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SUMMARY

Recently, several applications, primarily driven by micro-technology, have emerged where the use of
materials with tailored electromagnetic properties is necessary for a successful design. The ‘tailored’
properties are achieved by doping an easily moldable base matrix with particles having dielectric constants
that are chosen to give overall desired properties. In many cases, the analysis of such materials requires the
simulation of the macroscopic and microscopic electromagnetic response, as well as its resulting coupled
thermal response, which can be important to determine possible failure in ‘hot spots’. In this study, a model
and a solution strategy are developed to compute the response of a class of fully coupled electro-magneto-
thermal systems composed of heterogeneous materials, involving the absorption of electromagnetic energy,
its conversion to heat and changes in the electromagnetic material properties. The algorithm involves
recursive staggering, whose convergence is dependent on the discretized time-step size. The multifield
system coupling can change, becoming weaker, stronger or alternating back and forth. Therefore, it is
quite difficult to determine a priori the time-step size needed to meet a prespecified tolerance on the
staggering error, i.e. the incomplete resolution of the coupling between the fields. The presented solution
process involves time-step size adaptivity to control the contraction mapping constant of the multifield
system operator in order to induce desired staggering rates of convergence within each time step and
to control the staggering error. Three-dimensional numerical experiments are performed to illustrate the
behavior of the model and the solution strategy. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Most modern electromagnetic devices owe a significant amount of their success to the tailored
electromagnetic material behavior of the components that comprise them. A relatively inexpensive
way to obtain macroscopically desired responses is to enhance an easy-to-form matrix material’s
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MICRO– ELECTRONIC DEVICE

Figure 1. A microelectronic device with tailored layers.

properties by introducing microscale particles (Figure 1). The particles are chosen to produce an
overall desired electromagnetic effect. The aggregate response of the material is an outcome of
the interaction between the smaller-scale (microstructure) constituents that comprise the ‘effective’
material. In the construction of such materials, the basic philosophy is to select matrix/particle
material combinations in order to produce desired aggregate responses. For example, in electro-
magnetic engineering applications, the classical choice is to add a particulate phase with suitable
dielectric constants in order to modify the overall properties of a modable base matrix material.

Unfortunately, an attempt to directly simulate a device containing billions or even trillions of
particles, incorporating all of the microscale details, requires an extremely fine spatial discretization
mesh, for example, that of a finite difference or a finite element mesh, which is simply out of reach
of virtually all computing devices in the foreseeable future. Furthermore, the exact subsurface
geometry is typically impossible to ascertain throughout the structure. Essentially, a complete
detailed solution of the entire device is nearly impossible. Fortunately, this type of analysis is
usually unnecessary since, typically, an engineer wishes to know two primary things: (1) the
effective or macroscale properties of the aggregate material and (2) the resulting thermal response
of the material due to the absorption of the electromagnetic energy in a statistically representative
volume element (RVE).‡

The determination of effective properties of materials with heterogeneous microstructure has had
a long history. In the context of electromagnetics, the properties of microheterogeneous materials
are characterized by a spatially variable permittivity e. Typically, in order to characterize the
(homogenized) effective macroscopic response of such materials, a relationship between averages

〈D〉� =e∗ ·〈E〉� (1)

is sought, where 〈·〉� def= 1/|�|∫� ·d� is the averaging operator, and D and E are the electric flux
and electric field within a statistically RVE of volume |�|. The quantity e∗ is known as the effective

‡The determination of the thermal response is often critical in ascertaining the failure of a device.
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Figure 2. A representative sample of a material with heterogeneous microstructure.

permittivity property and is the permittivity tensor used in usual macroscale analyses. Similarly,
one can describe other effective quantities such as

〈B〉� =l∗ ·〈H〉� (2)

where B and H are the magnetic flux and magnetic field, and l∗ is the effective magnetic perme-
ability. For a sample to be statistically representative, it must usually contain a reasonably large
number of particles (Figure 2); therefore, the computations over the RVE are still not trivial, but
are of reduced computational effort in comparison with a direct attack on the entire macrostructural
problem, if it were even possible.

Historically, because of the difficulties in computing effective properties directly, a variety
of approximate techniques have been developed to estimate the overall macroscopic properties
of materials consisting of a matrix containing distributions of particles.§ In the realm of solid
mechanics, Voigt [4] is usually cited with the first analysis of the linear effective mechanical
properties of the microheterogeneous solids, 〈r〉� =E∗ : 〈e〉�, where r is the stress and e is the
strain. Voigt approximated the strain field within an aggregate sample of heterogeneous material as
being uniform, leading to 〈E〉� as an expression of the effective property. Reuss [5] approximated
the stress fields within the aggregate of polycrystalline material as uniform, leading to 〈E−1〉−1

� as an
expression for the effective property. In 1952, Hill [6] proved that these assumptions provide bounds
on the effective property, namely, 〈E−1〉−1

� �E∗�〈E〉�. These inequalities mean that the eigenvalues

of the tensors E∗−〈E−1〉−1
� and 〈E〉�−E∗ are non-negative. One can interpret the Voigt and Reuss

assumptions, and the resulting fields, as providing the extremes of possible behavior, since the
Voigt stress field is one where the tractions at the phase boundaries cannot be in equilibrium
(statically inadmissible), while the implied Reuss strains are such that the heterogeneities and the
matrix could not be perfectly bonded, i.e. (kinematically inadmissible). These results can be easily
re-interpreted for electrical and magnetic properties and fields to yield

〈e−1〉−1
� �e∗�〈e〉� (3)

§For example, see Maxwell [1, 2] and Rayleigh [3].

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:1250–1279
DOI: 10.1002/nme



COMPUTATION OF THE COUPLED THERMO-ELECTROMAGNETIC RESPONSE 1253

where the upper bound is generated by assuming that the electric field is uniform throughout
the medium and the lower bound is generated by assuming that the electric field flux is uniform
throughout the medium. For the magnetic properties, one has

〈l−1〉−1
� �l∗�〈l〉� (4)

where the upper bound is generated by assuming that the magnetic field is uniform throughout
the medium and the lower bound is generated by assuming that the magnetic field flux is uniform
throughout the medium. In the electromagnetics literature, the bounds in Equations (3) and (4)
are often referred to as the Wiener bounds [7]. These inequalities mean that the eigenvalues of
the tensors e∗−〈e−1〉−1

� and 〈e〉�−e∗ are non-negative. Typically, the bounds are quite wide and
provide only rough qualitative information. Within the last 50 years improved estimates have been
pursued, with a notable contribution being the Hashin–Shtrikman bounds [8–11].¶ The objective of
the present study is to provide basic models and numerical solution strategies to analyze the
coupled response of such materials by direct simulation using standard laptop/desktop equipment.
Numerical experiments are conducted to explore the behavior of models and solution schemes,
and the results are checked against analytical bounds on the effective system response when this
is possible.

