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Abstract: In this article a theoretical framework is developed for the mechanics of kidney
stones with an isotropic, random microstructure—such as those comprised of cystine or
struvite. The approach is based on a micromechanical description of kidney stones comprised
of crystals in a binding matrix. Stress concentration functions are developed to determine load
sharing of the particle phase and the binding matrix phase. Measurements have shown the
inclusions to be considerably harder than the binder; consequently, loading of a stone leads to
higher stresses in the inclusions than in the binder. As an illustration of the theory, the fatigue
of kidney stones subject to shock-wave lithotripsy is considered. Stress concentration functions
are used to construct fatigue-life estimates for each phase, as a function of the volume fraction
and of the mechanical properties of the constituents, as well as the loading from SWL. The
failure of the binding matrix, or of the particulate phase, is determined explicitly in a model
for the accumulation of distributed damage. The theory can be used to assess the importance
of microscale heterogeneity on the comminution of renal calculi, and to estimate the number
of cycles to failure in terms of measurable material properties. © 2005 Wiley Periodicals, Inc. J
Biomed Mater Res Part B: Appl Biomater 75B: 351–358, 2005
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INTRODUCTION

Shock-wave lithotripsy (SWL) has become the primary tech-
nique to treat kidney stones. A large percentage of kidney
stones are treated by SWL alone and SWL combined with
other treatments. Thousands of shocks are required to break
stones to small enough sizes for natural elimination from the
body.

There remains much scientific investigation on the precise
mechanisms of stone comminution. However, central to the
process appears to be the passage of stress waves through the
stone, and the erosion of stone surface by cavitation damage
from imploding microbubbles.1,2 It may be that a number of
mechanisms interact to produce breakup, working in concert
with one another. Whatever the origin of the stresses, the
process of stone comminution has been described as one of
brittle fracture, for example in Lokhandwalla and Sturtevant3

and in Coleman and Saunders.4 As such, the process has been
analyzed with the use of a one-dimensional cohesive zone
model for a homogeneous material that can fragment into two
pieces.3 Lokhandwalla and Sturtevant were able to estimate
the number of shock waves to failure.

The present work is similar in spirit to that of Lokhandwalla
and Sturtevant, with a number of further enhancements. Here a
theoretical framework capable of treating the heterogeneous
microstructure of real kidney stones is presented. A three-di-
mensional material that is heterogeneous on the microscale is
considered. The approach is based on a micromechanical de-
scription of those types of kidney stones (reviewed below)
comprised of agglomerated isotropic particles, with a binding
matrix (Figure 1). The presence of a binder phase and inclu-
sions leads to stress concentrations (or differential load shar-
ing) in a mean sense that can be estimated. After the stress
concentrations for material properties derived from experi-
ments are developed, fatigue damage of an initially flawless
sample of material is considered. The goal is to analyze the
development of damage in an overall sense. Stress concen-
tration functions are used to construct fatigue-life estimates
for each phase, as a function of the volume fraction and of the
mechanical properties of the constituents, as well as the mean
and fluctuating loading. The failure of the binding matrix,
which is the key requirement to break up the stone, can be
predicted explicitly. The main result is to determine the
influence of the stress concentrations on the ultimate resis-
tance to breakup of the stone. Hopefully this will begin a
theoretical discussion of the relative ease of breaking differ-
ent types of stones as a function of the microstructure. This
has been a subject of experimental inquiry by a number of
authors,5,6 see also the review by Coleman and Saunders.4
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MICROMECHANICAL CHARACTERIZATION OF A
HETEROGENEOUS STONE

Structure and Morphology of Heterogeneous Stones

Kidney stones consist of an agglomeration of crystalline
materials interspersed with an organic matrix of fibrous qual-
ity.4,5,7 The crystalline phase is usually calcium oxalate mo-
nohydrate (COM) (CaC2O4H2O), calcium oxalate dihydrate
(COD), (CaC2O42H2O), uric acid (C5H4N4O3), struvite
(MgNH4PO46H2O), or cystine (OSCH2CHNH2COOH)2.
The organic matrix appears to form from proteins that adsorb
to the growing crystals.8,9 It takes on the structure of a matted
sheet between crystals in COM and COD stones.10

