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Abstract The goal of this paper is to qualitatively de-
scribe the dominant flow characteristics associated with
shear stress mediated lumen reduction due to athero-
sclerotic plaque growth. The approach is to develop rate
equations for the reduction of the lumen as a function of
the shear stress near the intima wall. Elementary, qual-
itative, models for fully developed laminar and turbulent
flows are employed, leading to nonlinear ordinary dif-
ferential equations. The model provides a qualitative
description of one aspect of the long-term reduction,
perhaps taking years, of the lumen due to wall growth.
This is useful because of the extreme complexity of long-
term experiments.
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1 Introduction

The primary goal of this paper is to qualitatively de-
scribe the dominant flow characteristics associated with
shear stress mediated lumen reduction in blood vessels
due to atherosclerotic plaque growth. In such cases, lu-
men reduction is frequently attributed to microscale
suspensions, which adhere to, and penetrate, the intima
wall. Specifically, the growth of atherosclerotic plaque is
believed to be initiated by the presence and oxidation of
excess low-density lipoprotein (LDL) in the intima.
Stages in that process appear to be (a) adhesion of
monocytes to the endothelial surface, which is controlled
by the adhesion molecules stimulated by the excess
LDL, the oxygen content, and the intensity of the blood
flow; (b) penetration of the monocytes into the intima
and subsequent inflammation of the tissue; and (c)
rupture of the plaque accompanied by some degree of
thrombus formation or even subsequent occlusive
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thrombosis. Plaques with high risk of rupture are termed
vulnerable, (see, for Fuster 2002). Currently, no ade-
quate, robust, diagnostic strategy for the identification
of vulnerable plaques is available. Surveys of the current
thinking in the medical community pertaining to the
growth and rupture of atherosclerotic plaques are pro-
vided in Shah (1997), van der Wal and Becker (1999),
Chyu and Shah (2001), Libby (2001a, b) Richardson
et al. (1989), Loree et al. (1992), Davies et al. (1993),
among others. For numerical and theoretical fluid flow
analyses we refer the reader to Stroud et al. (2000, 2002),
Berger and Jou (2000) and Jou and Berger (1998). For
experimental-oriented physiological flow studies of ath-
erosclerotic carotid bifurcations and related systems, see
Bale-Glickman et al. (2003a, b). Notably, Bale-Glick-
man et al. (2003a, b) have developed flow models which
replicate the lumen of plaques excised intact from pa-
tients with severe atherosclerosis, which have shown that
the complex internal geometry of the diseased artery,
combined with the pulsatile input flows, gives exceed-
ingly complex flow patterns. They have shown that the
flows are highly three dimensional and chaotic, with
details varying from cycle to cycle. In particular, the
vorticity and streamline maps confirm the highly com-
plex and three-dimensional nature of the flow. In the
realm of mechanobiology, extensive stress analyses in
healthy and diseased arteries have been investigated in
the works Holzapfel and co-workers (Holzapfel et al.
2000, 2002a, 2002b; and Holzapfel and Ogden 2003).
Overviews focusing on various types of soft biotissue
can be found in Humphrey (2002) among others. The
mechanisms involved in the initial stages of of the dis-
ease, in particular stage (a), have not been extensively
studied, although some preliminary studies have been
carried out recently in Zohdi et al. (2003).

Regardless of the exact mechanism of effective
growth, it appears to be correlated to the presence of
suspensions near the intima wall. This is primarily
controlled by the intensity of the shear stress near the
wall. High shear stresses tend to impede microscale
suspensions from adhering to the intima, while low shear
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Fig. 1 Flow through the lumen with wall growth

stresses allow the suspensions to adhere to the wall. The
purpose of this study is to investigate the dependency of
shear-controlled growth on flow parameters, such as the
velocity profile, flow rate, etc. The approach is to de-
velop rate equations for the reduction of the lumen as a
function of the shear stress near the intima wall. Ele-
mentary, qualitative, models for fully developed laminar
and turbulent flows are employed, leading to nonlinear
ordinary differential equations which govern the reduc-
tion of the lumen over time.

2 Elementary qualitative models

We start by developing a simple model to describe how
the circular cross section of an idealized lumen, A =7 R>
(Fig. 1), changes due to microscale deposits building up
onto its surface. The inner radius of the lumen, which
changes over time, is denoted by R. The initial cross-
sectional area is Ao=m Rj. We consider simple fully
developed (incompressible) flow profiles, with constant
overall flow rate (Qy = vvo = [,vd4 = Q), through the
lumen, given by (¢> 2)"

=i~ ). »

where, in a phenomenological sense, as ¢ increases, one
characterizes, qualitatively, progressively turbulent flow.
The corresponding shear stress is given by
v
T= .
# or
Because the overall flow rate is assumed constant

(Qo=0Q), one has

_Qlg+2)
max Aq .

