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Abstract 

The Homogenized Dirichlet Projection Method,  HDPM,  was developed in [1,2] as a systematic technique for analyzing highly- 
heterogeneous  elastic structures. The method can provide an analysis of structures composed of composite materials with very 
complex microstructure at a fraction of the cost of solving the full fine-scale model. In the present  investigation, the H D P M  
is revisited to take into account the unavoidable numerical errors produced in finite element approximations of the associated 
boundary  value problems. 

The total error of the HDPM,  which now takes into account both for the modeling and numerical errors, is split into several 
terms, each accounting for a parameter  in the method.  The parameters  arc: the choice of the homogenized material property, the 
partition into subdomains,  the coarse finite element  mesh used to solve the homogenized problem and the tine meshes  used to 
solve the subdomain  problems. Numerical  experiments  are carried out  on 1-D problems for which the exact solutions are easily 
calculated. The experiments  reveal that the influence of the coarse and fine meshes  are very different. 

When  free of numerical  error the H D P M  is based on four main results. We rewrite these in the f ramework of the error in 
the constitutive law. This leads to a clear mechanical interpretation of the results. Moreover, it allows us to extend the results to 
nonlinear constitutive laws and to find new properties of the HDPM.  Some of the theoretical results are validated for specific 
cases involving known numerical error. 

Finally. explicit a posteriori upper bounds  are derived for the total and numerical error. A simple adaptive strategy is presented 
for choosing the fine mesh  and the subdomain  partition. The strategy is tested on a 1-D model problem. @ 1998 Elsevier Science 
S.A. 

1. Introduction 

The Homogenized Dirichlet Projection Method (HDPM) [1,2] is an efficient method for solving large 
heterogeneous elastic problems. Basically, the method consists first in solving a homogenized problem 
with uniform material properties. Then, by computing an explicit error bound, the distance between the 
homogenized and exact solution is estimated. On subdomains where this distance is too large, a local 
analysis is performed using the homogenized solution as boundary conditions on the subdomains. This 
produces a perturbation of the homogenized solution which is closer to the exact solution. We refer as 
HDPM solution, the perturbation of the homogenized solution. Thus, the method introduces two types 
of problems: a regularized one with a uniform material property and a local analysis on subdomains 
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with the real fine-scale material  properties. In practice, these two problems cannot bc solved exactly, 
therefore numerical errors are introduced. 

This paper  is the first experimental  investigation on the interactions between the numerical and mod- 
eling errors in the HDPM.  Some theoretical results were already presented in [2]. We consider that 
the homogenized solution is obtained through the classical finite element method using a coarse mesh 
(H-mesh) ,  and that the local solutions, over  the subdomains, are obtained with fine meshes (h-meshes). 
In this investigation, we neglect the error introduced by the use of iterative solvers and numerical in- 
tegration of the stiffness matrices. In order to isolate the numerical influence, we split the total error 
into several terms. Numerical  experiments  are then carried out on 1-D problems, for which the exact 
solutions are easily calculated. 

The H D P M  is based on four results [1,2]: 
• an explicit upper  bound of the distance between the homogenized solution and the exact fine-scale 

solution in the energy norm; 
• the fact that the H D P M  solution is closer in the energy norm to the exact solution than the original 

homogenized solution; 
• a local bound on the difference between the H D P M  and the homogenized solutions: 
• an upper  bound on the difference between the H D P M  and exact solution in the energy norm. 

These four results hold when the method is free of numerical errors. An important question then is 
to determine what can be said in the case of numerical errors. This question is also addressed in the 
present  paper. 

The exact and homogenized solutions differ because they do not satisfy the same constitutive law. Thus, 
the quality of the homogenized solution may be estimated by the way it satisfies the exact constitutive law. 
This fact makes  it possible to rewrite all the main results of the H D P M  using the error-in-the-constitutive- 
law concept [3], thereby leading to a clear mechanical interpretation of these results. Moreover,  written 
in this f ramework,  the H D P M  may be extended to problems involving nonlinear constitutive laws. 

Since the modeling error  may be expressed as an error in the constitutive law, we are naturally led to 
estimate the numerical error in the same way [3]. Computable  a posteriori upper  bounds are obtained 
for the total and numerical errors. The estimates are then used in a simple adaptive strategy to adapt 
the h-mesh size and the subdomain size. 

The paper  is organized as follows. In Section 2, an outline of the H D P M  is given, which takes into 
account the numerical approximations.  A decomposit ion of the total error is also presented. In Section 3, 
numerical  experiments  are carried out on a 1-D problem to analyze the influence of the numerical 
errors. In Section 4, the main results of the H D P M  are restated in the error-in-the-constitutive-law 
framework.  They are then studied in the presence of numerical errors in Section 5. Finally, a posteriori 
error estimation and a simple adaptive strategy for choosing the mesh for the local problems and the 
subdomain partition are proposed and tested on 1-D problems in Section 6. 

2. HDPM with finite element approximation 

2.1. The reference problem 

We consider a material  body composed of a linearly-elastic material  in static equilibrium under the 
action of given body forcesfg  and surface tractions tg. The domain, (2, occupied by the material body is 
considered regular: a simply-connected domain with Lipschitz boundary 0fL The boundary 0X? consists 
of a port ion Fu  where displacements ug are prescribed and a portion F t  where tractions tg are prescribed, 

0 g 2 = F u U F t ,  F u N F t = 0 .  

The problem to be solved on s2 is to find a triple (u, ~, ~r) such that the kinematic constraints (1), the 
equilibrium equation (2) and the constitutive law (3) hold: 
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1 
=~(27u+(27u) t) o n / 2  and u = U g  o n F u ;  (1) 

2 7. o r = - f g  o n / 2  and o ' - n = t g  o n F t ;  (2) 

~r = E ~  on /2 .  (3) 

Here  u, ~ and o" are the displacement, strain and stress, respectively and n is the outward normal  to 
the boundary. The elasticity tensor E is a function of the position x i.e. E = E(x), and describes the 
microstructure of the material.  