2. EFFECTIVE PROPERTIES OF HETEROGENEOUS ELECTROMAGNETIC MEDIA

In order to introduce fundamental concepts pertaining to effective properties of electromagnetic
media, we initially start with static, lossless, conditions. Later, we consider more general, ther-
mally sensitive, time-transient scenarios and the corresponding numerical methods. Let us start by
simplifying the general formulations of Maxwell’s equations, by simplifying Faraday’s law for a
static, lossless, case‖

∇×E=−
(

�(l·H)

�t
+Ms+ r̂·H

)
⇒ ∇×E=0 (5)

and Ampere’s law

∇×H= �(e·E)

�t
+Js+r·E ⇒ ∇×H=0 (6)

where E is the electric field intensity in V/m, D is the electric flux density in C/m2, J is the electric
current density in A/m2, H is the magnetic field intensity in A/m, B is the magnetic flux density
in Wb/m2, M is the equivalent magnetic current density in V/m2, e is the electric permittivity in
F/m, l is the magnetic permeability in H/m, r is the electric conductivity in S/m and r̂ is the

¶There exist several other approaches that seek to estimate or bound the aggregate responses of microheterogeneous
materials. A complete survey is outside the scope of the present study. For a relatively recent and thorough analysis
of a variety of classical approaches, such as those briefly mentioned here, see Torquato [12–16] for general
interdisciplinary discussions, Jikov et al. [17] for more mathematical aspects, Aboudi [18], Hashin [11], Mura [19],
Nemat-Nasser and Hori [20] for solid mechanics inclined accounts of the subject and Zohdi and Wriggers [21] for
computational aspects.

‖Here, Ms is an ‘equivalent magnetic source’ term and Js is a current source term.
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equivalent magnetic loss in �/m. Initially, we consider a simple effective property relationship
between 〈D〉� and 〈E〉�

〈D〉� =e∗ ·〈E〉� (7)

where e∗ is the effective permittivity. Similarly, we relate 〈B〉� and 〈H〉� by

〈B〉� =l∗ ·〈H〉� (8)

where l∗ is the effective magnetic permeability of the medium. As stated in the Introduction, it is
clear that for the relationship between averages to be useful it must be computed over a sample
containing a statistically representative amount of material.

2.1. Framing and the construction of a boundary value problem

A frequently used criterion for selecting sample sizes in effective property calculations is the
well-known Hill condition [6]∗∗

〈D ·E〉� =〈D〉� ·〈E〉� (9)

Basically, this is a statement that the micro-electrical-energy must equal the macro-electrical-
energy. This is often referred to as an ergodicity condition in statistical mechanics. In order to
understand the implications of Equation (9), we split the electric field flux and electric fields into a
purely fluctuating (zero mean) D=〈D〉�+D̃, where 〈D̃〉� =0, and E=〈E〉�+Ẽ, where 〈Ẽ〉� =0;
we obtain the following equation by direct expansion of the system energy:

〈(〈D〉�+D̃) ·(〈E〉�+Ẽ)〉� =〈D〉� ·〈E〉�+〈D̃·Ẽ〉� (10)

since 〈D̃〉� =0 and 〈Ẽ〉� =0. The ergodicity assumption is that 〈D̃ ·Ẽ〉� →0, as |�|→∞. The
implication is that, as the sample becomes infinitely large, D̃ ·Ẽ is purely fluctuating and hence
〈D̃ ·Ẽ〉� =0. In other words, the product of two purely fluctuating random fields is also purely
fluctuating. This is exactly the assertion of the Hill condition. Typically, an analyst will apply
uniform loading on a large sample, with the understanding that this idealization ‘mimics’ what a
RVE (which is much smaller than the structural component of intended use) would experience. It
is clear that uniform loading is an idealization and, thus, will be present only within a vanishingly
small microstructure relative to a finite-sized engineering (macro)structure.

The ergodicity assumption motivates the use of a ‘framing’ technique, which is a method
whereby uniform far fields are applied on the boundary of a large sample, and the interior of
the sample is then probed with subsamples, within the larger sample, in order to avoid boundary
effects that occur from imposing the uniform fields on the larger sample exterior. This is akin
to exploiting a St Venant type of effect, commonly used in solid mechanics, to avoid boundary
layers. The approach provides a way of determining what the microstructure really experiences,
without ‘bias’ from the boundary loading.

∗∗All of the following discussion holds for B and H, in virtually the same manner. For more on ergodic hypotheses,
see the classical work of Kröner [22].
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2.2. Computational testing

To determine e∗, one specifies three linearly independent (uniform) loadings of the form (1)
E|�� =Ei→iii or (2) D|�� =Di→iii, where Ei→iii and Di→iii are vectors with spatially constant
components. This loading is applied to the sample in Figure 3, which depicts a microheterogeneous
material. Each independent loading yields three different averaged electric field components and
hence provides three equations for the constitutive constants in e∗. In order for such an analysis
to be valid, i.e. to make the material data reliable, the sample must be small enough so that it
can be considered as a material point with respect to the size of the domain under analysis, but
large enough to be a statistically representative sample of the microstructure. In general, in order
to determine the structural-scale material properties of microheterogeneous material one computes
nine constitutive constants �∗i j in the following relationship between averages (actually six due to
symmetry): ⎧⎪⎨

⎪⎩
〈D1〉�
〈D2〉�
〈D3〉�

⎫⎪⎬
⎪⎭=

⎡
⎢⎣

�∗11 �∗12 �∗13
�∗21 �∗22 �∗23
�∗31 �∗32 �∗33

⎤
⎥⎦
⎧⎪⎨
⎪⎩

〈E1〉�
〈E2〉�
〈E3〉�

⎫⎪⎬
⎪⎭ (11)

As mentioned before, each independent loading leads to three equations and hence in total nine
equations are generated by the three independent loadings, which are used to determine the tensor
relationship between (e∗) average electric field flux and electric field. Note that e∗ is exactly
what appears in engineering books as the ‘property’ of materials. The usual choices for the three
independent load cases are

E or D=
⎡
⎢⎣

�

0

0

⎤
⎥⎦ ,

⎡
⎢⎣
0

�

0

⎤
⎥⎦ ,

⎡
⎢⎣
0

0

�

⎤
⎥⎦ (12)

Ω
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BOUNDARY  CONDITIONS

Ω
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1
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Figure 3. With the framing method, a sample is probed with interior subsamples, within the larger sample,
in order to avoid boundary effects that occur from imposing the uniform fields on the large-sample exterior.
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where � is a ‘load’ parameter. Each independent loading state provides three equations, for a total
of nine, which are used to determine the tensor (e∗) relationship between average electric field
flux and electric field. The system of equations to be solved has the following form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈E1〉i� 〈E2〉i� 〈E3〉i� 0 0 0 0 0 0

0 0 0 〈E1〉i� 〈E2〉i� 〈E3〉i� 0 0 0

0 0 0 0 0 0 〈E1〉i� 〈E2〉i� 〈E3〉i�
〈E1〉ii� 〈E2〉ii� 〈E3〉ii� 0 0 0 0 0 0

0 0 0 〈E1〉ii� 〈E2〉ii� 〈E3〉ii� 0 0 0

0 0 0 0 0 0 〈E1〉ii� 〈E2〉ii� 〈E3〉ii�
〈E1〉iii� 〈E2〉iii� 〈E3〉iii� 0 0 0 0 0 0

0 0 0 〈E1〉iii� 〈E2〉iii� 〈E3〉iii� 0 0 0

0 0 0 0 0 0 〈E1〉iii� 〈E2〉iii� 〈E3〉iii�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�∗11
�∗12
�∗13
�∗21
�∗22
�∗23
�∗31
�∗32
�∗33