COM and uric acid stones have a concentric laminated
structure in addition to to the crystal arrangement. They tend
to break up by separation along the layers.5 COM stones also
tend to have well-defined radial striations associated with the
crystal orientations within the stone.9 COM stones are often
highly disorganized in the stone center. COD stones show
much less structure, unless there is significant COM present
also.10 Struvite is always present in stones in conjunction
with calcium apatite; the stones are coarse grained but quite
disorganized.7 Struvite stones break differently from COM
and uric-acid stones; they tend to fracture irregularly along
crystal surfaces.11 Cystine stones may have a finer-grained
internal structure without laminations or radial striations, or
they may be coarse grained. They are either very difficult or
very easy to break up by SWL.12

Clearly there is a wide variation in the microstructure of
heterogeneous kidney stones. Presently, there appears to be
no adequate theory that ascertains the influence of microscale
heterogeneity on the stress distributions under loading of
kidney stones. The purpose of the present work is to develop
a theoretical framework for formulating these problems.
What is required is a tractable way of handling the solid me-
chanics that accounts for the presence of small-scale struc-
ture. For simplicity, this first effort considers stones that have
a microstructure that can be characterized as random and
isotropic, and linearly elastic in both phases. Therefore the
present analysis might be expected to apply more directly to
cystine and struvite stones, perhaps with some generosity to
COD stones, and likely not particularly well to uric-acid and
COM stones. The reason is that the latter compositions lead
to large-scale structure and anisotropy that violates the simple
assumptions that will be made in this first theory.

One difficulty is that in order to apply well-developed
techniques, some unknown parameters are needed. A second-
ary purpose of the present work is to describe what kidney-
stone measurements are needed in order to have a solid
foundation for a sound theory. However, this will require
improvisation in order to develop a concrete result. What has
been measured is the sound speed through the crystalline
material and the matrix of uric-acid stones; this was accom-
plished by acoustical measurements of p-wave speeds by
Pittomvils et al.13 —see also Reference 6. These data can be
used to determine the bulk modulus of each phase. From the
p-wave speed (c),

c � �� � 2�

�
f � � 2� � c2�, (1)

where � and � are the Lamé parameters and � is the mass
density. Thus, because � � � � 2/3�,

� �
4

3
� � c2�, (2)

where � is the bulk modulus. The shear moduli can be
estimated by assuming that the material has a shear property
similar to that of a ceramic, due to the polycrystalline nature
of the materials involved. In other words, the ratio of bulk to
shear moduli is a function of Poisson’s ratio � taken to be a
representative value of � � 0.35. The relationship between �
and � is

�

�
�

2�1 � ��

3�1 � 2��
; (3)

thus � � 3�. Consequently,

� �
1

2
c2� and � �

1

6
c2�. (4)

The values of c and � for each phase were given in Pittomvils
et al.13 With the parameters determined as indicated, the
estimated moduli are shown in Table I. It is unfortunate that
data for uric-acid stones must be used,13 and yet the theory
developed is more suitable for stones with an isotropic mi-
crostructure. However, that appears to be all that is available.

Notation

Before embarking on the theory, a word about notation is in
order. Throughout this work, boldface symbols indicate vec-
tors or tensors. The inner product of two vectors (u) and (v)
is denoted u � v. At the risk of oversimplification, the distinc-
tion between second-order tensors and matrices is ignored.
Furthermore, a Cartesian basis exclusively employed. Read-
ers may consult the texts of Malvern14 and Marsden and
Hughes15 for background. Hence, if the second-order tensor
A is considered, with its matrix representation

Figure 1. A schematic of a kidney stone formed by agglomerated
particles.
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�A� �
def � A11 A12 A13

A21 A22 A23

A31 A32 A33

�, (5)

then the product of two second-order tensors A � B is defined
by the matrix product [A][B], with components of AijBjk �
Cik, where repeated indices imply summation. The scalar
product of two tensors or matrices is A : B � AijBij � tr ([A]T

[B]), where tr ( � ) � ( � )ii is the trace operator. Finally, the
divergence of a vector field u is defined by � � u � ui,i —with
a comma in the subscript denoting differentiation with respect
to the ith coordinate; for a second-order tensor field A, � � A
describes a contraction to a vector with the components Aij,j.
With this preamble out of the way, a description of the
effective material properties of the heterogeneous body is
now given.