We remark  that by eliminating ~ and ~ in (1)-(3), and by taking into account the symmetries of E,  
we have the classical elasticity problem for the displacement field, 

-27. (E27u) = f g  on /2 ,  u : Ug on Fu,  

A weak formulation of (4) is as follows: 

F i n d u  E V s u c h t h a t  B ( u , v ) = ~ ( v )  V v E V  °. 

where 

V = {v C H1(/2) : v = Ug on Fu},  

E27u .n=tg  on Ft .  (4) 

V ° = {v E H1(/2) : v = 0 on Fu},  

(5) 

(6) 

B ( u , v ) :  f~(EXTu)" 27vdx, f ( o ) =  /g2fg.vdx+ fF tg.ods.  (7) 
t 

2.2. The Homogenized Dirichlet Projection Method 

Taking into account the unavoidable numerical errors, the H D P M  can be summarized by four steps. 
The presentat ion which follows is valid for any space dimension but is illustrated for the 1-D problem, 
Fig. 1. 

• Step 1: The so-called fine-scale problem, that is characterized by a highly heterogeneous material,  
Fig. 1, is replaced by an homogenized problem, Fig. 2, written: 
Find a triple (u °, E °, o "°) such that 

= ~(27U 0 + (27U0) t) on /2 and u ° = Ug on Fu;  (8) 6 0 

27- ¢r ° :- - f g  on 1-2 and o "° -n = tg on Ft ;  (9) 

o -° = E°E ° on Y2. ( 1 0 )  

E ° is the homogenized elasticity tensor, which, for convenience, is assumed to be constant over  
the domain. We note that a weak form of (8)-(10) analogous to (5) can be obtained with 13(u, v) 
replaced by B0(u °, v) = fn(E°~Tu °) : Vv dx. 

• Step 2: In general, the homogenized problem cannot be solved exactly, so numerical approximations 
are introduced. For example,  using the finite e lement  method on a mesh parameter ized by a mesh 
size H (Fig. 3), the finite e lement  solution is denoted by (u °,n, ~0,n, o.0,N) and satisfies 

= lg(27u°Jt + (27u°'n) t) o n / 2  and u °'14 : Ug on Fu;  ~0,H 

L 

fix) 

 o .00° °°0000o00  
E1 E2 

f(x) 

~ E O  ~ 

Fig. 1. The reference problem: geometry, loading and material property. The exact solution is denoted by (u, ~, o'). 

Fig. 2. The homogenized problem whose exact solution is denoted by (u °, ~0, o.0). 
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f i2o'°' l t  " V v d x  - / 2 f g . v d x  ~ g g . v d s  = 0  V v  C v ° H ;  (11) 
t 

o "O'n = E°~  O'H on D (12) 

where V °,H c V ° is an admissible finite e lement  displacement space parameter ized by the mesh 
size H.  We assume that V °,H belongs to a family of subspaces constructed so that u °'H -4 u ° E V 
as H ~ 0. Also note that the finite element strain and stress are only well defined on the interior 
of each element. In other words, there are jumps in the tractions. 

• Step 3: Once the homogenized problem is solved, the domain is parti t ioned into N subdomains $2k, 
k = 1 ,2 , . . .  ,N,  

N 

U K2K -- $2, $2i N $2j = O, i C j. 
k l  

Fig. 4 shows a uniform partition of the domain in subdomains of size A. The subdomains are 
considered regular, simply connected, with Lipschitz boundary. On each subdomain it is possible 
to estimate the quality of the homogenized solution [1]. On subdomains where the quality of the 
homogenized solution is poor  compared  with the exact solution, a local analysis is performed.  The 
local problem on the k ~h subdomain, ~(2k, reads: 

~ 0 , H  ~ 0 H  ~0 t t~  Find the triple (Uk ,%'  ,o-, '  ) such that 

1 
-0H 2 o,,t ~ - o . , t , , ~  -0,H = U 0 , H  0.(2k\052, (13) e k' = (V~  k + ( V U  k ~) on$2k and u k on 

l 

-O,H u k = U g  o n 0 * 2 k ~ F u ;  (14) 
~ 0 It 

V o" k' --fg on $1k and - <H • = ~r k . n = t g  o n 0 ~ k N F t ;  (15 )  

~ 0 H -0,1t 
tY k' E ~k on ~Qk (16) 

where &Qk denotes the boundary o f /2  k. The homogenized displacements, u 0.H, are imposed on the 
boundary  of the subdomain,  except on the boundary, 052, where the actual boundary conditions are 
satisfied. Note also that the local analysis is solved with the actual microstructure described by E. 

For the sake of simplicity, we assume that the local analysis is performed on every subdomain, 
but this is seldom the case in application of the HDPM.  The final solution (ti°'tf, g(~,tt, dr<H) over 
the domain is then constructed in the following manner  

N 
~ 0 H  _ u 0 , t f ) ;  ~0,H = uO,H + ~ & ( u ~ ,  

k = l  

N 

k - 1  

N 

a ' " H  = o'O'H + E ~k ( ~o" k'-°H _ O.(,,lt). 

k 1 

where £k is a scalar function defined on $2 with a value of unity on $2 k and zero elsewhere. 
Let us define Fret as the union of the boundaries of all the subdomain modulo the boundary of 

the domain 

/ ]nt  = &Qk \ & Q .  
\ k =  l / 
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f(x) 

0,H . . . . . . .  0,H 0,H 
H u A u u 

Fig. 3. The  finite element  problem associated with the homogenized problem. The mesh size is H and the finite element  solution 
is (u °,H , E °'/4 , ~0,,q). 

Fig. 4. The subdomain  problems. The subdomain size is a The finite element displacements u °,H are applied at the boundaries  
of the subdomains ,  in the interior of the domain.  The exact solution of the subdomain problems is denoted by (t~ °'H, ~0,H, 6.0,H). 

By construction, the displacement field ~i °'n is continuous a c r o s s  ~int.  The normal stresses 6-0'Hn 
are not in general continuous across Fint. Let O1 and g~ be two subdomains having a common 
boundary. The traction jump [~.0,n. n] on this boundary is defined by 

= + . 2  

where n i is the outward normal to the boundary for the subdomain i and 6"~ 'H is the stress state in 
the subdomain i on the boundary (i = 1,2). 

