v (1) = (v (1) —v; (1)) — ((v;(®) — v; (1)) - njj)m;j (31D

One then writes the equation for tangential momentum change during impact for the ith

particle m;v; (t) — I_fét + E;;0t = mjv., where the friction contribution is ff = % ZIHI Iy dt,
where the total contributions from all other particles in the tangential direction (#) are E; =
% tz+(>z E; - tdr and where v.; is the common tangential velocity of particles i and j in the

tangential direction." Similarly, for the jth particle we have m v, (t) + I_f(St + E,-,ét =Mjv.

**A typical choice is 0 <7< 0.01. The system is insensitive to y below 0.01.
T"They do not move relative to one another.
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There are two unknowns, I_f and v.;. The main quantity of interest is I_f which can be solved
for

— (mjEi —miEj)St +mim ;i (t) — v, (1))
i = (32)
(m; +m j)5t
The friction force is then ‘l’if rie _ |7 rlt. However, consistent with stick-slip models of Coloumb
friction, one first assumes no slip occurs. If [I¢| > ug|l,|, where pug is the coefficient of
static friction, then slip must occur and a dynamic sliding friction model is used. If sliding
occurs, the friction force is assumed to be proportional to the normal force and opposite to

the direction of relative tangent motion, i.e.

n e v . — v‘ ne
\Pifrlc d;f'u ||"Pcon|| jt it — _‘ijrlc (33)
lvje — viell /

where u4 the dynamic coefficient of friction and where uy < . There are limitations on the
friction coefficients for such models to make physical sense. For general dynamic analyses of
such mechanical models involving friction see References [66—70]. For a recent overview, see
Reference [71].

4. THERMO-CHEMICAL COUPLING

It is important to realize that, in reality, the phenomenological parameter e¢ depends on the
severity of the impact velocity. For extensive experimental data, see Reference [72]. Qual-
itatively, the coefficient of restitution will decrease with the relative velocity of approach.
A mathematical idealization of the behaviour can be constructed as follows:

Av,
¢ % max <e0 (1 e ),e_) (34)
v

where v* is a critical threshold velocity (normalization) parameter and where the relative

velocity of approach is defined by Avndéf [vjn(t) —vin(¢)] and e~ is a (typically small) lower

limit to the coefficient of restitution.** In certain applications, in addition to the near-field and
contact effects introduced thus far, thermal behaviour is of interest. For example, applications
arise in the study of interstellar particulate dust flows in the presence of dilute hydrogen-rich
gas. In many cases, the generation of heat in such flows can be traced to the reactivity of
the contacting particle surfaces. Subsequent thermal effects can strongly affect the mechanics
of impact, for example, due to thermal softening. For instance, the presence of a reactive
substance (gas) adsorbed onto the surface of interplanetary dust can be a source of intense
heat generation, through thermochemical reactions activated by impact forces, which thermally
softens the material, thus reducing the coefficient of restitution, which in turn strongly affects
the mechanical impact event itself (Figure 3).

HLower values of v* represent softer materials, which exhibit more dissipation upon impact than harder
materials.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 62:870-898
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TWO IMPACTING PARTICLES e AEACTIVE FILM

ZOOM OF CONTACT AREA

Figure 3. Presence of dilute (smaller-scale) reactive gas particles adsorbed onto the
surface of two impacting particles.

A somewhat ad hoc approach, building on the relation in Equation (34), is to construct a
thermally dependent coefficient of restitution as follows:

o) ol 5)0)

where 0* can be considered as a thermal softening temperature.’3 In order to determine the
thermal state of the particles, we shall decompose the heat generation and transfer processes
into two stages. Stage I describes the extremely short time interval when impact occurs, ot < At,
and accounts for the effects of chemical reactions, which are relevant in certain applications,
and energy release due to mechanical straining. Stage II accounts for the post impact behaviour
involving convective and radiative effects.