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈D1〉i�
〈D2〉i�
〈D3〉i�
〈D1〉ii�
〈D2〉ii�
〈D3〉ii�
〈D1〉iii�

〈D2〉iii�

〈D3〉iii�

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

Importantly, if the effective response is assumed to be isotropic, then only one test loading
(instead of usually three) is required

�∗ def=
√

〈D〉� ·〈D〉�
〈E〉� ·〈E〉� (14)

with a similar relationship holding for

�∗ def=
√

〈B〉� ·〈B〉�
〈H〉� ·〈H〉� (15)

Since we will be dealing with materials composed of randomly dispersed particulate media, we
shall assume that the materials have an overall isotropic response and that Equations (14) and
(15) are adequate to describe the effective material. We note that, even if the aggregate response
is not purely isotropic, one can interpret the above expressions as approximations of isotropic
responses.††

3. SOLUTION TO MAXWELL’S EQUATIONS

In order to generate the effective electromagnetic response of a heterogeneous continuum sample,
we will need to solve Maxwell’s equations posed over a representative sample domain. Our goal
is to solve general formulations of Maxwell’s equations over such a sample of material in order

††Applying uniform far fields on the boundary of a large sample is a way of attempting to reproduce the length-scale
disparities that are necessary for the use of an effective property to make sense.
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to consider thermally sensitive, time-transient responses, by starting with Faraday’s law

∇×E=−
(

�(�H)

�t
+Ms+ �̂H

)
(16)

and Ampere’s law

∇×H= �(�E)

�t
+Js+�E (17)

where the material is assumed to be heterogeneous, and � and � are assumed to be (pointwise)
isotropic (scalars) and time varying, due to the time-dependent thermal dependence, which is
described shortly. Towards that end, we first discuss the general discretization scheme.‡‡

3.1. Temporally adaptive iterative methods

Implicit time-stepping methods, with time-step size adaptivity, built on approaches found in Zohdi
[21, 23–34], will be used throughout the upcoming analysis. In order to introduce basic concepts,
we consider a first-order differential equation (application to Maxwell’s equations will follow)

MẆ=F(W) (18)

which, after being discretized using a trapezoidal ‘�-method’ (0���1)

WL+1=WL + �t

M
(�F(WL+1)+(1−�)F(WL)) (19)

yields the following abstract form:

A(WL+1)=B (20)

It is convenient to express

A(WL+1)−B=G(WL+1)−WL+1+R=0 (21)

where R is a remainder term that does not depend on the solution, i.e. R 	=R(WL+1). A straight-
forward iterative scheme can be expressed as

WL+1,K =G(WL+1,K−1)+R (22)

where K =1,2,3, . . . is the index of iteration within time step L+1. The convergence of such a
scheme is dependent on the behavior of G, namely, a sufficient condition for convergence is that
G is a contraction mapping for all WL+1,K , K =1,2,3 . . . . In order to investigate this further, we
define the iteration error as

�L+1,K def=WL+1,K −WL+1 (23)

A necessary restriction for convergence is iterative self-consistency, i.e. the ‘exact’ (discretized)
solution must be represented by the scheme

G(WL+1)+R=WL+1 (24)

‡‡The quantities � and �̂ are assumed to be pointwise isotropic (scalars) as well.
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Enforcing this restriction, a sufficient condition for convergence is the existence of a contraction
mapping

�L+1,K =‖WL+1,K −WL+1‖ = ‖G(WL+1,K−1)−G(WL+1)‖ (25)

� �L+1,K ‖WL+1,K−1−WL+1‖ (26)

where if 0��L+1,K<1 for each iteration K , then �L+1,K →0 for any arbitrary starting value
WL+1,K=0, as K →∞. This type of contraction condition is sufficient, but not necessary, for
convergence. Substituting these approximations into MẆ=F(W) leads to

WL+1,K ≈ �t

M
(�F(WL+1))︸ ︷︷ ︸
G(WL+1,K−1)

+ �t

M
(1−�)F(WL)+WL︸ ︷︷ ︸

R

(27)

whose contraction constant is scaled by �∝��t/M. Therefore, we see that the contraction constant
� is (1) directly dependent on the strength of the interaction forces, (2) inversely proportional to M
and (3) directly proportional to ��t (at time=t). Therefore, if convergence is slow within a time
step, the time-step size, which is adjustable, can be reduced by an appropriate amount to increase
the rate of convergence. Decreasing the time-step size improves the convergence; however, we want
to simultaneously maximize the time-step sizes to decrease the overall computing time, while still
meeting an error tolerance on the numerical solution’s accuracy. In order to achieve this goal, we
follow an approach found in Zohdi [23, 24] originally developed for continuum thermo-chemical
multifield problems in which one first approximates

�L+1,K ≈ S(�t)p (28)

(S is a constant) and secondly one assumes the error within an iteration to behave according to

(S(�t)p)K�L+1,0=�L+1,K (29)

K =1,2, . . ., where �L+1,0 is the initial norm of the iterative error and S is intrinsic to the
system.§§ Our goal is to meet an error tolerance in exactly a preset number of iterations. To this
end, one expresses

(S(�ttol)
p)Kd�L+1,0=Ctol (30)

where Ctol is a (coupling) tolerance and Kd is the number of desired iterations.¶¶ If the error
tolerance is not met in the desired number of iterations, the contraction constant �L+1,K is too large.
Accordingly, one can solve for a new smaller step size, under the assumption that S is constant,

�ttol=�t

(
(Ctol/�L+1,0)1/pKd

(�L+1,K /�L+1,0)1/pK

)
(31)

The assumption that S is constant is not critical, since the time steps are to be recursively refined
and unrefined throughout the simulation. Clearly, the expression in Equation (31) can also be used
for time-step enlargement, if convergence is met in less than Kd iterations.‖‖

§§For the class of problems under consideration, due to the quasi-linear dependency on �t , p≈1.
¶¶Typically, Kd is chosen to be between 5 and 10 iterations.
‖‖At the implementation level, since the exact solution is unknown, the following relative error term is used,

�L+1,K def=WL+1,K −WL+1,K−1.
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Remarks
Obviously, we can use this scheme for any value of 0���1. Time-step size adaptivity is important,
since the solution can dramatically change over the course of time, possibly requiring quite
different time-step sizes to control the staggering error. However, to maintain the accuracy of the
time-stepping scheme, one must respect an upper bound dictated by the discretization error, i.e.
�t��t lim. Such an approach is highly advantageous since solutions to previous time steps can be
used as the first guess to accelerate the solution procedure. A recursive iterative scheme of the
Jacobi type, where the updates are made only after one complete system iteration, was illustrated
here only for algebraic simplicity. The Jacobi method is easier to address theoretically, while the
Gauss–Seidel-type method, which involves immediately using the most current values, when they
become available, is used at the implementation level. It is important to realize that the Jacobi
method is perfectly parallelizable. In other words, the update for each node is uncoupled, with the
updates only coming afterward. Gauss–Seidel, since it requires the most current updates, couples
the nodal calculations immediately. However, these methods can be combined to create hybrid
approaches, whereby the entire domain is partitioned into subdomains and within each subdomain
a Gauss–Seidel method is applied. In other words, for a subdomain, the values at any nodes from
outside are initially frozen, as far as calculations involving members of the group are concerned.
After each isolated group’s solution (nodal values) has converged, computed in parallel, then all
(interface) nodal values are updated, i.e. the most current values become available to all members
of the grid, and the isolated subdomain calculations are repeated.