Finally, if we assume that no numerical error was introduced in Step 2, the solution of the Step 
3 just described will be denoted (rio, ek ,-0 6.o) for each subdomain and (rio, 50, 6.0) on the whole 

domain. The solution (li °, 5°k, ° '°) satisfies problem (13)-(16) with all the H superscripts removed. 
• Step 4: In fact, as in the case of the homogenized problem, the subdomain problems cannot be 

solved exactly, introducing further error components. On each subdomain, Ok, the exact solution, 
-O,H -O,H -O,H u k , e k , ~r k ), of the problem (13)-(16) is approximated by a finite element solution parameter- 

/ -O,H h -O,H h - O,H,h~ ized by a mesh size h (Fig. 5). This approximate solution is denoted by tuk , ek ' , °'k ) and 
satisfies 

-0Hh l ' " - 0 / 4 h  (Vfi0'H'h) t) on Oh, tik on = - ~ v u  k, , + O,H,h = u0,H 0 O k \ 0 0 ;  (17) 
ek' ' 2 
~gO,U,h : Hg on OOk n Fu; (18) 

/ a  -°14h f ~ f g  f r  O'k'' : V o d x -  - o d x -  l g - ~ ) d s = 0  V o E V  °'h" k ' 
k tN0~2k 

(19) 

~ O H h  - O H h  o" k' ' = E ~ k '  ' o n O  k (20) 

where 

V~, 'h = {v C v h :  v = 0 on OOk\Ft} .  

V h is a finite element displacement space parameterized by the mesh size h on subdomain Oh. 

Illl[[ll[ll[llllllllllllllllll 
U 

 -II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII 
O,H O,H 

0 ,H m e s h  s i z e h  U U 

Fig. 5. The finite e lement  problems associated to the subdomain  problems. The mesh size is h and the finite element  solution is 
denoted by (fi0,H,h, ~0,H,h, o.O,H,h). 
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The  final solution of  the H D P M  is deno ted  by (~O,/4,h, ~O,H,h grO,H,h) and is defined in the following 
manner :  

N 
O,H,h U O,H + Z "" " - O,H,h = ~k~u k - uO,H;) 

k=l  

N 
t. e ~O,H,h ~O,H,h = ~O,H + L Ck(Ek  --  e 0 ' H ) ;  

k--1 

N 
O'0'H'h = O'0 'H + Z ekl,t o'O'H'hk -- O'0 'H)"  

k=l  

As before,  we assume that  Vk h C Vk are member s  of  appropr ia te  families of  subspace constructed 
so that  -0'H'h ~ O,H U k u k ~ in Vk as h ~ 0, where  

V k = {v G H l ( ~ k )  : V = U O'H on 0g2k\0S2 and v = Ug on 0/2 k n Fu} .  

2.3. Decompos i t ion  o f  the error 

Let  us summar ize  the various solutions and their finite e lement  approximat ions:  
• (u,  ~ = ~(u) ,  or = E~)  = the exact  solution, also called fine-scale solution; 
• (u 0, ~0 = ~(u0),  o.0 = E0~0) = the homogen ized  solution; 

• (U°,~/,~°,H = ~(U0'H), O "°'H = E %  °'/4) = the coarse-mesh finite e lement  approximat ion  of  the 
h o m o g e n i z e d  solution; 

• (ti0, ~0 = ~(110), d o  = E~0) = the pe r tu rbed  solution defined on N subdomains  on which the exact 
u 0 is prescr ibed as b o u n d a r y  data,  on  the interior; 

• (ti0'H,~0'H = ~(ti0'H), 6-0'H = E ~  °'r/) = the pe r tu rbed  solution defined on the N subdomains  on 
which the approx imate  hom oge n i z e d  solution u 0,/4 is prescr ibed as bounda ry  data, on the interior; 

• (ti0,/4,h, ~0,/4,h = ~(li0,H,h), 6.O,H,h = E~O,H,h) = the fine-mesh approximat ion  of  (li °'H, ~0,n, 6.0,H). 

(ti0,H,h, ~0,/4,h, ~r0,/4,h) is re fer red  as the H D P M  solution. The  er ror  in the energy  no rm associated to this 
solution reads: 

e = ]]u - aO'H'hlle(a), where  Ilvl12~) = few (21) 

This e r ror  depends  on four  factors. Two are model ing-rela ted:  the homogen ized  material  tensor  E ° and 
the par t i t ion in subdomains;  and two are numerical ly-related:  the H - m e s h  to solve the homogen ized  
p rob lem and the h-meshes  to solve the subdomain  problems.  

We first separate  the e r ror  into a model ing  and a numerical  part:  

P R O P E R T Y  1. If  ao,H,h = u0,H o n  ~int then 

e 2 Ilu -0 2 ~o u lIE/o/+2 f [~o.n].(uo,H_uO)ds. = - - u  I I ~ + l f u  -O,H,h2 
~,, ~ , "  ,,,, ~ J ',,, J F i i n t  ~ • 

modeling numerical coupling 

(22) 

P R O O E  Owing  to the definition o f  the no rm II " liE(a/in (21), we have 

e 2 Ilu -0 2 .-.0nh,,2 f~  - -u  HE(~/+II~° + 2  E ( V f t ° - - V u ) : ( V a ° ' H ' h - - V a ° ) d x .  = - - u  ' ' lIE(O) 

The third term of  the right hand  side can be t ransformed as follows: 

f e ( v a  ° -  v , , ) :  ( v a  °,",h - v a ° )  a~ = f ( , ~ o .  ~ ) :  (vao, . ,h  _ v a o )  a~ 
J o  J o  
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/ ,  
= - L ( V .  0 0 - V .  t r ) . (~  °'l-l'h - ~ o ) d x  

o 

+[_ [ ( 0  0 - , 7 ) .  n ] .  (~0,H,h _ ~ 0 ) d  s 
a l i  n t  

= [  [0 0 -n}. (.0,~/_ u0)ds. 
d ~ t  

We have used the fact that u 0 = fi 0 o n  flint. [] 
The coupling term can be positive or negative. It represents the work done by the jump in traction 