4.1. Stage I: impact

Throughout the analysis, we shall use the most simplified models possible. Consistent with
the particle-based philosophy, it is assumed that the temperature fields are uniform in the
particles. ™ We consider an energy balance, governing the inter-conversions of mechanical, ther-
mal and chemical energy in a system, dictated by the first law of thermodynamics. Accordingly,
we require the time rate of change of the sum of the kinetic energy (/") and stored energy
(&) to be equal to the work rate (power, ) and the net heat supplied (%)

d
G N =2+ (36)

$5Lower values of 0* represent more thermally sensitive materials, with relatively more dissipative impact events.
Generally, decreasing v* and 0* makes the system more dissipative and, consequently, easier to simulate,
since it is less stiff.

M Thus, the gradient of the temperature within the particle is zero, i.e. VO = 0. Thus, a Fourier-type law for
the heat flux will register a zero value, ¢ = —K-V6=0.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 62:870-898
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where the stored energy is comprised of a thermal part, &(t) = mC0O(t), where C is the
heat capacity per unit mass, and, consistent with our assumptions that the particles deform
negligibly during impact, a negligible mechanical stored energy part. The kinetic energy is
H(t) = %mv(t) - v(t). The mechanical power term is due to the forces acting on a particle

dw”
7= _yo, (37)

dr
and, because dd—{ = mv - v(¢), and a balance of momentum mv - v = ¥ . v and thus
% = % = 2, leading to % = . The primary source of heat is due to chemical reactions,

where the reactive layer generates heat upon impact. The chemical reaction energy is defined
def (t+6 . . .
as oA = ftz+oz A dt. Equation (36) can be rewritten for the temperature at time = ¢ + ¢ as

oA
0@t +6t) =0@1) + — (38)
mC
The energy released from the reactions are assumed to be proportional to the amount of
the gaseous substance available to be compressed in the contact area between the particles.
A typical, ad hoc approximation in combustion processes is to write, for example, a linear
relation

8A ~ Kkmin (@ 1) nb? (39)
I
where « is a reaction constant, energy per unit area, I,° is normalization parameter and b is the
particle radius. For details, see Reference [73], for example. For the grain sizes and material
properties of interest, the term, d#/mC, in Equation (38) indicates that values of x of ap-
proximately x &~ 10%J/m? will generate significant amounts of heat.!l Clearly, these equations
are coupled to those of impact through the coefficient of restitution and the velocity-dependent
impulses. Additionally, the post-collision velocities are computed from the momentum relations
which are coupled to the temperature. Later in the analysis, this equation is incorporated into
an overall staggered fixed-point iteration scheme, whereby the temperature is predicted for a
given velocity field, and then the velocities are recomputed with the new temperature field,
etc. The process is repeated until the fields change negligibly between successive iterations.
The entire set of equations are embedded within a larger overall set of equations later in
the analysis, and solved in a recursively staggered manner. A detailed numerical analysis of
multifield contact between bodies using a continuum description is beyond the scope of the
present work. However, such analyses can be found in Reference [71].

4.2. Stage II: post-impact

After impact, it is assumed that a process of convection, for example governed by Newton’s law
of cooling, and radiation according to a simple Stefan—Boltzmann law transpires. As before, it
is assumed that the temperature fields are uniform within the particles, thus conduction within
the particles is negligible. We remark that the validity of using a lumped thermal model, i.e.

By construction, this model has increased heat production, via 5., for increasing k.
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ignoring temperature gradients and assuming a uniform temperature within a particle, is dictated
by the magnitude of the Biot number. A small Biot number indicates that such an approximation
is reasonable. The Biot number for spheres scales with the ratio of particle volume (V) to
particle surface area (as), V/as = b/3, which indicates that a uniform temperature distribution
is appropriate, since the particles, by definition, are small. We also assume that the dynamics
of the (dilute) gas does not affect the motion of the (much heavier) particles. The gas only
supplies a reactive thin film on the particles’ surfaces. The first law reads

d(K +0U)