3.2. Electromagnetic algorithmic implementation

We now apply the introduced approach to electromagnetics. Let us start with a relatively general
(‘lossy’) formulation of Maxwell’s equations (Faraday’s law and Ampere’s law)

�(�H)

�t
=−∇×E−Ms− �̂Hdef= F (32)

and

�(�E)

�t
=∇×H−Js−�Edef=G (33)

We discretize for time= t+��t and using a trapezoidal ‘�-scheme’

(�H)(t+�t)−(�H)(t)

�t
≈F(t+��t)≈�F(t+�t)+(1−�)F(t) (34)

and

(�E)(t+�t)−(�E)(t)

�t
≈G(t+��t)≈�G(t+�t)+(1−�)G(t) (35)

Rearranging yields

H(t+�t)≈ (�H)(t)

�(t+�t)
+ �t

�(t+�t)
(�F(t+�t)+(1−�)F(t)) (36)

and

E(t+�t)≈ (�E)(t)

�(t+�t)
+ �t

�(t+�t)
(�G(t+�t)+(1−�)G(t)) (37)
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Numerically, the components of the gradient of functions such as E are approximated by central
finite difference stencils of the form

�E(x)

�x
≈ E(x+�x)−E(x−�x)

2�x
(38)

etc. In order to construct a solution, the algorithm is as follows:

(1) Construct derivative terms such as �E(x)/�x≈E(x+�x)−E(x−�x)/2�x for each node
(i, j,k), Ht+�t =F(Et+�t ,Ht+�t ) and Et+�t =G(Et+�t ,Ht+�t ).

(2) Compute E-field with H fixed, then compute H-field with E fixed, and iterate, K =1,2 . . .

for Ht+�t,K =F(Et+�t,K ,Ht+�t,K−1) and Et+�t,K =G(Et+�t,K−1,Ht+�t,K−1).

(3) Compute error measures: �∗
K

def=max(�E−K ,�H−K ), i=1, . . . ,nodes

�K−E
def=
∑N

i=1 ‖EL+1,K
i −EL+1,K−1

i ‖∑N
i=1 ‖EL+1,K

i −EL
i ‖ , �K−H

def=
∑N

i=1 ‖HL+1,K
i −HL+1,K−1

i ‖∑N
i=1 ‖HL+1,K

i −HL
i ‖

(4) If the tolerance is met, �∗�Ctol and K�Kd, then: (a) increment time forward: t= t+�t ,
(b) construct new time step: �t=�K�t , where

�K
def=
(

(Ctol/�∗
0)

1/pKd

(�∗
K /�∗

0)
1/pK

)

and (c) select �t=min(�t lim,�t) and go to (1).
(5) If the tolerance is not met, �∗>Ctol and K =Kd, then construct (refine) new time step:

�t=�K�t and go to (1).

At a given time, once the process is complete, then the time is incremented forward and the process
is repeated. The overall goal is to deliver solutions where the iterative error is controlled and the
temporal discretization accuracy dictates the upper limit on the time-step size (�t lim).

Remark 1
This type of iterative procedure is ideal for coupled problems, such as thermo-electromagnetic
system, which we will treat shortly.

Remark 2
Although we will not employ explicit schemes, it is important to mention the most widely used
type, the so-called Yee scheme [35]. A relatively clear exposition is given in Kunz and Luebbers
[36] and Taflove and Hagness [37]. We remark that while the time-step size (associated with the
Courant–Friedrichs–Levy (CFL) condition) is clearly one concern, an overriding one is stability,
i.e. that errors at one time step do not grow in the next time step. We refer the reader to Taflove
and Hagness [37] for a detailed discussion. The Yee method is subject to time-step restrictions
due to stability issues and, since we shall iterate due to the use of multifield staggering schemes
(introduced shortly with thermal coupling), implicit methods are preferred for the applications of
interest.
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4. COUPLED THERMAL EFFECTS

4.1. The Poynting vector

Electromagnetic waves traveling through space carry energy that flows in the direction of wave
propagation. The energy per unit area per unit time flowing into a surface in free space is given by
the Poynting vector S=E×H. The Poynting vector has an intimate connection to the conservation
of energy. To see this, form the inner product of the magnetic field with Faraday’s law

H ·(∇×E)=−H ·
⎛
⎝Ms+ �̂H︸ ︷︷ ︸

M

+�B
�t

⎞
⎠ (39)

and the inner product of the electric field with Ampere’s law

E ·(∇×H)=E ·
⎛
⎝Js+�E︸ ︷︷ ︸

J

+�D
�t

⎞
⎠ (40)

Subtracting Equation (39) from Equation (40) yields

E ·(∇×H)−H ·(∇×E)︸ ︷︷ ︸
−∇·(E×H)=−∇·S

=E ·J+H ·M+E · �D
�t

+H · �B
�t︸ ︷︷ ︸

=�W/�t

(41)

where W is the electromagnetic energy

W = 1
2 (E ·D+H ·B)= 1

2 (E ·e·E+H ·l·H) (42)

Thus,

∇ ·S+E ·J+H ·M+ �W
�t

=0 (43)

or

�W
�t

=−
⎛
⎝∇ ·S+ E ·J+H ·M︸ ︷︷ ︸

due to conduction

⎞
⎠ (44)

Two main effects of the absorption of electromagnetic energy, which is converted into heat, are
(a) thermally induced changes in the permittivity and permeability and (b) phase transformations.
Both phenomena are controlled by the absorption of energy. In this study, we consider the absorbed
energy that is available for heating to be proportional to the energy associated with conduction,
namely, from Equation (44), E ·J+H ·M. In order to calculate the change in temperature, we must
study the first law of thermodynamics. We consider that the deformation of the body, during all
processes discussed in this monograph, is negligible. However, in keeping with the expository
style, we derive a general case first, and then specialize it for our zero-deformation case.
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4.2. Absorption of energy

The interconversions of mechanical, thermal and electromagnetic energy in a system are governed
by the first law of thermodynamics. It states that the time rate of change of the total energy,K+I,
is equal to the work rate, P, and the net heat supplied, H+Q,

d

dt
(K+I)=P+H+Q (45)