Micro–Macro Properties

A theory for the mechanics of microheterogeneous kidney
stone will require knowledge of the overall effective mechan-
ical properties of microheterogeneous materials, comprised
of particles suspended in a binding matrix (Figure 1). Results
from the well-developed theory of heterogeneous solids are
used in order to determine overall properties. The theory is
framed in terms of linear elastic fracture mechanics (LEFM).
The basic assumption is that inelastic deformations occur in
a region that is small compared to the size of developing
cracks. When this is not so, as might be the case if there is
significant plastic deformation over large areas of the binding
matrix, one should use instead elastic plastic fracture me-
chanics (EPFM). If a rate-dependent theory is desired, one
can make use of viscoelastic material models for the binding
matrix or particulate phases. This comes at a significant
increase in complexity with many more unknown parameters,
and results in models that can only be numerically integrated.

�� denotes the effective mechanical response (or stiffness)
—a fourth-order elasticity tensor— described via the relation
between average stress and strain fields: �	�� � ��* : �
��; in
terms of components this is 		ij
� � Eijkl* 	
kl
�. Here

	 � 
� �
def 1

��
�

� d�,

and 	 and 
 are the stress and strain tensor fields within a
statistically representative volume element (RVE) of volume
�. The RVE will be discussed shortly. The domain of the
matrix phase is �1, and the domain of the particle phase is
�2. Of course, at the microscale, the mechanical properties of
microheterogeneous materials are characterized by a spatially
variable elasticity tensor ��. The effective response ��* is
assumed isotropic, which obtains when the particles are ran-
domly distributed and randomly oriented. An isotropic body
has material properties that are the same in every direction at
a point in the body; that is, the properties are not a function
of orientation at a point in the body. It can be shown that
when the body is isotropic, there are but two free constants in
��*, which may be written compactly

�
		11
�

		22
�

		33
�

		12
�

		23
�

		13
�

�
� 	

�* �
4

3
�* � �

2

3
�* �* �

2

3
�* 0 0 0

�* �
2

3
�* �* �

4

3
� �* �

2

3
�* 0 0 0

�* �
2

3
�* �* �

2

3
�* �* �

4

3
�* 0 0 0

0 0 0 �* 0 0
0 0 0 0 �* 0
0 0 0 0 0 �*



��*

�
	
11
�

	
22
�

	
33
�

2	
12
�

2	
23
�

2	
13
�

� . (6)

Here the effective bulk and shear moduli are given by

3�* �
def �tr�

3 �
�

��tr�

3 �
�

(7)

and

2�* �
def �	��
�:	��
�/	��
�:	��
�, (8)

where �� � � �
tr�

3
1 is the deviatoric strain, 	� is the

deviatoric stress, and 1 is the second-order identity tensor. In
this case one may write

TABLE I. Material properties used in the present work, estimated
from experimental data from ref. 13 as described in the text. The
matrix has bulk and shear moduli of �1 and �1. The harder
crystalline inclusions have bulk and shear moduli of �2 and �2.
The volume fraction of the matrix �2 is taken from ref. 13.

Material Property Value

�1(GPa) 0.160
�1(GPa) �1/3
�2(GPa) 14.973
�2(GPa) �2/3
�2 0.90
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��*:	�
� � 3�*�tr �

3
�

�

1 � 2�*	��
�. (9)

The eigenvalues of an isotropic effective elasticity tensor are
(3�*, 2�*, 2�*, �*, �*, �*). Therefore, it is necessary to
have �* � 0 and �* � 0 to retain positive definiteness of ��*,
as is required by thermodynamic arguments. An extensive
review of the analysis of random heterogeneous media can be
found in the work of Torquato.16–20

It is clear that for concepts involving the relation between
averages to be useful, they must be computed over a sample
containing a statistically representative amount of material of
volume �. This size requirement can be made precise, as
follows. A commonly accepted macro/micro criterion used in
effective property calculations is Hill’s condition;21 		 : 

�

: 		
� : 	