S =mbv+t mCh= W v — heag(0—0p) — Base®* — 0% (40)

mechanical power  convective heating  far-field radiation

where 0g is the temperature of the ambient gas, where 0 is the temperature of the far
field surface (for example a container surrounding the flow) with which radiative exchange
is made, # = 5.67 x IO’SW/(m2 — K) is the Stefan—Boltzmann constant, where 0 <e< 1
is the emissivity, which indicates how efficiently the surface radiates energy compared to a
black-body (an ideal emitter), where O < & is the heating due to convection (Newton’s law of
cooling) into the dilute gas and where ag is the surface area of a particle. It is assumed that
the radiation exchange between the particles is negligible.”** For the applications considered,
typically, h. is quite small, and play a small role in the heat transfer processes.”'" From a
balance of momentum we have mv - v = W' . v and Equation (40) becomes

mCO = —heas(0 — 09) — Bage(O* — 6 (41)

Therefore, after temporal integration with the previously used finite difference time-step of
At > ot, implying, 0(¢) = 0(t 4+ ot), where 0(t + ot) is computed from Equation (38), and we
have

0+ A= —"C gy - A1
~ mC + heasAt mC + heasA

haAtO()
0t +At) — ) + —5— 2 42
T+ A S)+mC+hcasAt (42)

This implicit non-linear equation for 0, far each particle, is added into the fixed-point
scheme with the equations of momentum balance, and solved simultaneously with a multifield
staggering scheme, which we now discuss.

Remarks

Convection heat transfer is comprised of two primary mechanisms, one due to primarily random
molecular motion (diffusion) and the other by bulk motion of a fluid, in our case a gas,
surrounding the particles. As we have indicated, in the applications of interest here, the gas is
dilute and the Reynold’s number is small, thus convection plays a very small role in the heat
transfer process. We recall that a blackbody is an ideal radiating surface having the following

***Various arguments for such an assumption can be found in the classical text of Bohren and Huffman [74].
¥ The Reynold’s number, which measures the ratio of the inertial forces to viscous forces in the surrounding
gas, and dictates the magnitude of these parameters, is extremely small in the regimes considered.
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properties:

e A blackbody absorbs all incident radiation, regardless of wavelength and direction,

e For a prescribed temperature and wavelength, no surface can emit more energy than a
blackbody and

e Although the radiation emitted by a blackbody is a function of wavelength and temperature,
it is independent of direction.

Since a blackbody is a perfect emitter, it serves as a standard against which the radiative
properties of actual surfaces may be compared. The Stefan-Boltzmann law, which is com-
puted by integrating the Planck representation of the emissive power distribution of a black-
body over all wavelengths,*** allows the calculation of the amount of radiation emitted in
all directions and over all wavelengths simply from the knowledge of the temperature of the
blackbody.

5. AN STAGGERED/INTERNALLY-ITERATIVE SOLUTION SCHEME

We now develop a staggering scheme by extending an approach found in References [52-54, 75,
76]. Broadly speaking, staggering schemes proceed by solving each field equation individually,
allowing only the primary field variable to be active. After the solution of each field equation,
the primary field variable is updated, and the next field equation is addressed in a similar
manner. Such approaches have a long history in the computational mechanics community. For
example, see References [77-85].

We consider an abstract setting, whereby one solves for the particle positions, assuming the
thermal fields fixed,

o (PPHUKHL gLALK Y g (G LHLK gL+LK (43)

then one solves for the thermal fields, assuming the particle positions fixed,

JZ/Q(I‘L-H’K—H, HL-H,K-H) — g;z(rL-H,K-H’ 9L+1,K) (44)

where only the underlined variable is ‘active’, where L indicates the time-step and where K
indicates the iteration counter. Within the staggering scheme, implicit time-stepping methods,
with time-step size adaptivity, will be used throughout the upcoming analysis. We start by
treating the equations of motion for the particles.

Accordingly, after time discretization of the acceleration term in the equations of motion
(Equation (1)) for a particle

L+1 L—1
i;L+l ~ ri * B zriL + ri (45)
: (An)?

##¥Radiation requires no medium to transmit energy.
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. def def . .
where, for brevity, we denote rl.LJrl = ri(t+Ar), rl.L = r;(t) etc., one can arrive at the following

abstract form, for the entire system, .o/ (rL+1) = Z%. It is convenient to write

At —F =gty — L g =0 (46)

where & is a remainder term which does not depend on the solution, ie. & # &(rLit!).