Here the kinetic energy of a subvolume of material contained in �, denoted as �, isK
def= ∫

� 1/2	u̇·
u̇d�; the rate of work or power of external forces acting on � is given by P

def= ∫
� 	b·u̇d�+∫

��T ·n·u̇da, T being the Cauchy stress; u being the material displacement; the heat flow into the

volume by conduction is Q
def= −∫��q·nda=−∫� ∇x ·qd�; the heat generated due to sources, such

as electromagnetic fields, is H
def= ∫

� 	z d� and the stored energy is I
def= ∫

� 	wd�. If we make
the assumption that the mass in the system is constant, one has

∫
� 	d�=∫�0

	J d�0=∫�0
	0 d�0,

which implies that 	J =	0. Using this and the energy balance leads to

d

dt

∫
�

1

2
	u̇ ·u̇d� =

∫
�0

d

dt

1

2
(	J u̇·u̇)d�0

=
∫

�0

(
d

dt
	0

)
1

2
u̇·u̇d�0+

∫
�

	
d

dt

1

2
(u̇·u̇)d�=

∫
�

	u̇ ·üd�

We also have

d

dt

∫
�

	wd�= d

dt

∫
�0

	Jwd�0=
∫

�0

d

dt
(	0)wd�0+

∫
�

	ẇd� (46)

By using the divergence theorem, we obtain∫
��

T ·n·u̇da=
∫

�
∇x ·(T ·u̇)d�=

∫
�
(∇x ·T) ·u̇d�+

∫
�
T :∇x u̇d� (47)

Combining the results, and enforcing balance of momentum, leads to∫
�

(	ẇ+ u̇·(	ü−∇x ·T−	b)−T :∇x u̇+∇x ·q−	z) d�

=
∫

�
(	ẇ−T :∇x u̇+∇x ·q−	z) d�=0 (48)

Since the volume � is arbitrary, the integrand must hold locally and we have

	ẇ−T :∇x u̇+∇x ·q−	z=0 (49)

Note: In this monograph we do not consider the effects of (Cauchy) stress; thus, T=0. We
assume ẇ=C 
̇; thus

	C 
̇=∇ ·K ·∇
+	z (50)
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where 
 is the temperature in Kelvin, 	 is the density, C is the heat capacity, K is the conductivity
and 	z is the rate of electromagnetic energy absorbed, namely

	z=a(E ·J+H ·M) (51)

where a is an absorption constant, 0�a�1.

4.3. Thermal dependence of the material properties

The permittivity has a thermal dependence often modeled by

�=�
0e
K�(
−
0) (52)

and, similarly, for the permeability

�=�
0e
K�(
−
0) (53)

where �
0 and �
0 are reference values at 
=
0.

4.4. Phase transformations

For phase transformations, we have four cases:

• No melting: If 
(t)<
m and 
(t+�t)<
m , then C(
)=C0, where C0 is the solid heat capacity.
• Melting: If 
(t)<
m and 
(t+�t)�
m , then C(
)=C0+�HS→L

m /�
m , where �HS→L
m is the

latent heat of melting. This has the effect of enforcing a constant temperature (or absorbing
the latent heat), where �
m is small and can be thought of as a ‘bandwidth’ for melting.

• Melted: If 
(t)�
m and 
(t+�t)�
m , then C(
)=Cm , where Cm is the heat capacity of the
melted material.

• Solidification: If 
(t)�
m and 
(t+�t)<
m , then C(
)=Cm+�HL→S
m /�
m , where �HL→S

m
is the latent heat of solidification.

4.5. Thermal discretization

Since we assume that there are no significant deformations, d/dt=�/�t and the following approx-
imation is made:

�


�t
≈ 
(t+�t)−
(t)

�t
(54)

and

q

(
x+ �x

2

)
≈−K

�


�x
≈−K

(
x+ �x

2

)

(x+�x)−
(x)

�x
(55)

and

�q
�x

≈ q (x+�x/2)−q (x−�x/2)

�x
(56)
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therefore,

q (x+�x/2)−q (x−�x/2)

�x

≈− (K (x+�x/2)(
(x+�x)−
(x))−K (x−�x/2)(
(x)−
(x−�x)))

(�x)2
(57)

where K (x+�x/2)≈ 1
2 (K (x+�x)+K (x)) and K (x−�x/2)≈ 1

2 (K (x)+K (x−�x)). Thus,

�q
�x

≈− ((K (x+�x)+K (x))(
(x+�x)−
(x))−(K (x)+K (x−�x))(
(x)−
(x−�x)))

2(�x)2
(58)

The same approximations are made for �q/�y and �q/�z. These approximations are substituted
into the energy equation to form the following iterative equation for each node in the mesh:


(t+�t)K =
(t)+�t
(��K−1(t+�t)+(1−�)�(t))

	�CK−1(t+�t)+	(1−�)C(t)
(59)

where �(t)=∇ ·K ·∇
(t)+(	z)(t) and 0���1. This iterative sequence is applied to each node
in the mesh sequentially, for each node in the entire mesh, and then the values on the right-hand
sides are updated, i.e 
K−1(t+�t)=
K (t+�t), and the procedure is repeated, K =1,2, . . . , until

‖
(t+�t)K −
(t+�t)K−1‖
‖
(t+�t)K ‖ �tol (60)

If the iterations do not converge within a preset number of iterations, the time steps are reduced, and
the procedure is repeated. In order to avoid ‘chasing’ alternating phase transformations (back and
forth) within a time step, �=0. Any phase changes are recorded and used for the next time step.

5. STAGGERING SCHEMES FOR THERMO-ELECTROMAGNETICALLY
COUPLED PROBLEMS

Staggering schemes typically proceed by solving each field equation individually, allowing only
the primary field variable to be active. After the solution of each field equation, the primary
field variable is updated, and the next field equation is addressed in a similar manner. Such
approaches have a long history in the computational mechanics community. For example, see Park
and Felippa [38], Felippa et al. [39], Zienkiewicz [40], Zienkiewicz et al. [41], Schrefler [42],
Tursa and Schrefler [43], Lewis et al. [44], Doltsinis [45, 46], Piperno [47], Lewis and Schrefler
[48], Armero and Simo [49–51], Armero [52], Le Tallec and Mouro [53], Zohdi [23–25] and the
extensive works of Farhat and coworkers [54–58]. For a recent work involving staggering schemes
for piezoelectric applications, see Fish and Chen [59]. In addition, for a review of the state of
the art, see Michopoulos et al. [60]. Usually, if a recursive staggering process is not employed
(an explicit coupling scheme), the staggering error can accumulate rapidly. However, an overkill
approach (involving very small time steps, smaller than those needed to control the discretization
error), simply to suppress a non-recursive staggering process error, is computationally inefficient.
Therefore, the objective of the next subsection is to develop a strategy to adaptively adjust, in
fact maximize, the choice of the time-step size in order to control the staggering error, while
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simultaneously staying below a critical time-step size needed to control the discretization error (as
stated before). An important related issue is to simultaneously minimize the computational effort
involved. The number of times the multifield system is solved, as opposed to time steps, is taken
as the measure of computational effort since, within a time step, many multifield system re-solves
can take place. We now further develop the staggering scheme introduced earlier by extending an
approach found in Zohdi [23–25].
5.1. Abstract setting