�. This condition dictates the size requirements on
the RVE. The classical argument is as follows. For any
perfectly bonded heterogeneous body in the absence of body
forces, two physically important loading states satisfy Hill’s
condition. They are (a) pure linear displacements of the form
u�� � � � xf 	�
� � �, and (b) pure tractions in the form
t�� � L � nf 	�
� � L; where � and L are constant strain
and stress tensors, respectively. Clearly, for Hill’s conditions
to be satisfied within a macroscopic body under nonuniform
external loading, the sample must be large enough to possess
small boundary field fluctuations relative to its size. There-
fore, applying (a)- or (b)-type boundary conditions to a large
sample is a way of reproducing approximately what may be
occurring in a statistically representative microscopic sample
of material in a macroscopic body (Figure 1).

Struvite crystals tend to be up to roughly 20–50 �m in
size; in cystine stones, the crystals are smaller —roughly up
to 10 �m in size7 in smooth cystine stones.12 It has been
estimated that, for the class of microstructures considered, the
RVE should be such that in contains between 100 and 1000
particles. For example, see Lemaitre and Chaboche,22 Huet,23

Zohdi24 or Zohdi and Wriggers.25 Thus, roughly a (cubical)
RVE should contain 5 to 10 particles on a side.

This may be compared to the length scale of a shock. If the
rise time of a shock in water is taken to be 10 ns, then the
thickness of the shock is about 15 �m in water, and perhaps
40 �m in the stone interior. Hence the size of the RVE may
be approaching the length scale of the wave front, but is
much, much smaller than either the compression or the rar-
efaction part of the wave. A higher-resolution theory would
have to be fully numerical, as in References24, 26, and 27. It is
worth emphasizing that in this work, damage is characterized
in an overall sense. Local failure mechanisms are inaccessi-
ble.

Estimates of the Effective Bulk and Shear Moduli in
Terms of Phase Properties

The constitutive tensor ��* provides the macroscale constitu-
tive properties of a microheterogeneous material because it
yields mapping between the average stress and strain mea-
sures. Until recently, the direct computation of micromaterial

responses was very difficult. Accordingly, classical ap-
proaches have sought to approximate or bound effective
responses. A widely used set of estimates for the effective
properties are the Hashin-Shtrikman bounds28,29 for isotropic
materials with isotropic effective responses; for the bulk
moduli

�*,� �
def

�1 �
�2

� 1

�2 � �1
�

3�1 � �2�

3�1 � 4�1

 
 �* 
 �2

�
�1 � �2�

� 1

�1 � �2
�

3�2

3�2 � 4�2

 �

def

�*,
, (10)

and for the shear moduli

�*,� �
def

�1 �
�2

� 1

�2 � �1
�

6�1 � �2� ��1 � 2�1�

5�1�3�1 � 4�1�

 
 �* 
 �2

�
�1 � �2�

� 1

�1 � �2
�

6�2��2 � 2�2�

5�2�3�2 � 4�2�

 �

def

�*,
, (11)

where �2 � �1 are the bulk moduli and �2 � �1 are the shear
moduli of the particle and binder phases, respectively, and �2

is the volume fraction of particles; of course the volume
fraction of the matrix is �1, where �1 
 �2 � 1. Such bounds
are the tightest known (perhaps tightest possible) on isotropic
effective responses, with isotropic two-phase microstructures,
where only the volume fractions and phase contrasts of the
constituents are known. Note that no further geometric infor-
mation, such as the number and nature of asperities, etc,
contributes to these bounds.

A straightforward estimate of the effective properties is to
take a convex combination of the bounds; for example,

�* � ��*,
 � �1 � ���*,� and �* � ��*,
 � �1 � ���*,�,

(12)

where 0 
 � 
 1. In the present work, because hard partic-
ulates are surrounded by a soft matrix, the properties of the
matrix control the effective properties, despite the fact that it
is of much smaller volume fraction. Here � � 0.25. Detailed
experimental and analytical work on how to estimate � can be
found in Zohdi et al.30 In short, for microstructures comprised
of hard particles surrounded by a continuous soft matrix,
which produces an overall stiffness that is significantly
smaller than the reverse, a hard matrix encasing soft particles,
it is well known that the Hashin-Shtrikman lower bound is
quite accurate;31 this motivates the choice of � � 0.25. Note
that � is a property of the material —measurable or calcula-
ble— and not a free parameter. Because it is associated with
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the material, all of the material properties are computed with
the same �.