A straightforward iterative scheme can be written as

rL+1,K — g(rl‘-‘rl,K—l) +éa (47)
where K = 1,2,3,... is the index of iteration within time-step L + 1. The convergence
of such a scheme is dependent on the behaviour of %. Namely, a sufficient condition for
convergence is that 4 is a contraction mapping for all rLtLE K —1,2.3... . In order to

investigate this further, we define the error as ef+1:K = pL+1L.K _ pL+1 A npecessary restriction

for convergence is iterative self consistency, i.e. the exact solution must be represented by the
scheme %(ri*!) + & = r’*!. Enforcing this restriction, a sufficient condition for convergence
is the existence of a contraction mapping of the form

LALKy _ o L+1,K _ L L4+1y _ L+1,K—1 L+1 L+1K . L+1,K—1 L+1
TR = e = = gt ) =Gt H < R et -t
(48)
where, if #Zt1K <1 for each iteration K, then ¢L+1-K — 0 for any arbitrary starting value
rL+1.K=0 35 K — o0o. The type of contraction condition discussed is sufficient, but not

necessary, for convergence. In order to control convergence, we modify the discretization of
the acceleration term:

. . L+l _ L ) .
T e FL pL+l _ L L

r ~ o

At At A2 At

(49)

which collapses to the familiar difference stencil of #1+! = (rL+! —2rL 4+ rL=1)/(A1)?, when
the time-step size is uniform. Inserting this into m# = WY''(r) leads to

At?

rL+1,K ~ (\Ptot(rL+1,K—1))+(rL +At’;L) (50)
m S—— —

&

’(g(rL‘Fl,K*l)

whose convergence is restricted by # o EIG(¥9) o At*/m. Thus, decreasing the time-step
size improves the convergence, however, we want to simultaneously maximize the time-step
sizes to decrease overall computing time, while still meeting an error tolerance. In order to
achieve this goal, we follow an approach in References [75,76] initially developed for con-
tinuum thermo-chemical multifield problems in which (1) one approximates n+!-K ~ §(Ar)P
(S is a constant) and (2) one approximates the error within an iteration to behave accord-
ing to (S(AHP)K||eLH10) = LK) K = 1,2, ..., where ||¢£110 is the initial norm of
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the iterative error and S is a function intrinsic to the system.¥%¥ Our goal is to meet an error
tolerance in exactly a preset number of iterations. To this end, one writes this in the following
approximate form, (S (Attol)P)KdHaL“’OH = TOL, where TOL is a tolerance and where Kgy is
the number of desired iterations. 1l If the error tolerance is not met in the desired number of
iterations, the contraction constant n“+1X is too large. Accordingly, one can solve for a new
smaller step size, under the assumption that S is constant,

TOL 1/pKa
||8L+1’0||>

Aftor = At L+1.K \I/PK

llez 1)

I 8L+1’0||
The assumption that S is constant is not critical, since the time-steps are to be recursively
refined and unrefined repeatedly. Clearly, the previous expression can also be used for time-
step enlargement, if convergence is met in less than Kg iterations. Time-step size adaptivity is
paramount, since the flow’s dynamics can dramatically change over the course of time, requiring
radically different time-step sizes for a preset level of accuracy. However, one must respect an
upper bound dictated by the discretization error, i.e. Af <A™, In order to couple this to the

thermo-chemical computations, we define the normalized errors within each time-step, for the
two fields,

(S

L+1,K L+1,K-1 L+1,K L+1,K—1
HLE _ pLrlE 0K — o ||

def |7 d def |l
ok = TEd] e ok = TEEd]

(52)
We define ‘violation ratios’, i.e. measure of which field is relatively more in error, compared
. . . def
to its corresponding tolerance, i.e. Zg = max(z, g, Zgx ) Where
def &K def &0K

= TOL, and zgx = TOL, (53)

irK

- . def .
and a minimum scaling factor ®x = min(¢, g, Pyx) from

(TOLr )1/PKd (TOL@)I/”K“
def & def &
bk = | " | bk = | (54)