We consider an abstract setting, whereby one solves for the nodal values for the electric field,
assuming the magnetic and thermal fields are fixed,

A1(EL+1,K ,HL+1,K−1,
L+1,K−1)=B1(EL+1,K−1,HL+1,K−1,
L+1,K−1) (61)

then one solves for the magnetic fields, assuming the nodal values fixed for the electric and thermal
fields,

A2(EL+1,K ,HL+1,K ,
L+1,K−1)=B2(EL+1,K ,HL+1,K−1,
L+1,K−1) (62)

then one solves for the thermal fields, assuming the nodal values fixed for the electric and magnetic
fields,

A3(EL+1,K ,HL+1,K ,
L+1,K )=B3(EL+1,K ,HL+1,K ,
L+1,K−1) (63)

where the only underlined variable is ‘active’, L indicates the time step and K indicates the
iteration counter. Within the staggering scheme, implicit time-stepping methods (with time-step
size adaptivity) will be used throughout the upcoming analysis. We define the normalized errors
within each time step, for the three fields,

�E−K
def= ‖EL+1,K −EL+1,K−1‖

‖EL+1,K −EL‖ , �H−K
def= ‖HL+1,K −HL+1,K−1‖

‖HL+1,K −HL‖

�
−K
def= ‖
L+1,K −
L+1,K−1‖

‖
L+1,K −
L‖ (64)

Thereafter, we select the maximum error for adaptivity �∗
K

def=max(�E−K ,�H−K ,�
−K ) and the
scaling metric for adaptivity∗∗∗

�K
def=
(

(Ctol/�∗
0)

1/pKd

(�∗
K /�∗

0)
1/pK

)
(65)

5.2. Staggering algorithm

The algorithm is as follows (W=(E,H,
)):

(1) Compute E-field with H and 
 fixed, then compute H-field with E and 
 fixed and then
compute 
-field with E and H fixed.

(2) Compute error measures: �∗
K

def=max(�E−K ,�H−K ,�
−K ).

∗∗∗Clearly, p=1, for a collection of first-order equations.
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(3) If tolerance is met, �∗�Ctol and K�Kd, then: (a) increment time forward: t= t+�t , (b)
construct new time step: �t=�K�t , where

�K
def=
(

(Ctol/�∗
0)

1/pKd

(�∗
K /�∗

0)
1/pK

)

and (c) select �t=min(�t lim,�t) and go to (1).
(4) If tolerance is not met, �∗>Ctol and K =Kd, and then construct (refine) new time step:

�t=�K�t and go to (1).

The overall goal is to deliver solutions where the staggering (incomplete coupling) error is controlled
and the temporal discretization accuracy dictates the upper limits on the time-step size (�t lim).
Generally speaking, the staggering error, which is a function of the time-step size, is temporally
variable and can become stronger, weaker or possibly oscillatory, is extremely difficult to ascertain
a priori as a function of the time-step size. Therefore, to circumvent this problem, the adaptive
strategy presented in this section was developed to provide accurate solutions by iteratively adjusting
the time steps. Specifically, a sufficient condition for the convergence of the presented fixed-point
scheme was that the spectral radius or contraction constant of the coupled operator, which depends
on the time-step size, must be less than 1. This observation was used to adaptively maximize the
time-step sizes, while simultaneously controlling the coupled operator’s spectral radius, in order to
deliver solutions below an error tolerance within a prespecified number of desired iterations. This
recursive staggering error control can allow for substantial reduction in computational effort by
the adaptive use of large time steps, where possible. Furthermore, such a recursive process has a
reduced sensitivity, relative to an explicit staggering approach, to the order in which the individual
equations are solved, since it is self-correcting.

5.3. Summary of solution schemes

In summary, clearly, there are various levels of solution methods that one can choose from (Figure 4):

• Time stepping: (a) implicit time stepping (0<��1): (i) iterative or direct solution for electro-
problem, (ii) iterative or direct solution for magneto-problem and (iii) iterative or direct solution
for thermo-problem or (b) explicit time stepping (�=0).

• Overall field coupling: (a) implicit staggering: (i) solve electro-problem, (ii) solve mageto-
problem, (iii) solve thermo-problem, (iv) repeat cycle until convergence and (v) go to next time
step or (b) explicit staggering: (i) solve electro-problem, (ii) solve mageto-problem, (iii) solve
thermo-problem and (iv) go to next time step.

Remark
Clearly, one should use the previous (converged) time-step’s solution as the starting guess for the
next time step to obtain a ‘head-start’. When selecting a time step, one must balance accuracy
concerns††† and, simultaneously, stability issues. Clearly, the smaller the time step, the more stable
the solutionprocess; however,more time stepsmeansmore systemevaluations.Onewould like tokeep
the time steps near the CFL limit or slightly below it. The CFL condition dictates that the numerical
wave speed of �x/�t must be at least as fast as the physical wave speed. In other words, �x/�t�c,

†††Typically, the number of iterations needed to solve the coupled system, if an iterative scheme is used, increases
with the time-step size and the value of �.
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Figure 4. Levels of system solving.

which leads to the restriction �t��x/c. Owing to the fact that we are dealing with heterogeneous
media in three dimensions, an ad hoc, slightly conservative, restriction is

�t�min(�x1,�x2,�x3)

cmax
(66)

wherecmax is the fastestwave speed in theheterogeneousmedium.Stability can, of course, be achieved
by using an implicit scheme. However, in many cases, this critical condition (for explicit methods)
still serves as an indicator of poor numerical behavior, even for implicit schemes. For the remainder of
the study, we shall refer to the ‘CFL number’ as

CFL
def= �t

(
cmax

min(�x1,�x2,�x3)

)
(67)

6. A MODEL PROBLEM

We consider an example of a heterogeneous material combination composed of a group of particles
in a binding matrix. All tests were run on an ordinary laptop; therefore, such simulations are easily
reproducible elsewhere for other parameter selections. As an example, we considered a group
of Np randomly dispersed spherical particles, of equal size, in a cubical domain of dimensions
D×D×D. The particle size and volume fraction were determined by a particle/sample size ratio,

which was defined via a subvolume size V
def= D×D×D/Np. The non-dimensional ratio of the

radius (b) to the subvolume was denoted by L
def= b/V 1/3. The volume fraction occupied by the

particles can be consequently expressed as vp
def= 4�L3/3. Thus, the total volume occupied by the

particles denoted by � can be expressed as �=vpNpV . We used Np =100 particles (Figure 5).
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Figure 5. The morphology of the test sample’s numerically resolved microstructure.

This sample size was successively enlarged until there were no significant changes in the overall
system response for further enlargements.‡‡‡

The classical random sequential addition algorithm was used to place non-overlapping particles
randomly into the domain of interest (RSA, [62]). This algorithm was adequate for the volume
fraction range of interest. However, if higher volume fractions are desired, more sophisticated
algorithms, such as the well-known, equilibrium-based, Metropolis algorithm can be used. For
even higher volume fractions, effectively packing (and ‘jamming’) particles, a relatively new class
of efficient methods, based on simultaneous particle flow and growth, has been developed by
Torquato and coworkers [16, 63–66].