Load Sharing Between the Two Phases

The load carried by each phase in the microstructure is
characterized via stress concentration tensors, which are now
discussed. These provide a measure of the deviation away
from the mean fields throughout the material. One can de-
compose averages of an arbitrary quantity over � into aver-
ages over the each of the phases in the following manner:

	A
� �
1

� ���1

A d� � ��2
A d�
 � �1	A
�1 � �2	A
�2.

(13)

This decomposition leads to

	�
� � �1	�
�1 � �2	�
�2 � �1��1:	

�1 � �2��2:	

�2.

Substitution of the identity 	�
�1 � 	�
� � �2 	�
�2 leads to

�1��1:	�
�1
�2��2:	�
�2���1:�	�
���2	�
�2)
�2��2:	�
�2.

The entire expression may then be rewritten as one involving
a premultiplier of 	�
�:

	�
� � ��1:�	�
� � �2	�
�2� � �2��2:	�
�2

� ����1 � �2���2 � ��1��:C�:	�
�1

where C: 	�
� � 	�
�2
, with

C �
def �1

�2
���2 � ��1�

�1:���* � ��1�
.

The strain concentration tensor C relates the average strain
over the particle phase (2) to the average strain over all
phases. Similarly, for the variation in the stress, C : �*�1 :
	�
� � �2

�1 : 	�
�2
, which reduces to

��2:C:��*�1:	�
� �
def

C� :	�
� � 	�
�2. (14)

C� is known as the stress concentration tensor; it relates the
average stress in the particle phase to that in the whole RVE.
Note that once either C� or ��* are known, the other can be
determined.

In the case of isotropy

C� � �
def 1

�2

�2

�*

�* � �1

�2 � �1
and C� � �

def 1

�2

�2

�*

�* � �1

�2 � �1
, (15)

where

C� k� tr�

3
�

�

� �tr�

3
�

�2

and where C� �	��
� � 	��
�2
. Clearly, the microstress fields

are minimally distorted when C� k � C� � � 1; there are no
stress concentrations in a homogeneous material, for homo-
geneous loading. For the matrix,

	�
�1 �
	�
� � �2	�
�2

�1
�

	�
� � �2C� :	�
�

�1

�
�1 � �2C� �:	�
�

�1
�
def

C
A

:	�
�. (16)

Therefore, in the case of isotropy,

C
A

� �
def 1

�1
�1 � �2C� �� and C

A

� �
def 1

�1
�1 � �2C� ��. (17)

The utility of such relations is that they allow one to deter-
mine what the load sharing is for each phase. Typically, for
kidney stones, the failure of the matrix that binds the partic-
ulates together is of interest. However, the theory developed
here can be applied to estimate failure of the matrix or of the
particulates.

FATIGUE-LIFE ESTIMATES FOR THE
DESTRUCTION OF KIDNEY STONES

The classical Basquin relation is employed for fatigue-life
estimation, which is as follows at a material point.32

��a� � ���f� � ��m���2Nf�
bfNf �

1

2� ��a�
��f� � ��m�


1/b

,

(18)

where ��� � def��:�. Here the norm of the mean stress is
��m� � ��max 
 �min�/ 2, and the norm of the fluctuating
stress is ��a� � ��max � �min�/2. Static failure stress is
denoted by �f and, typically for most known materials,
�0.12 
 b 
 �0.05. Classical relations of this type are
discussed in Suresh.33 Classical approaches are followed
here, and �f is set to be the minimum of the absolute values
of the failure stresses in tension or compression, when these
differ.

This is extended to overall failure of each of the phases by
using volumetric averages over each phase. For the second
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(particle) phase, the overall number of cycles to failure for the
particle phase (2) is*

Nf2 �
1

2� �	�a
�2�
�	�f
�2� � �	�m
�2�


1/b2

�
1

2� �C� :	�a
��
�	�f
�2���C� :	�m
��


1/b2

,

(19)

whereas for the binding matrix phase (1)

Nf1 �
1

2� �	�a
�1�
�	�f
�1� � �	�m
�1�
1/b1

�
1

2� �C� :	�a
��

�	�f
�1���C
A

:	�m
��

1/b1

.