[0 0 • n] moving through the difference in the numerical and exact homogenized displacement. Thus, it 
depends both on the modeling and numerical errors. On the contrary, if we isolate the numerical error 
coming from the local analysis, we get the following decomposition: 

P R O P E R T Y  2. If II O'H'h = II O'H o n  flint, then 

e 2 [1. ~O.H 2 =OHh,,2 
= - l i e ( a )  + II ~ ° ' ~ I  - u , , l i e ( a ) .  

mod.+num7 (H-mesh) num. (h-mesh) 

(23) 

PROOF.  We have 

e 2 ]]u =o14,,2 .-. 0 H h l l 2  f = - u ' IIe(m + ]]~0H _ u ' ' lie(a) + 2 E ( V f l  O'H - -  V U )  " ( V I I  O'H'h - -  V a  O'H) dx 
Ja 

and 

f E(Vti  °'/~ - Vu ) : (Va °'/4,h - Vii °'/4) dx = / a ( O  °'14 - o') : ( ~ / ~ 0 , H , h  _ V/~ 0,H) dx 

= - f a ( V .  0 °'14 - V .  ~r). (~O,n,h _ ~0,14)d x 

o 

+ f  [(o °'n - or). n] • (~0,,~,h _ ,~0,.) ds 
J ~.t 

=0.  [ ]  

Let us now decompose the modeling and numerical errors appearing in Property 1. The modeling 
error can be decomposed into the error due to the homogenization process minus that gained by doing 
the local analysis (Property 3). The numerical error can be decomposed into the error due to the H-mesh 
approximation and the error due to the h-mesh approximation (Property 4). 

P R O P E R T Y  3. 

II- - a ° l l ~ ( a )  = I[" - u ° l l ~ ( ~ )  - l l -  ° - ,~° l l~ (a)  • 
y 

modeling error homogenization sudom, analysis 

(24) 

P R O O E  We have 

II.  ~ ° l l ~ ( a /  I I - -  0 2 _ _ f a  " - = u lie(a) II u° u°Hz(a) +2  E(Vfi  ° -  Vu)  (Vfi ° -  Vu ° )dx  

and 

f e ( v a  ° - v u ) :  ( v a  ° - Vu°)  f ( o  ° - ( v a  o - v . o )  
J a  J a  
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= I n  [ (e°  - ~ )  hi .  (a ° - u °) as 
ati  nt 

= 0  

owing to the fact that  u o = ti o o n / ~ i n t .  [] 

P R O P E R T Y  4. If  ~O,H,h = o0,H on Fint then 

ii~io - O H h , 2  - O H , 2  _ a O , H , h  
- u ' ' E ( ~ )  ---- If ~ i °  - -  ~ ' E (O~  + II ~ i ° ' H  I I ~ ( O )  

• J • J • • 
numerical num. (H-mesh) num. (h-mesh) 

P R O O E  We have 

ii,io _-OHh,,2 =11~° _-0H,,2 - , ,  ' ' I IE(Ot  - - "  ' l I E( O)  + II ~ i ° ' H  - t i 0 ' H ' h [ ] 2 ( , 0 )  

+ 2[ E(~7ti 0 ,g  __ ~7/.~ 0) . (~7/~ O,H,h __ ~ l i  O,H) d x  
J o  

and 

I 2 E ( V I ~ O ' H  --  ~7/i  0) " ( V / i  0 'H'h --  ~ / i  0 'H)  d 3 g =  f g 2 ( o  "0'H - 0 "0) : ( V / i  0 'H'h - V / i  0 'H)  d x  

: f~lnt  [ ( ~ . 0 , H  - -  ~ . 0 ) .  h i "  ( / ~ 0 , g , h  - -  / j 0 , H )  d s  

z 0 .  

Gather ing  Proper t ies  1, 3 and 4, we finally get the following decompos i t ion  for the error: 

(25) 

P R O P E R T Y  5. I f  it O'H'h = ~O,H = uO,H o n  Fin t ,  t h e n  

e 2 tlu u°II~(o~ II u° ~Oll%(.)+llaO ,,--0'H"211E/O>+II ~°'H _-0,Hh,,2 . . . . . .  u ' liE(a) 

+2 fr, o,[a°nl(u°'"-u°) e~ [] (26) 

Let  us establish precisely the mean ing  of  each of  these terms: 
• The  first term, ]lu - u°I]E(O), is the er ror  in t roduced  by replacing E by E ° in the original problem. 

It depends  on E ° and it is zero  if E ° and E coincide. 
• The  second term, []u ° -  fi°HE(O ), is what  we gain (minus sign in (26)) in solving the subdomain  

problems.  It depends  on E ° and the subdomain  parti t ion, symbolically deno ted  by A. As the sub- 
domain  size tends to zero,  A -~ 0 symbolically, this te rm tends to zero since ~ 0 ~ u 0 and it is zero 
if E ° and E coincide. Finally note  that  the two first terms in the right hand  side of  (26) form a 
quant i ty  that  is always grea ter  or  equal  to zero, by Proper ty  3. 

• The  third term, lift0 _ fi0,H][E(O) ' takes into account  the numerical  errors in t roduced in solving the 

h o m o g e n i z e d  problems.  It depends  on E °, A and the H - m e s h  size. It tends to zero as H ~ 0 since 
u °,H - ~  u °. But is n o t  zero  in general  if E ° and E coincide. We have 

ilao _-o H,,2 f :  --  u ' lIE(O) = [(O "0'H -- 6 "°) "n] - (/./0,H _ / / 0 )  d $ .  
nt 

Thus,  the third te rm depends  on the quali ty o f  the finite e lement  solution u 0,n only on the boundary  
o f  the subdomains ,  Fint. 

• The  four th  term, ][ti °,H - ti0'H'hIIE(O) , takes into account  the numerical  errors in t roduced by solving 

approx imate ly  the subdomain  problems.  It tends to zero  as h tends to zero since ti 0,n,h ~ li 0,n and 
it is not  zero,  in general ,  if E ° and E coincide. 
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• The last term in (26) is the coupling term whose sign can be positive or negative. It tends to zero as 
H ~ 0 and it is zero if E ° and E coincide. Thus, this term exhibits a coupling between the numerical 
and modeling errors. 