6.1. System parameters

The speed of electromagnetic wave propagation is c=1/
√

�0�0≈2.997924562×108±1.1m/s in
a vacuum. The free space electric permittivity is �0=1/c2�0=8.8542×10−12C2/N/m2 and the
free space magnetic permeability is �0=4�×10−7Wb/A/m=1.2566×10−6Wb/A/m. Usually,
for electromagnetic materials, we express �=�0�r , where �0=8.854×10−12 F/m is the free space
permittivity, �r is the relative permittivity or ‘dielectric’ constant, and �0=4�×10−7Ns2/C2 and
�=�r�0, where �r is the relative magnetic permeability. The following parameters were used:
number of nodes used, 30×30×30; (inner loop) solver tolerance, tol=10−6; size of the sample,
D×D×D, with a subsample having a length scale of 0.80×D,D=0.00005m; electric field on the
boundary (linearly growing), E=(0,109,0)10t/T , initial conditions, E=(0,0,0); magnetic field
on the boundary (linearly growing), H=(0,0,109)

√
�0/�010t/T , initial conditions, H=(0,0,0);

‡‡‡For a more in-depth discussion on size-effect issues, see the works of Zohdi and collaborators [21, 23–34, 61].
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time-stepping factor, �=0.5 (mid-point rule); temperature on the boundary, 
=303.13K; initial
conditions, 
=303.13K; the relative permittivity of the particles, �2r =4; the relative permittivity
of the matrix, �1r =1; the relative permeability of the particles, �2r =2; the relative permeability of
the matrix, �1r =1; the electrical conductivity of the particles �2=1; the electrical conductivity of
the matrix �1=1; the density of the particles, 	2=2000; the density of the matrix, 	1=1000; the
thermal conductivity of the particles, K2=200; the thermal conductivity of the matrix, K1=100;
the heat capacity of the particles,C2=2000,C2m =2000; the heat capacity of the matrix,C1=1000,
C1m =1500; the absorbtivity of the particles, a2=0.5; the absorbtivity of the matrix, a1=0.5;
�HS→L

2m =2000; �HS→L
1m =1000; �
2m =1; �
1m =1; L=0.375; 
2m =500; 
1m =1000; K�1 =

0.01; K�1 =0.01; K�2 =0.01; K�2 =0.01; 
0=303.13; the number of desired iterations per time
step was set to Kd=5; and the coupling tolerance was set to Ctol=10−6.

6.2. Results

The meshes were repeatedly refined in the following manner:

• A 41×41×41 mesh, which has 413 526 electromagnetic degrees of freedom and
68 921thermodynamic degrees of freedom for a total of 482 447 degrees of freedom.

• A 61×61×61 mesh, which has 1 361 886 electromagnetic degrees of freedom and 226 981
thermodynamic degrees of freedom for a total of 1 588 867 degrees of freedom.

• A 81×81×81 mesh, which has 3 188 646 electromagnetic degrees of freedom and 531 441
thermodynamic degrees of freedom for a total of 3 720 087 degrees of freedom.

• A 101×101×101 mesh, which has 6 181 806 electromagnetic degrees of freedom and
1 030 301 thermodynamic degrees of freedom for a total of 7 212 107 degrees of freedom.

Approximately beyond the 61/81-level there were no perceivable changes in the results. We have
the following observations:

• At the length scales of interest, it is questionable whether the ideas of a sharp material
interface are sensible. Accordingly, we simulated the system with and without (classical)
Laplacian smoothing, whereby one smooths the material data by post-processing the material
data by enforcing

∇2l=0 (68)

This was done node by node by computing a new material representation via

l̂i, j,k = 1
6 (li+1, j,k+li−1, j,k+li, j+1,k+li, j−1,k+li, j,k+1+li, j,k−1) (69)

The same was done for the permittivity by enforcing ∇2e=0, as well as other material data.
The simulations were run with and without smoothed data, with the results being negligibly
different for sufficiently fine meshes (Figure 5).

• The effective electric flux increases more for the thermally sensitive material than for the
thermally insensitive material.

• The effective electric field initially increases more for the thermally sensitive material;
however, it decreases with increasing time. The effect can be qualitatively explained by
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realizing that§§§

∇×H= �(�E)

�t
⇒ E= 1

��/�t︸ ︷︷ ︸

0

(
∇×H−�

�E
�t

)
(70)

The same trend holds for the magnetic field

−∇×E= �(�H)

�t
⇒ H=− 1

��/�t︸ ︷︷ ︸

0

(
∇×E+�

�H
�t

)
(71)

• Note that the time steps were initially set to be the CFL limit CFL
def= �t (cmax/min

(�x1,�x2,�x3))=1, but had to be refined below that level for the thermally sensitive case.
The coupling tolerance was set to Ctol=10−6 in the preceding calculations. Both the ther-
mally insensitive and thermally sensitive problems required time-step adaptivity to control
the coupling error, although the time-step sizes needed for the thermally sensitive problem
were smaller than those for the thermally insensitive problem. However, if the Ctol was made
coarser, for example, to Ctol=10−5 and Ctol=10−4, etc., eventually the CFL-time step was
adequate for the thermally insensitive problem. Clearly, these results are dependent on the
material parameter selected. However, an important point which we emphasize is that it is
virtually impossible to determine a priori whether the initial time step is adequate to meet a
tolerance and whether adaptivity is needed (Figures 6–13).

7. COMPARISON OF THE NUMERICAL AND ANALYTICAL RESPONSES (BOUNDS)

The preceding results are quite important from both a theoretical and computational point of view.
Until recently, the direct computation of micromaterial responses was very difficult. Analytical
bounds provide some ‘assurance’ that the computed responses are realistic. The numerical responses
were checked against the following analytical bounds:

• The Hill–Reuss–Voigt–Wiener bounds (for the case of isotropic materials):(
vp

�p
+ 1−vp

�m

)−1

=〈�−1(x)〉−1
� ��∗�〈�(x)〉� =vp�p+(1−vp)�m (72)

where vp is the volume fraction of the particles, �p is the permittivity of the particles, �m is
the permittivity of the matrix and(

vp

�p
+ 1−vp

�m

)−1

=〈�−1(x)〉−1
� ��∗�〈�(x)〉� =vp�p+(1−vp)�m (73)

where �p is the permeability of the particles and �m is the permeability of the matrix.