(20)

The rates of increase and decrease of the fatigue lives are
controlled by the magnitudes of the bi’s.

Consistent with the use of effective (volumetrically aver-
aged) properties, a body is considered with an idealized
loading on its boundary of the form t�� � L � n, where t is
the surface traction, L is a second-order (load) tensor, and n
is the outward unit normal on the boundary ��. Consistent
with classical fatigue theory, inertial effects are neglected.
The identity � � (� R x) � (� � �) R x 
 � � �x � � is used
where x is the position vector of an arbitrary point within the
body, and R is the dyadic product. This is substituted into the
definition of the average stress to obtain (using Gauss’s
divergence theorem)

	�
� �
1

���
� � �� � x� d� �

1

����
�� � x� � n da

�
1

����
�L � x� � n da � L

For simplicity, pressure-like loading on the surface of the
RVE in the form

t�� �
def � L 0 0

0 L 0
0 0 L

� � n1

n2

n3

�. (21)

	�
� � L

is considered. With this loading, all states which satisfy the
failure criterion for the matrix satisfy

Nf1 �
1

2� �	�a
�1�
�	�f
�1� � �	�m
�1�


1/b1

�
1

2� �C
A

:	�a
��

�	�f
�1� � �C
A

:	�m
��

1/b1

.

(22)

Of course, the RVE experiences both dilatational and devia-
toric loading. Stress concentrations for both dilatational and
deviatoric loading have been developed. With a suitable
mesoscopic model that includes full coupling between the
fluid and stone one could be definite about what loading to
prescribe on the RVE. Such a model does not yet exist. This
first examination of the influences of stress concentrations
associated with microscale heterogeneity will focus on meso-
scopic loading of the following form: 	�max
� � A	�f
�1

(tension, A � 0) and 	�min
� � B	�f
�1
(compression, B �

0), with a normalization of

	�f
�1 � 	f� 1 0 0
0 1 0
0 0 1

�. (23)

Here 	f is the failure stress of the binding matrix. Note that
here the focus is on Mode I (opening mode) of microcrack
growth due to fatigue, hence the form of the loading consid-
ered. Therefore, the amplitude of the alternating stress is

	�a
� �
A � B

2
	�f
�1, (24)

and the mean is

	�m
� �
A � B

2
	�f
�1 (25)

Thus, if the previous expressions are substituted into (22), the
relationship between Nf1, A, and B becomes

Nf1 �
1

2� C
A

�

A � B
2

1 � C
A

�

A � B
2

�
1/b1

, (26)

where, due to the overall hydrostatic loading, the overall
failure depends on only the bulk modulus concentration fac-
tor, and on the maximum and minimum averaged dimension-
less stresses. Note that in an overall, volumetrically averaged
sense, overall deviatoric stresses vanish, and local deviatoric
failures cannot be resolved, due to the type of loading con-
sidered, that is, Mode I opening of a microscale crack.

The number of cycles to failure versus maximum (dimen-
sionless) tension A � 0 and compression B � 0 per cycle is
plotted in Figure 2, using material properties found in Table
I. The fatigue exponent b1 was chosen to be the average of the
ranges cited earlier �0.085 � �(0.12 
 0.05)/2. It is em-
phasized that b1 is a material property —measurable or cal-
culable—and not a free parameter, in principle. These results
for the number of cycles to failure fall within the ranges
typically needed for the destruction of kidney stones (102 �
103). With the parameters determined as indicated, it was

*The compact notation is employed: 	�
�1 � �tr �

3
�

�1

1 � 	��
�1�

C� ��tr �

3
�

�

1 � C
A

� 	��
� �
def

C
A

:	�
�.
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found that CA� � 0.273. The value of CA� is irrelevant due
to the overall purely hydrostatic stress state. This implies that
the external loading, characterized by A and B will induce
significantly smaller loads on the softer binding matrix than
on the harder inclusions. Therefore, the peak stresses made
dimensionless by the matrix failure stress. A and B, must be
significantly greater than unity to induce failure of the matrix.