3. Influence of the numerical errors 

We study here the influence of the h- and H-mesh  on the error in connection with a model problem. 
The influence of the subdomain size is also studied since it has many features similar to the influence of 
the h-mesh. The study is carried out on the I -D  problem described in Fig. 1. The problem to be solved 
on (0, I) is to find a triple (u, e, or) such that 

e ( x )  d u ( x )  dx ' x E  (0,1) and u(0) 0, u ( 1 ) = 0 ;  (27) 

do-(x) 
- f ( x ) ,  f ( x ) = l ,  x c ( 0 , 1 ) ;  (28) 

dx 

or(x) = Ee(x) ,  x C (0, 1). (29) 

The Young modulus E = E(x)  corresponds to a two-phase material with equal volumetric distribution 
of each phase. More precisely, we consider that the rod is composed of 'particles '  of size d -- l / P ,  P 
being the total number  of particles. These particles have a Young modulus of E1 or E2. The partition of 
the phases on the rod is generated randomly. 

3.1. Influence o f  the h-mesh 

The h-mesh size influences only the fourth term in the decomposit ion of the error (26). We introduce 
the notations 

lifO, H _ ~O,H,hllE(~ ) [I u - -  ~O'H'hllE([~ ) 
Enum,h = I lu IIE/~> ' E = I lu IIf<~2~ 

and we first consider the case of one subdomain. So, E enum,h = Enum,h (h). We thus study the behavior  of 
the finite e lement  method for a heterogeneous material.  Piecewise linear finite elements are considered. 

3.1.1. Non-matching mesh 
Fig. 6 shows the behavior  of Enum, h for uniform meshes non matching the particles boundaries (the 

number  of particles is a power  of 10 and the number  of elements a power of 2). We observe that the error 
is almost constant during a range of mesh sizes and then starts to decrease with a rate of convergence 
O(v/h). The ratio of the size of the element and the size of the particles is about  three or four when the 
error starts to decrease. 

The almost constant value of the error before the decrease does not depend on the size of particles 
nor on the size of the elements. It only depends on z, the 'mismatch ratio '  E I / E  2. Fig. 7 shows two 

Table 1 
Evolution of the error (%) with the number of elements for several values of the mismatch "r. The number of particles is 104 

Number of elements 

II 71 , 102 1 4 16 64 
(1+~-) 

256 

100 98.0 100 98.2 98.0 98.0 98.0 
10 81.8 100 83.1 81.9 81.7 81.4 
5 66.7 100 69.1 66.8 66.6 66.2 
2 33.3 100 41.2 33.8 33.3 33.0 
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The  mismatch is r = 10 .  
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Fig. 7. T w o  finite e lement  prob lems  having the same numerical  error. 

finite e lement  problems for which the numerical errors are identically the same. The relative error is 
C(r)  = [1 - r{/(1 + r). Al though our 1-D problem is different from the one  described in Fig. 7, the value 
C(r)  is very close to the actual value for our problem (Table 1). Note  that when 7 ~ + ~ ,  the error 
stays at a level of  100% before a significant decrease. 

The error exhibits three main trends (Fig. 8). First, O(h) convergence  is observed until an error 
[1 - 7{/(1 + r) is reached (when 7 = 1 we  observe an order of  convergence of  unity all the way as h 
0). Then, the error decreases very slowly. Finally, when h is around three times the size of  the particle 
we observe a rate of  convergence  of  O(x/h).  This rate is in agreement with the classical convergence 
results of  the finite e lement  method.  

The fol lowing empirical formula gives an idea of  the number of  e lements  needed per particle, for this 
problem, in order to achieve a numerical error c0 

d 1 { [ 1 - r ] )  z 1 

a ~ rcrit ~ - ~ }  ~2o2" 
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Fig. 8. The three main behavior phases of the numerical error Enum, h with non-matching meshes. 

d is the size of the particle and rcrit is the critical ratio h/d needed to obtain a significant decrease of the 
e r r o r  (rcrit ~ 3) .  With ~- = 10, about  5 elements  per  particle are needed for 20% error, about  20 for 10% 
and about  85 for 5%. Due to the poor  convergence rates the numerical effort needed is very large. 

Concerning the influence of the subdomain size A, we observe that Enum, h increases slightly for a given 

h-mesh when A is decreased, if E ° = (E 1) 1. The opposite behavior  is observed if E ° = (E). However,  

in general, whatever  the value of A and the choice of E °, the same general behavior  as depicted in Fig. 9 
may be observed. The only difference is that the limiting value [1 - ~-I/(1 + ~') is no longer valid. 

3.1.2. Matching mesh 
We now consider the case where the mesh does take into account the boundary  of the particles, i.e. a 

node is placed at each boundary between two particles. Fig. 9 shows the evolution of the error  with the 
number  of elements compared  with the previous case where the mesh was not taking into account the 
boundaries of the particles. The error is now dramatically smaller and does not depend on the number  
of particles. The error is simply given by the mesh size h. 

3.2. Influence of the H-mesh 

We denote this influence by 6H. It  gathers the third and last term of the decomposit ion (26) 

~H 2 ~?num,H q- ~H 

where 

I1~ ° - ~ °,ullE(a) 
Enum'H = [I//liE(O) ' {~e frm[,~ ° • n]. (u °'• - u °) ds. 3 ' H -  Ifu (a) 

(30) 

(31) 
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If the assumptions of the Property 5 holds, one can easily show that 

6u 1 /r~ - ~ [ ( 6 " O ' H + f r O ) . n ] . ( u O ' H - - u O ) d s .  (32) 
I1"11E. ) °, 

For the 1-D problem under consideration, the finite e lement  solution u°,H is such that u°,n _-- u°  at 
the nodes.  So 614 is zero  since the subdomains boundaries are chosen so as to coincide with nodes of the 
H-mesh .  However ,  the classical numerical error in the energy norm H u 0 _ u 0,H ][E0(n ) associated to u °,1t 

is not zero.  This remark highlights the fact that 614 depends only on the quality of  u °'" on the boundary 
of the subdomains and not over the whole  domain. 