§§§For simplicity of explanation, we ignore the loss terms.
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Figure 6. The effective electric flux (〈D〉�). Left: thermally insensitive case and
right: thermally sensitive case.
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Figure 7. The effective electric field (〈E〉�). Left: thermally insensitive case and
right: thermally sensitive case.
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Figure 8. The effective magnetic flux (〈B〉�). Left: thermally insensitive case
and right: thermally sensitive case.
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Figure 9. The effective magnetic field (〈H〉�). Left: thermally insensitive case
and right: thermally sensitive case.
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Figure 10. The effective permittivity (e∗). Left: thermally insensitive case and
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Figure 11. The effective permeability (l∗). Left: thermally insensitive case and
right: thermally sensitive case.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 76:1250–1279
DOI: 10.1002/nme



COMPUTATION OF THE COUPLED THERMO-ELECTROMAGNETIC RESPONSE 1273

 300

 350

 400

 450

 500

 550

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1

A
V

E
R

A
G

E
 T

E
M

PE
R

A
T

U
R

E
 (

K
E

LV
IN

)

TIME/TOTALTIME

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1

M
A

X
IM

U
M

  T
E

M
PE

R
A

T
U

R
E

 (
K

E
LV

IN
)

TIME/TOTALTIME

Figure 12. Left: average temperature (〈
〉�) and right: the maximum temperature,
for the thermally sensitive case.
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• The Hashin–Shtrikman bounds

〈�−1(x)〉−1
� ��1+ v�

2

1

�2−�1
+ 1−v�

2

3�1︸ ︷︷ ︸
�∗,−

��∗��2+ 1−v�
2

1

�1−�2
+ v�

2

3�2︸ ︷︷ ︸
�∗,+

�〈�(x)〉� (74)

and the overall permeability

〈�−1(x)〉−1
� ��1+ v

�
2

1

�2−�1
+ 1−v

�
2

3�1︸ ︷︷ ︸
�∗,−

��∗��2+ 1−v
�
2

1

�1−�2
+ v

�
2

3�2︸ ︷︷ ︸
�∗,+

�〈�(x)〉� (75)

where �2��1, �2��1, v
�
2 is the volume fraction of the phase with the higher � value (‘phase 2’

in the former expression) for the permittivity mismatch and v
�
2 is the volume fraction of

the phase with the higher � value (‘phase 2’ in the latter expression) for the permeability
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Figure 14. The effective permittivity (e∗). Left: thermally insensitive result and
right: thermally sensitive result.
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Figure 15. The effective permeability (l∗). Left: thermally insensitive result and
right: thermally sensitive result.

mismatch.¶¶¶ Such bounds are the tightest known on isotropic effective responses, with
isotropic two-phase microstructures, where only the volume fractions and phase contrasts of
the constituents are known. Note that no further geometric information, such as the number
and nature of particles, etc., contributes to these bounds.

For both thermally sensitive and insensitive cases, both the effective permeability and the
permittivity increase to match the lower Hashin–Shtrikman bounds. However, in the case of
the thermally sensitive results, they eventually exceed the bounds due to the pointwise increase in
the material values due to thermal effects (Figures 14 and 15).

¶¶¶For either case, the volume fraction of the other phase is v1, where v1+v2=1.
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8. CONCLUDING REMARKS: INVERSE PROBLEMS

An important aspect of any model is the identification of parameters which force the system
behavior to match a (desired) target response. For example, in the ideal case, one would like
to determine the type of microstructural parameters that produce certain effective responses, via
numerical simulations, in order to guide or minimize the time-consuming laboratory tests. A
relatively straightforward way of achieving this is to consider inverse problems whereby particulate
parameters are sought which deliver a desired overall behavior by minimizing a cost. An obvious
example of an objective function that one might minimize is

�=w1

(‖e∗−e∗,D‖
‖e∗,D‖

)2

+w2

(‖l∗−l∗,D‖
‖l∗,D‖

)2

+ thermal constraints (76)

where e∗,D and l∗,D are the desired overall properties and w1 and w2 are the design weights that
indicate the importance of achieving each component of the objective. Specifically, a microstruc-

tural design problem can be set up by defining an N -tuple design vector, denoted as �
def=

(�1,�2, . . . ,�N ), for example, consisting of the following components: (1) the properties of the
particles, (2) the volume fraction of the particles and (3) the topology of the particles. Ellipsoidal
shapes are qualitatively useful since the geometry can closely represent a variety of particulate
types, for example, platelets when the ellipsoids are oblate or needles (discontinuous fibers) when
the ellipsoids are prolate. Such shapes can be generalized by considering the following equation
(Figure 16): ( |x−x0|

r1

)s1
+
( |y− y0|

r2

)s2
+
( |z−z0|

r3

)s3
=1 (77)

BLOCK– LIKE

DIAMOND– LIKE

NONCONVEX

SPHERE– LIKE

VARIOUS
POSSIBLE
CROSS– SECTIONS

Figure 16. A generalized (particle) ellipsoid.
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where the s’s are exponents. Values of s<1 produce non-convex shapes, whereas s>2 values
produce ‘block-like’ shapes. The following are free system variables: (1) Particulate properties:
for example, assuming local isotropy of the particles, �2 and �2 (two variables), (2) Particulate
topology: for example, the polynomial order of generalized ellipsoids, s (three variables), (3)

Particulate aspect ratio: for example, defined by AR
def= r1/r2=r1/r3, where r2=r3, AR>1 for

prolate geometries and AR<1 for oblate shapes (one variable), (4) Particulate volume fraction: for
example, v2 (one variable), (5) Particulate orientation: for example, within the last decade there
have been viable processing methods developed to control the orientation of particulate matter by
coating them with a conducting liquid material, introducing them into the molten matrix material
(three free variables, i.e. Euler angles: 
1, 
2, 
3), and applying an electrical current to force the
particles to align themselves along the field lines (see, Michaud [67]). This will produce overall
anisotropic properties and (6) Matrix properties: for example, if the matrix material is free to
change, assuming local isotropy of the matrix material, �1 and �1 (two variables). We remark that if
the particles’ orientations are assumed to be aligned, then three more (angular orientation) param-
eters can be introduced (
1,
2,
3). In fact, suspensions can become aligned, for example, along
electrical field lines induced by external sources or due to flow conditions. Thus, the search space
grows to more parameters, �=(�1,�1,�2,�2,v2,s1,s2,s3,AR,
1,
2,
3,etc.). Generally, � will
depend on the design variables in a non-convex and non-differentiable manner (especially if there
are constraints) on the microstructural parameters. The minimization of � can be achieved by using
‘genetic’ algorithms (GA), before applying classical gradient-based schemes.‖‖‖ GA are search
methods based on the principles of natural selection, drawing upon concepts of species evolu-
tion, such as reproduction, mutation and crossover. Implementation typically involves a randomly
generated population of ‘genetic’ strings, each of which represents a specific choice of system
parameters. The population of genes undergo ‘mating sequences’, ‘offspring production’ and other
biologically inspired events in order to find regions of the search space where cost functions are
small. These methods have a long history, dating back, at least, to the seminal work of Holland
[71]. For reviews, see Goldberg [72], Davis [73], Onwubiko [74], Kennedy and Eberhart [75],
Lagaros et al. [76], Papadrakakis et al. [77–80] and Goldberg and Deb [81]. In Zohdi [21, 24–34],
GA have been developed to treat a wide variety of inverse problems involving various aspects of
multiparticle systems, and we refer the interested reader to those works.
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