1/pK 1/pK
(8”(>/p (30K>/p
&r0 €00

83%For the class of problems under consideration, due to the quadratic dependency on Af, p ~ 2.
W Typically, Kq is chosen to be between five and ten iterations.
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The algorithm is as follows:

(1) GLOBAL FIXED - POINT ITERATION: (SET i =1 AND K = 0):
(2) IF i > n THEN GO TO (4)
(3) IF i <n THEN:

Ar?
(a) COMPUTE POSITION: rF 0K — Z_ plot(pLHLK=1y) 4 pL 4 AffL
m;

(b) COMPUTE TEMPERATURE:

wL+1.K
O.L-‘rl,K _ OL + 5%1
! ! m,-C '
pLALK _ mC L+1k _ _ At%ae (OFF 1K) g ¢ heasAt0y
! mC + hcagAt ! mC + heagAr ! mC + heagAt
(c) GO TO (2) AND NEXT FLOW PARTICLE (i =i+ 1)
(4) ERROR MEASURES:
‘ dif Z?:] HriL-%—l,K_riL+l,K—l” dif Z;:l:l HGI»L-H’K—B,«L-H'K_IH
(@) &gk = S, I sk | Egk = > HO,-LH'KH
def def &K def €9
b) Zg émax(er,Z(;K) where Z, g = #Lr’ 20K = TOIL(,G
1
(TOLr)m (TOLB)K_pd
def . def & def &
(©) Px = min(¢,x, pox) where .x = r()—l . box = ~ 0 s

>=|“

(2)" (&)
&ro €00
(5) IF TOLERANCE MET (Zg <1) AND K < K4 THEN:

(2) CONSTRUCT NEW TIME STEP: At = Ok A,
(b) SELECT MINIMUM: At = MIN(A#™, Ar)
(c) INCREMENT TIME: ¢ = ¢ + At AND GO TO (1)

(6) IF TOLERANCE NOT MET (Zx > 1) AND K = Kq THEN:

(a) CONSTRUCT NEW TIME STEP: At = ®g At
(b) RESTART AT TIME =t AND GO TO (1)

(55)

Remark 1

We remark that the forces needed to compute terms in coefficient of restitution e, for example
Ein, Ej, and D;; are computed via by using the most currently known values of the W¥;’s
during the iterative solution process. In other words, the interaction forces are updated during
the iterations, within a time-step, based on the most currently known positions of the particles.
This process includes testing whether ||r; —r ;|| <b; +b;, which is a check for contact between
particles. The purpose of the algorithm is to deliver solutions where the coupling is resolved
in an iterative manner, by the recursive sequential solution of the various field equations,
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constraints, etc. The incomplete coupling error is controlled by adaptively controlling the time-
step sizes, while the temporal discretization accuracy dictates the upper limit on the time-step
size (Arlim).

Remark 2
We note that Equation (42) is of the form

0t +A) =900 +At))+ & (56)
where & # &(0(t + At)), and where %’s behaviour is controlled by %, which is quite
small. Thus, a fixed-point iterative scheme such as 0Kt +A1) = 90Kt + A1)+ 6, converges
rapidly.

Remark 3
One could attempt to solve the entire system simultaneously (monolithically). This would likely
involve the use of a gradient-based scheme, which can also be considered as a type of fixed-

point iteration. For example, Newton’s method is covered as a special case of this general

analysis. To see this, let w = (r, 0), and consider the residual defined by II def A (w) — F,

which upon linearization yields

Mw*) = X" + Ve (w® — w1 + 0(|Aw|?) (57)
An updating (Newton) scheme can be developed by setting IT(wX) ~ 0, leading to
wK = wK=1 _ (o TANK =L =T K1y (58)
where the tangent is
A NE = (Vo of ()| yr = (VuTI(W)) ]k (59)
Therefore, in a fixed-point form one has the operator %(w):w—(,Q/TAN)_ll](w). The gradient is
V% (w) = (o7 TAN) =2 (o/TANYTAN Y () (60)
where (.o TAN)TAN déwa (V- (w)). The convergence criteria is, VK =1, 2, ..., following the
approach for the first fixed-point scheme:
19" ™Y — G| < || (/MK 2 (M EH N AR | e —w) 61
n