In order to purposely avoid exact finite e lement  values at node,  we modify the problem by introducing 
a non constant section S(x ) .  The problem is now 

- ~ - ( S ( x ) E ( x ) ~ )  = - f ( x ) ,  u(O) = O, u(1) = 0 with S(x)  = e x and f ( x )  = e -x 

and the homogen ized  problem is 

d ( S ( x ) E  o du°(x))  
dx = - f ( x ) ,  u° (0 )  = 0, u° (1)  = 0. 

Tables 2 and 3 show the behavior of  e,  um,n and Y/4 as the H-mesh  is refined for two different choices 
of  E °. 

We observe that: 
• The sign of YH can be positive or negative depending on the choice of  E°; 
• e.um,# is very stable with respect to the number of subdomains. YH is very stable in the case E ° -- <E) 

but not in the case E ° = <E 1>-1; 
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Table 2 
Influence of the number of elements in the H-mesh  on Chum, H and YH for a variable number of subdomains (N). E ° = (E 1) 1 
and ~" = 10 

Number  of  elements in the H-mesh  (1000particles) 

N 4 8 16 32 64 128 256 

Enum,H 

YH 

4 1.00(-2) 2.53(-3) 6.34(4)  1.59(4) 3.97(-5) 9.91(-6) 2.48(-6) 
16 6.66(-4) 1.67(-4) 4.16(-5) 1.04(-5) 2.60(-6) 
64 4.28(-5) 1.07(-5) 2.67(-6) 

4 2.70(4) 6.79(5)  -1.70(-5) -4.25(-6) -1.06(-6) -2.66(-7) -6.64(-8) 
16 -4.19(-5) -1.05(-5) -2.62(-6) -6.55(-7) -1.64(-7) 
64 -6.69(-6) -1.67(-6) -4.18(-7) 

Table 3 
Influence of the number of  elements in the H-mesh  on enum,H and YH for a variable number of subdomains (N). E ° - (E} and 
• - 10 

Number  of  elements in the H-mesh  (1000 particles) 

N 4 8 16 32 64 128 256 

4 3.33(-3) 8.37(-4) 2.10(4)  5.24(-5) 1.31(5) 3.28(-6) 8.19(-7) 
16 2.20(-4) 5.50(-5) 1.38(-5) 3.44(-6) 8.60(-7) 
64 1.41(5) 3.53(6) 8.84(-7) 

~num,H 

YH 
4 4.26(3)  1.07(-3) 2.68(-4) 6.70(-5) 1.67(-5) 4.19(-6) 1.05(6) 

16 2.88(4)  7.19(-5) 1.80(-5) 4.49(-6) 1.12(-6) 
64 1.77(-5) 4.42(-6) 1.11(-6) 

• ~num,U and TH are of  the order of O ( H  2) as H --+ 0. This comes  from the fact that we have super- 
convergence  at the nodes: (u °,H - u  °) ~ O(H2). 

• Since Enum,H and YH converge at the same rate, the influence of  Enum,H is quickly negligible in front 
of  the influence of  YH in 6H, see (30). 
Finally, to compare the influence of the H - m e s h  and of  the h-mesh on the error, we must compare 6H 

to En2um,h and observe that: 
• Enum,h is always positive; 6H is not necessarily positive or negative; 
• Enum,h depends on the quality of  a0'H'h on each subdomain; 6H depends on the quality of  ~0'H only 

on the boundary of the subdomains; 
• The rate of  convergence of 6H as H --~ 0 depends on the regularity of  the homogen ized  solution u 0. 

On the contrary, the rate of  convergence  of  e.um,h as h --~ 0 depends on the regularity of  the local 

solution ~°'H and the type of mesh (matching or non matching mesh).  

3.3. Influence of  the subdomain size 

Let us introduce the notations 

[lu - u°llE(X~) Ilu° -- a011E(~) (33 )  
Em°d'° - -  Ilu IIE(~) ' Em°d'A = Ilu IIE( / 

Fig. 10 shows the behavior of Emod, a a s  the size of  the subdomains,  A, tends to zero. One  can observe,  
first, a very slow decrease of emod,a- Then, when the size of  the subdomains is around three or four times 
the size of  the particles, emoa,a decreases as the square root of  the size of  the subdomains.  Fig. 10 is very 
similar to Fig. 6. The critical subdomain size to obtain a significant decrease of emod,a is the same as the 
critical h size to obtain a significant decrease of  the numerical error e~um,h: this critical length is three 
to four times the size of  the particles. Furthermore, the asymptotic rates of  convergence are the same. 
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Fig. 11. These  two  cases have  the same ~:mod,,5 error. 

There is however, a conceptual difference between ~mod,A and ~num,h: Emod,a is what we gain by solving 
exactly the fine scale problems and Enum, h is the numerical error introduced by solving the local problem. 
Thus, the size of interest for the subdomain is at  leas t  three or four times the size of the particles and 
the size of interest for h is at  m o s t  three or four times the size of the particles. The critical length, three 
to four times the size of particles, separates the long length range (homogenized problem) and the short 
length range (local analysis). 

Fig. 11 shows two cases for which Emod, a is the same: ([mod,a = 0"511 - -  rl/v~. With r = 10, we have an 
error of 142.3%. This value is very close to the constant error value in Fig. 10. The relationship between 
Figs. 11 and 7 is noteworthy. 

4. The error-in-the-constitutive-law framework 

The homogenized solution and the exact solution both fulfill the kinematic constraints (1) and the 
equilibrium equation (2). They differ because they do not satisfy the same constitutive law. A way to 
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measure the distance between the two solutions is to compute the distance in the energy norm, between 
the exact and homogenized displacement: e = Ilu - u°llE(a). Another way is to measure the way the 
couple (o-, 6 °) satisfies the fine-scale constitutive law. 