If the reasoning of Cohen and Whitfield34 is followed, then
the magnitudes may be reckoned in this way. From Figure 2,
one can see that about 350 cycles are required to fragment a
stone if A � �B � 2.3. If the matrix failure stress in tension
is 5 bar, then A � �B � 2.3 corresponds to maximum and
minimum stresses of roughly 10 bar. Owing to energy losses
at the stone–fluid interface, this is associated with a liquid
pressure of at least three times, or 30 bar. Finally, attenuation
of the shock wave as it travels through (say 10 cm of) tissue
would require a pulse of about 10 times that amount, or 30
MPa. This is within the range of lithotripters, although likely
it is true that A � �B.

Of course, the nature of the cyclic loading at any one point
in the stone is best derived from a mesoscopic model that
accounts for coupling to the surrounding medium, and reflec-
tion and interaction of stress waves. Such a model for pres-
sure waves in a homogeneous material was recently devel-
oped by Cleveland and Tello.35 As one would expect, if the
mean stress is increased, the alternating stress can be de-
creased to induce fatigue failure. Furthermore, if it is possible
to increase the number of cycles, one can decrease the inten-
sity of the mean and alternating stresses.

Some statements can be made about the influence of b1 and
� on the fatigue surface shown in Figure 2. Alteration of b1

changes the slope of the surface; whereas changes in � shift it up
or down dramatically; see Figure 3. Hence these two parameters,
once measured, are essential ingredients in a sound theory.

DISCUSSION AND CONCLUSIONS

In the course of this work a number of approximations and
estimates were made. The goal was to develop a theoretical

framework capable of handling the mechanics of microhet-
erogeneous kidney stones. To that end, an isotropic, random
microstructure with two phases—particulate and binder—
was considered. Stress concentration functions were devel-
oped to determine load sharing between the particle phase
and the binding matrix phase. To illustrate application of the
theory, fatigue-life estimates were developed for each phase,
as a function of the volume fraction and of the mechanical
properties of the constituents, as well as the mean and fluc-
tuating loading. The failure of the binding matrix could then
be predicted explicitly.

Measurements of laminated uric-acid stones13 were used
to estimate properties of matrix and binder, although this
analysis applies more directly to struvite and cystine stones.
Needless to say, the theory could be improved significantly
by property measurements in a variety of stones. The analysis
has also made use of a number of approximations. There
remain material properties that could be measured in an
experiment. These include the fatigue parameters in each
phase bi and the weighting � in the mean property estimates.
Some methods for determination of these parameters from
experiments have been described.30 Of course, it would also
be useful to measure directly the bulk and shear moduli of the
binding matrix and particulate phases; then one would not
have to resort to determination of these quantities by the
methods used earlier. Finally, it would be worthwhile to
measure the failure stress for both matrix and particulate
phases, in order to yield quantitative estimates for fatigue

Figure 2. The relationship between the dimensionless maximum ten-
sion A and compression B and the number of cycles to binding matrix
failure (Nf1) for � � 0.25. Contours of equal Nf1 are shown on the
plane.

Figure 3. Number of cycles to binding matrix failure (Nf1) versus
maximum tension A and compression B for � � 0.2 (upper) and 0.3
(lower).
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failure. The approach presented here can serve as a precursor
to more elaborate large-scale computational simulations, such
as those found in Zohdi.24, 26, 27 The assumption of isotropy
could be relaxed, as estimates for certain anisotropic re-
sponses can be found in Hashin.31 This would allow one to
treat a greater variety of stones.

With a deeper understanding of the differences in the
destruction of kidney stones of different types, one could
possibly tailor the number and intensity of cycles of loading
based on the type of stones. In vivo, one could imagine that
the morphology could be determined by inverse methods,
such as x-ray tomography. Such information could be used to
obtain more precise estimates of the material properties, for
use in a model that would estimate the number of cycles to
failure. One can target chemical alteration of the stone with a
goal toward further weakening it to enhance the action of
shock-wave lithotripsy,36 in a way that could be understood
with a theory of the kind presented here. If, for example, the
particulate phase is weakened, particulates will carry a
smaller fraction of the load, hence weakening the stone.

The authors to thank P. Zhong for a stimulating discussion.
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