Equivalently, one can write ||((le'l)’sz(vwl'[(l'[(w))))|w1<71 I < 1. A serious difficulty is
likely, due to the possibility of a zero, or near zero, tangent when employing a Newton’s
method to a non-convex system, which can lose positive definiteness. This will, in turn, lead
to an indefinite-type system of algebraic equations. Therefore, while Newton’s method usually
converges at a faster rate than a direct fixed point iteration, quadratic as opposed to superlinear,
its convergence criteria is less robust than the presented fixed-point algorithm, due to its
dependence on the gradients of the solution. Furthermore, for the problems considered, it
is unlikely that the gradients of % remain positive definite, or even that % is continuously
differentiable, due to the impact events, and thus we employed a staggering scheme which
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Figure 4. Starting from left to right and top to bottom, the dynamics of the particulate flow without

clustering forces. Blue (lowest) indicates a temperature of approximately 300 K, while red (highest)
indicated a temperature of approximately 400 K.

avoided the use of gradients. Thus, in summary, there are a variety of difficulties with such
a gradient-based approach: (1) The computations are not easily parallelizable, (2) Classical
gradient-based algorithms are likely to converge only if an accurate initial guess is provided
and, usually, it is extremely difficult to construct an initial guess that lies within a convergence
radius of a gradient-based method and (3) The system behaviour is non-convex and non-
differentiable with respect to the positions and temperatures of the particles.

6. NUMERICAL SIMULATION

In order to simulate a particulate flow, we considered a group of n randomly positioned particles,
of equal size, in a (starting) cube of normalized dimensions, D x D x D, with D normalized to
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Figure 5. Starting from left to right and top to bottom, the dynamics of the particulate flow with

clustering forces: An initially fine cloud of particles which clusters to form structures within the

flow. Blue (lowest) indicates a temperature of approximately 300 K, while red (highest) indicates a
temperature of approximately 400 K.

unity. The particle size and volume fraction were determined by a particle/sample size ratio,

which was defined via a subvolume size V= D x D x D/n, where n was the number of

particles in the entire cube. The ratio between the radius (b) and the subvolume was denoted

by,Sf’déf

total volume occupied by the particles, denoted {, could be written as { = v rnV, and the total
mass written as M = Z?:l m; = p{, while that of an individual particle, assuming that all are

V_lb/3" The volume fraction occupied by the particles was vy © gr 3 /3. Thus, the

the same size, was m; = % =p %nb? . In order to visualize the flow clearly, we used n = 100

particles. The length scale of the particles was ¥ = 0.25, which resulted in a corresponding
volume fraction of vy = 4n#3)3 = 0.0655 and particulate radii of b = 0.0539. A mass
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Figure 6. Starting from left to right and top to bottom, without clustering forces: the total kinetic
energy in the system per unit mass with eg = 0.5, u; =0.2, u3 =0.1, 2y = 0.5 and ap = 0.25: (1)
k=10°T/m?, (2) k=2 x 10°J/m?, (3) k=4 x 10°J/m?, and (4) x = 8 x 10° J/m?.

density of the particles = 2000 kg/m> was used. The ambient temperature was selected to be
0p = 05 = 300 K. The heat capacity of the particles was % = 10 J/kg K, with emissivity of
¢ = 1072, The critical temperature parameter in the coefficient of restitution relation was 0* =
3000 K. The reaction constant was varied between 10°J /m2 <k<1077 /mz, with I* = 103 N.
The coefficient of convective heat transfer (h.) was set to zero. We introduced the following
near-field parameter per unit mass>? 0ij = opmimj, 0pij = Opmim; and ogij = Oam;m;.
This allowed one to scale the strength of the interaction forces according to the mass of the
particles.!llll The initial mean velocity field, componentwise, was (1.0,0.1,0.1) m/s with initial
random perturbations around mean velocity of (1.0, £0.1, 0.1) m/s, and a critical threshold
velocity of 10 m/s in Equation (35). The simulation duration was set to five seconds, with an
upper bound on the time-step size of Ar™ = 1072s and a starting time-step size of 1073 s.