The error on the constitutive law concept is very general and relies on a strong mechanical interpre- 
tation. It has been applied to many types of problem. Let us cite the design of error estimator for finite 
element computation [3] and the adjustment of finite element models using vibration tests [4]. For our 
purposes, this concept can be summarized as follows. Suppose we have at hand a stress-strain couple 
(dr, ~) satisfying the kinematic constraints (1) and the equilibrium equation (2). This couple will be the 
exact solution of the problem if and only if it satisfies the actual constitutive law: 

& = E ~  ong2. (34) 

Thus, the quality of the couple (dr, ~) can be measured by the way it satisfies (34). Let us introduce the 
quantity r /defined by 

~ / (d r ,~ )=~*(d r )+q~(g~) -&:& where ~ * ( O ) = ~ & ' E  'dr and q ~ ( ~ ) = ~ : E ~ .  

~(~) is the strain energy and q~*(dr) is the complementary energy, its dual via the classical Legendre-  
Fenchel transformation, 

q~*(dr) = sup (dr : 6' - ~(6 ')) .  
6' 

It follows that r /has  the following two classical properties: 

n(dr, ~) > 0 V (dr, ~); (35) 

r t (a ,  &) = 0 ~ dr = E& (36) 

Thus, a measure of the absolute error associated with the couple (dr, &) may be defined by: },,2 
Y(dr,~) = 2 n (dr ,~ )dx  (37) 

We shall refer to this error-in-the-constitutive-law approach as the ECL framework. 
It is interesting to note that 

L l u  - u°llE(a/ = Y ( ~ , 6  °) and Ilulle(a) -- Y(,~,0). (Be) 

In other words, the distance between u and u 0 in the energy norm, is equivalent to the way the couple 
(~,  6 °) satisfies the fine-scale constitutive law as measured by the functional Y(., .). 

We shall now rewrite and demonstrate the main results of the HDPM in the ECL framework. This 
will lead to a mechanical interpretation of the results. We will also establish a new result. 

• The first result of the HDPM is that it is possible to compute an explicit a posteriori upper bound 
for the homogenization error [1]. In particular, the exact solution need not be known to compute 
the bound: 

I t u  - u°llE(a) ~< ff where ff = III:0VU0[IEIO), ZO = I - E - a E  °. (39) 

After some manipulations, this result can be proved to be equivalent to 

Y(o', 6 °) ~< V(o "°, 60). (40) 

In other words, an upper bound is obtained by replacing in the error in the constitutive law the 
exact stress field by the homogenized field. Y(o "°, 6 °) measures the way the homogenized solution 
satisfies the actual behavior. The following Lemma is the key to demonstrate all the main results of 
the HDPM using the ECL framework: 

L E M M A  1. Let (O'1,61) and (o'2, 62) be two stress-strain couples satisfying the following orthog- 
onality condition: 
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n(~rl -- o°2) " (el -- e2) dx = 0. (41) 

Then, we have 

y2(O'l, el) + Y2(002, e2) = y2(o- l ,  e2) + Y2(002, el). [] 

The pairs (00, e) and (0 "°, co) satisfy the orthogonality condition. Moreover, y2(o' ,  e) = 0. So, by 
the Lemma 1, we have 

y2(000, e0) = g2(o. ' e 0) + y2(000, e) (42) 

which proves the upper-bound. [] 

• The second principle of the H D P M  is that the modeling error is reduced by carrying out the 
subdomain analysis [1]. Suppose that the subdomain analysis is performed on the subdomain S2k. 
We have 

This result may be rewritten 

y,(00, ~o) ~< y,(00, co) (43) 

where 

Yk(O' ,~)=  { 2 ~ , r l ( O ' , ~ ) d x }  1/2. 

P R O O F  O F  (43). The pairs (00, e0) and (&0, ~0) satisfy the orthogonality condition on J2 k. Then by 
Lemma 1, since y~(&o, ~o) = 0, we have 

g2(o.  ' co) = y2 (00, ~0) + y2 (&0, e0), (44) 

proving the result. [] 

• The g" quantity defined in the first result is not, in general, an upper bound locally, i.e. the following 
inequality is not satisfied in general over a given subdomain, J2k: 

[]u - u°Hu(nk) ~< ~'k where ~), = ][ZoVU°[]e(&). (45) 

However,  the following inequality, which is the third result of the H D P M  [l], holds: 

[)i ° - u°[lu(&) ~< ~'~. (46) 

In other words, it is possible to determine locally where the local solution process will produce a 
significant change in the homogenized solution. 

In terms of the ECL, we have 

y~(o0 ,  e0) ~< yk(o.0, e0). (47) 

P R O O F  O F  (47). Applying the Lemma 1 with the pairs (&0, ~o) and (o "°, e°), we have 

e0) = y2(, o + ¥ (000, [] 

• The fourth principle is that an upper bound also exists for the modeling error obtained after the 
subdomain analysis [2]: 

[lu - li°t]F_(n) ~< q, where q,2 = 2 ( j ( t i 0 )  _ j ( u o ) )  + (2. (48) 

J ( - )  is the potential energy associated to the displacement field • : 

tg - (.) ds. 
t 
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The result (48) may be rewritten 

Y(o', ~o) <~ y(o.O, ~0). (49) 

In other words, as for the first result, an upper bound is obtained by replacing the exact stress by 
the homogenized one. 
PROOF OF (49). Applying the Lemma 1 with the pairs (o', e) and (o "°, ~0), we have 

y2(ov0 ' g~0) _ y2(o. ' ~0) + y2(o.0 ' •). [] (50) 

The ECL framework has allowed us to find a new mechanical interpretation of the H D P M  results: the 
bounds are obtained by using the homogenized stress field in the error in the constitutive taw expression. 
In the first and last results, it is the global exact stress field o" that is replaced by the homogenized one 
(see (40) and (49)) and in the third result it is the local stress field 0 "° that is replaced by the homogenized 
stress (see (47)). 