(2)

(3)

'For fully developed laminar flow, ¢=2.

Therefore, shear stress near the wall, specifically at
r=kR,0< k < 1, is given by

v QD (q + 2) q— 1
nw — U5~ = T T 4
‘ Kor 7R3 k “)
Phenomenologically speaking, the ability of a

microscale suspension to adhere to the intima wall is
controlled by the intensity of the shear stress near the
wall. Higher shear stresses reduce the likelihood of
microscale suspensions adhering to the intima wall,
while lower shear stresses allow the suspensions to ad-
here to the wall. Accordingly, consider a growth law
where the rate of growth is proportional to the ratio of
shear stress near the wall to a critical “‘detachment”
stress [Tow| < T

T*

10, (q + 2)k‘”>

R= —nmax<0, 1 - [T

(5)

=— 0,1—
nmax( ’ T*R3

where 7 is a growth rate constant. As the velocity in-
creases, suspensions are less likely to adhere. Thus, for
increasing ¢ (progressively tending toward turbulent
behavior), there will be less growth (less reduction in R).
Thus, we have no growth if

0,(q + 2)kq_l *
o] = 2> (6)

The steady state value of R can be determined by
setting R = 0, leaving

R = (A2

™

(7)

The obvious steady state trends are:

— An increase in t" leads to more growth (reduction of
R)

— An increase in Q, leads to less growth

— An increase in p leads to less growth.

The dependence of the behavior of R on ¢ (governing
the flow profile) is somewhat less obvious, due to the
product of “competing” terms involving ¢, in Eq. 7.
Taking the partial derivative of R with respect to ¢
yields, at 1=oo,

OR _R(_1 ——+1Ink
o 3\g+2

Now setting the derivative to zero, and solving for ¢
yields

(®)

1 def *
q= nk 2= )
or
k= efq*ﬁ. (]O)
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Fig. 2 The behavior of the shear stress ratio at r=kR=0.9R and
the growth (reduction of the lumen radius) for ¢=2, 3,4, 5, 6, 7, 8,
9, and 10. The top curve (forming an upper envelope) corresponds
to g=7, which is closest to the maximizer, ¢* = 7.49

Since In k< 0 for 0< k < 1 and the range 0£
admissible ¢ is 2 < ¢, there is the possibility that ¢
could be a maximizer or minimizer of R. Clearly, since

82_R8_R1< 1 +M)+§ _ 1 (11)
o2  dg3\g+2 3 3\ (¢g+2)?)

and setting OR/dq = 0, for g= ¢, we have

R 1
o= 3 \(g* +2)

which indicates that, at g=¢", R is maximized. In other
words, if g=4¢", the least amount of growth occurs. It is
interesting to note that the radius is maximized by a
specific finite value of ¢ = q*, and for higher ¢ values, the
radius again decreases. Clearly, the lower limit of
achievable ¢" is ¢° =2 (laminar flow), leading to a cor-
responding value of k£ = e’%, while as k —» 1, ¢° — oo,
which indicates that a more blunted (“turbulent”) flow
profile would be optimal if a smaller critical distance
away from the wall were chosen. The maximum steady
state value that the radius can attain (R(f=ec)) can be
ascertained by inserting Eq. 9 into Eq. 7, to obtain

10, )1/3

 rmek3n k

A*R

e (12)

R(t = 00)|,—p= < (13)
which provides a relationship between the minimum
wall growth and the critical wall distance parameter.

In order to illustrate the time-dependent behavior of
the model, consider the following nominal parameters:

- R(t=0)=0.001 m
— v(t=0)=0.1 m/s,

—n=—10""m/s
- p= 0.0005 Pa/s
— 1 =1 Pa.

For the parameters chosen, ¢ =7.49 is the maximizer
of R. Figure 1 depicts the results when these parameters
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are employed. The simulations were carried out with a
simple forward Euler time integration of the form:

R(t+ At) = R(t) + AtF(R(1)), (14)

where F(R) = —npmax(0, 1 — (|t,|/7*)). As indicated in
Fig. 1, eventually, the growth slows, then terminates>,
once the lumen narrows sufficiently to raise the fluid-
induced shear stress to exceed the threshold value of T".

Remark 1: One can define a nondimensional number
which indicates whether wall growth will begin, by
taking the ratio of the initial shear stress (1=0) to the
critical shear stress

def Oolg +2)k!

g= TR (t =0) (15)

If G>1, then no growth occurs, while if G<1, then
growth begins.