Il Although, we did not consider particles of different sizes in the present work, this decomposition allows one to
easily take this into account. Also, we enforced the near-field stability condition by setting (f,.5,) = (1, 2).
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Figure 7. Starting from left to right and top to bottom, with clustering forces: the total kinetic energy in
the system per unit mass with eg = 0.5, u, = 0.2, g =0.1, 23 = 0.5 and 2 = 0.25: (1) k = 106J/m2,
2) k=2x10°T/m2, (3) k =4 x 10°J/m?, and (4) k = 8 x 10° J/m?.

The tolerances of both fields (TOL, and TOLy) for the fixed-point iterations were set to 1076
and the upper limit on the number of fixed-point iterations was set to k9 = 107,
Two main types of computational tests were conducted:

1. Varying k, for a given field strength, oy = 0.5 and oy = 0.25, with a clustering aug-
mentation of &, = 1.75 (forcing a small gap characterized by d, = 1.03(2b)), f, = 1,
0a = 1.65(2D).

2. Varying k, for a given field strength, a; = 0.5 and ap, = 0.25, without a clustering
augmentation.

For each different parameter selection, the initial conditions, i.e. random positions, velocities,
temperatures, etc., were the same. We remark that parameter studies on the near-field strength,
in isolation (without thermo-chemical coupling), have been conducted in Reference [54]. The
field strength chosen was strong enough to induce vibratory motion, and hence, non-monotone
kinetic energy. Frames of the flows for cases (1) and (2), for typical values of x = 2x 10°J/m?2,
are shown in Figures 4 and 5. The plots in Figures 6-9 indicate the overall energetic and thermal
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Figure 8. Starting from left to right and top to bottom, without clustering forces: the average particle

temperature with e¢g = 0.5, u, = 0.2, pg = 0.1, 0y = 0.5 and o = 0.25: (1) k¥ = 106J/m2,

(2) k=2x10°T/m2, 3) k=4 x 10°J/m?, and (4) x =8 x 10°J/m?.

behaviour. Typically, the simulations took approximately between 1 and 2 min on a standard
(Dell, 2.33 GHz) laptop.**** For the parameter ranges used in the presented simulations, the
degree of adaptivity needed strongly depended on the presence of the clustering forces, and to a
somewhat lesser degree on the thermo-chemical parameters. For example, for the 5s simulation,
if the time-steps stayed at the starting value (Ar = 1073 s), then 5000 time-steps would be
needed, if there had been no time-step adaptivity (time-step enlargement). Conversely, if the
time-steps were found to be unnecessarily too small (an overkill) at the starting value (Ar =
1073 s), and, consequently, unrefined to the upper bound (As"™ = 1072 s), then approximately
500 time-steps would be needed. Tables I and II indicate that, for the parameter ranges tested,
when clustering forces were not present, the time-steps did not need to be refined, nor unrefined.
However, when clustering forces were present, the time-steps could be unrefined for the given

***The computation time scales, approximately, no worse than the number of particles squared. For example,
a thousand particles took approximately 15 min.
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Figure 9. Starting from left to right and top to bottom, with clustering forces: the average particle
temperature with eg = 0.5, ug = 0.2, g = 0.1, & = 0.5 and & = 0.25: (1) ¥ = 10° J/m?,
(2) k=2x10°T/m2, 3) k=4 x 10°J/m?, and (4) x =8 x 10°J/m>.

Table I. The number of time-steps and fixed-point iterations, with-
out clustering forces: the average particle temperature with ep = 0.5,
u=10.2, uyg =0.1, 1y = 0.5 and ap = 0.25.

K (J x 106/m2) Time-steps Fixed-point iterations
1 5000 5037
2 5000 5038
4 5000 5037
8 5000 5032

tolerances, however, requiring more internal fixed-point iterations. This was primarily because
cluster-structures formed, leading to less collisions between the larger objects, which did not
require such small time-steps (Figure 10). For the simulations with clustering forces, there
was an expected thermal sensitivity. As the reaction term x became stronger, the number
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Table II. The number of time-steps and fixed-point iterations, with clus-
tering forces: the average particle temperature with ey = 0.5, pg = 0.2,
ug =0.1, a; = 0.5 and ap = 0.25.

K (J x 100 / m?) Time-steps Fixed-point iterations
1 586 1735
2 585 1798
4 548 5147
8 601 5565

bp =

Figure 10. A zoom on the structures that form with clustering. Blue (lowest) indicates a temperature
of approximately 300 K, while red (highest) indicates a temperature of approximately 400 K.

of fixed-point iterations required to achieve convergence increased. These results highlight
an essential point of the adaptive process, which is to allow the system to adjust to the
physics of the problem. Some further remarks elaborating on this issue can be found in
References [54, 75, 76].

Qualitatively speaking, one should expect that when a clustering field becomes active be-
tween two approaching particles, then kinetic energy is lost because of the disappearance of
normal relative velocities between them. Conversely, kinetic energy is gained if the particles
become dislodged, because the clustering field becomes inactive and the repulsive field sud-
denly dominates the remaining attractive forces, thus pushing the previously clustered particles
away from one another. When the clustering binding field becomes active, the coefficient of
restitution will play virtually no role, because the strength of the attractive this force dominates
everything. Thus, because the thermal field affects the particle dynamics through the coeffi-
cient of restitution, when clustering dominates, the particle dynamics will be only marginally
affected by varying x (Figure 7). However, the temperature of the particles, in the presence
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of clustering will rise substantially, due to the large compressive forces between the contacting
particles, which activates the chemical reactions. Also, we remark that the group dynamics, for
different xk without clustering forces, deviate much more from one another than the cases when
clustering is present (Figure 6). Typically, when two particles have clustered, since the binding
field was strong, the particles rarely become dislodged.

7. CONCLUDING REMARKS

Experimentally speaking, thermal behaviour can be a key indicator of the dynamical character
of the flow. For example, in References [86, 87], techniques for measuring flow characteris-
tics based upon Infrared Thermal Velocimetry (ITV) in fluidic microelectromechanical systems
(MEMS) have been developed. In such approaches infrared lasers are used to generate a short
heating pulse in a flowing liquid, and an infrared camera records the radiative images from
the heated flowing liquid. The flow properties are obtained from consecutive radiative images.
This approach is robust enough to measure particulate flows as well. We remark that thermal
flow sensors, based on a ‘time of flight’ principle, are also possible [88]. In such approaches,
a heater generates a short thermal pulse, and a thermal sensor detects the arrival downstream.
The author is currently engaged in collaboration with experimentalists in order to test and
fine-tune the presented model. Accordingly, an important aspect of the model, or any par-
ticulate flow model, is parameter identification. For example, consider a cost function of the

form Il = f(;T |A — A*|dt, where total simulation or experimental time is J, where A is a
computationally or experimentally generated quantity of interest and where A* is the target or
observed response. The objective is to minimize I1 by determining feasible system parameters
such as near-field coefficients, a;, f;, 2 and f,, reaction constants such as x, friction pa-
rameters such as p and gy, etc. Typically, IT depends in a non-convex and non-differentiable
manner on such parameters, primarily due to the physics of sudden interparticulate impact and
transient dynamics associated with particulate flow. Clearly, these characteristics of II make it
difficult to treat with a classical gradient-based method, such as the quasi-Newton family of
search methods. However, these difficulties can be mitigated by first employing non-derivative
global-search schemes, such as simulated annealing, random search or genetic algorithms [89].
In particular, the author has developed robust genetic algorithms for inverse problems for var-
ious other models involving particulates, for example in References [52-54,90]. Afterwards,
gradient-based methods can be useful for enhancing, essentially post-processing, solutions found
with a genetic algorithm, if the objective function is sufficiently smooth in that region of the
parameter space.
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