Remark 2: We remark that in a more general setting,
not necessarily associated with plaque, or even biologi-
cal processes, for example corrosion processes and oxide
film growth (Fontana 1986), the flow-induced reduction
of the lumen of channels is attributed to film build up
onto the surface of a wall. Essentially, the same mod-
eling approach could be followed to qualitatively de-
scribe those scenarios as well.

3 Concluding remarks and extensions

The model provides a qualitative description of one as-
pect of the long-term reduction, perhaps taking years, of
the lumen due to wall growth. This is useful because of
the extreme complexity of long-term experiments. An
interesting observation is that the velocity profile that
maximizes the radius (minimizes the growth) is a specific
finite value of ¢=¢", and for higher ¢ values, the radius
again decreases. However, as the radius of the lumen
changes, the type of flow profile will change; in other

A time step of 1 h, Ar=3600 s, which was extremely small (an
“overkill”’) relative to the overall simulation time scale of 1 year,
was used in this explicit time-marching method. An explicit time-
marching scheme was perfectly adequate for this relatively simple
single degree of freedom system.
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Fig. 3 The behavior of the shear stress, growth (reduction of the
lumen radius), centerline Reynolds’ number, and velocity profile
over time for kR=0.9R, g=c,Re.+ ¢,

words, ¢ is not fixed. This was not reflected in the pre-
vious model; in other words, the flow profile and growth
are not fully coupled. In order to capture the effect of a
changing profile, we represent ¢ as a linear function of
the centerline Reynolds” number, Re; = pvm,x2R/

g =q(R) = ciRec + c2, (16)

where ¢; and ¢, are experimentally determined con-
stants. Well-known models having linear dependency of
flow-profile exponents on the Reynolds’ number can be
found in, for example, Hinze (1975). Typically, 0 <

¢1< <1 and ¢,= 2, and, in particular, for laminar flow
c1=0and ¢, =2. Since vmay = Qo(q + 2)/nR?q, from Eq.
16 we obtain a quadratic relationship for ¢,

7 —(y+e)g—2y=0, (17)
where y = 2¢;Qgp/nRu. Solving for ¢ we obtain:*

1
o) =5 (@) £+ ). (18)

As before, the shear stress near the wall is given by 7,y =
'M%L:kR' Now consider the same growth law as before,

3The larger of the two roots is taken later in the simulations.
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R = F(R), which is solved using a forward Euler time
marching: R(t+ At) = R(t) + AtF(R(¢)). The following
parameters, in addition to the values introduced earlier,
were used: (1) p=10> kg/m>, (2) ¢;=1072, and (3) ¢, =2.
The plots in Fig. 3 depict the results. As one would ex-
pect, eventually, the growth slows, once the lumen nar-
rows sufficiently to raise the fluid-induced shear stress to
exceed the threshold value of t. As the lumen narrows,
the flow becomes relatively more turbulent, i.e. the
Reynolds’ number increases as does the exponent g,
leading to a more blunted profile. We remark that the
usual Reynolds’ number associated with the onset of
turbulent flow is approximately Re.= 2,300, which cor-
responds quite nicely with the results in Fig. 3, i. e. the
wall growth stops when the flow is mildly turbulent.*
One should consider either of the previous models as
a qualitative a- priori analysis leading, ultimately, to-
ward computationally-intensive large-scale simulations.
For example, the following general coupled processes:
(a) fluid mechanics, involving the concentration of sus-
pensions, which are nominally convected with the fluid,
(b) fluid—solid interaction at the intima wall/fluid inter-
face, leading to penetration or absorption of suspensions
into the intima, and (c) growth of the intima wall and an

“The steady state value of R can be determined by setting R = 0,
leaving a formally similar Eq. as 7,

,(q(R) + 2)ka®)-1
R(,:oo):(uQ(q()j ) )
T
where, however, ¢ is a function of R.

1/3
; (19)




accompanying buildup of stress and/or possible damage.
As an example consider an abstract form of

I (c,v,06)=0 (MASSBALANCE),

M (c,v,6)=0 (FLUID FLOW),

M;(c,0,06)=0 (GROWTH/WALL DEFORMATION),
(20)

where c is the concentration of suspensions, v is the fluid
velocity field, and ¢ is the mechanical stress field in the
solid. Generally, such schemes proceed, within a dis-
cretized time step, by solving each field equation indi-
vidually, allowing only the corresponding primary field
variable (¢, v or ) to be active. This effectively decouples
the system of differential equations. After the solution of
each field equation, the primary field variable is updated,
and the next field equation is solved in a similar manner,
with only the corresponding primary variable being ac-
tive. For accurate numerical solutions, the approach
requires small time steps, primarily because the stag-
gering error accumulates with each passing increment.
Thus, such computations are usually computationally
intensive. For details, see, for example, Zohdi (2002,
2004a, 2004b).
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