We also note that all the H D P M  results now extend to the nonlinear case. In the nonlinear case, all the 
proofs remain valid, only the expression of the potential ~o and q~* change. Let us inquire the meaning 
of the Y functional in the nonlinear case. Assuming that 6- satisfies the equilibrium equation (2) and ti 
satisfies the kinematic constraints (1), we can write 

~g2(dr, if(a)) = J ( t i )  - - / / (dr)  (51) 

where J ( t i )  is the potential energy and/ / (dr )  the complementary potential energy: 

L f , ,  - - f  tg • (t~) ds, (52) J ( a ) =  ~ ( t ( t i ) ) d x -  f g . ( a ) d x  "t 

/ / ( d r ) _ - - f  ¢ ( d r ) d , + [  (dr . , )  . , g  a,.  (53) 
J fl ,IF u 

Thus Y is linked to the difference between the potential energy and the complementary potential energy. 
It is always positive and zero if and only if the couple (dr, g~ = ~(~)) satisfies the behavior described by 
the relation: 

q<(dr) + q~(g~) - dr : • = 0. (54) 

The main results of the H D P M  are stated in terms of explicit upper-bounds. The quality of these 
bounds, is defined by the following effectivity indices, all greater than or equal to one: 

O~.k= ~k C b,, - _ ~ o  , 
o,, Ilu u°llE.e/' Ilu IIE(.e~ II a° - u°lle(ak) 

or equivalently, in terms of the error in the constitutive law: 

y(o.0, co) Y(a#,  ~0) Yk ( O'0, e0) 
00-- y(o. ,~0)  , 0o-- y(o. ,~0) , Os,k- yk(&O,~o )' 

We may also define the global sensitivity effectivity index, 0s: 

~. _ y (o .o ,  ~o) 
Os = i1~0 _ u011E(~) y(&0, ~0) 

Of course, O~ is bounded from below by the best effectivity over the subdomain and from above by the 
worst effectivity index: 

min O~,k ~< O~ ~< max O~,k. 
k--l,... ,N k=l,... ,N 

The following property establishes that the effectivity index on the q, estimate, 0o, is always greater than 
the effectivity index on the ~" estimate, 0o. The global sensitivity index, 0~, is also always greater than 0o. 
Finally, 00, 00 and 0~ are linked in a relation: 
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P R O P E R  TY 6. 

• Oo ~< Oo and Oo = 1¢~ Oo = l; 

• 0o ~< 0s; 

• ( 0 2  - 0g) (Os  2 - 0o2) = 0 2 ( 0 g  - 1).  

P R O O E  Applying the Lemma 1 to the pairs (o "°, ~o) and (oo,  ~o), we obtain since y ( o 0 ,  ~o) = 0 

g2(o.O ' e0) = g 2 ( o . o  ' ~0) + y 2 ( & 0 ,  co).  (55) 

Summing relation (44) over all the subdornains yields 

y 2 ( o .  ' fro) = g 2 ( o .  ' ~:0) + y 2 ( & o ,  Eo). (56)  

Dividing relation (55) by relation (56), we obtain 

y2(o.O ' GO) y2(o.O ' ~0) + y 2 ( ~ . o  Go) y 2 ( o . o  ' ~0) __ 0"02 

002 - -  g 2 ( o . ,  •0) - -  g 2 ( t r ,  gso) + V2(&o,  iso) ~< y 2 ( o .  ' ~o) 

and clearly Oo = 1 ¢*  0o = 1. The second relation is obvious since 

y(&O, Eo) ~< Y(tr, ~o) 

and the third one is obtained by eliminating the quantity Y(6 "°, ~o) between the two relations: 

y 2 ( o . O  ' GO) _ y 2 ( ~ . o ,  GO) 
Y ( t r ° '  "° )  a n d  - -  Y 2 ( t r , ' ° )  Y2(O'u, "° ) 0 " 2  = - - - - - - _ -  - - - - - =  - - - -  [ ]  0s -- y(oO, co) 

(57 )  

Table 4 shows the influence of the number of subdomains on the modeling error 

Ilu -  i°llE(a) 
Ilu liE(a) Y(o- ,  0) 

and on the effectivity index 00. We see that 00 tends monotonically to 00 as the subdomain size is reduced. 

Table 4 
Evolution of  the modeling error • and the effectivity index 0"0 with respect to the number of subdomains, N, for three different 

flu - u °liE(a) y(o-~ o) "00: 00 values of r .  E ° = ( E  -1) 1. W h e n N = + e c , • =  ~ = ~ and 

r = 10 r = 50 r = 100 

N , , a0 , a0 
1 O. +oo O. + ~  O. +oo 
2 2.702(-4) 44.70039184 3.114(-4) 45.66017533 3.169(-4) 45.79441773 
4 1.739(-2) 1.21748697 2.046(-2) 1.21758072 2.088(-2) 1.21759302 

16 3.505(-2) 1.05768583 4.138(-2) 1.05734892 4.225(-2) 1.05730230 
64 7.672(-2) 1.01231204 9.128(-2) 1.01205426 9.329(-2) 1.01201730 

256 1.499(- 1) 1.00323777 1.809(-1) 1.00308147 1.854(- 1) 1.00305648 
1024 3.232(- l) 1.00069796 4.959(- 1) 1.00041075 6.074(- 1) 1.00028513 
4096 7.648(-1) 1.00012465 1.692 1.00003527 2.356 1.00001896 
+oc 1.421 1.00003609 3.460 1.00000844 4.944 1.00000431 
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5. Numerical results for the HDPM 

The results of the HDPM method rely on the assumption that the homogenized and the local solutions 
are free of numerical errors. In practice, this is not the case. Thus, we seek for the meaning of the 
results, mainly the two first results, when numerical errors occur. We keep the error-in-the-constitutive- 
law framework allowing us to deal with both linear or nonlinear constitutive laws. 

It is interesting to note that the inequality expressed in (40) still holds if the exact fields are replaced by 
the approximate fields. Defining (~r H, t H) as the finite element solution obtained with the real material 
and the H-mesh, we have 

P R O P E R  T Y  Z 

y ( o  "H, t 0,H) ~ Y(o  "0'H , t0,H). 

P R O O E  The proof  is obtained by the Lemma 1 using the pairs (O "H, t H) and (tr °,H, t0'H). The ortho- 
gonality condition (41) is indeed satisfied at the finite element level. [] 

Defining the numerical effectivity index, 00 H, as 

y(~r°, " ,  t°, H) 
o y  - Y ( , ~ " ,  t ' )  ' 

we thus have 0~ 4 ~> 1 like 00 ~> 1. Numerical experiments carried out in [1] for 1-D and 3-D problems 
confirm the property, although in this study an iterative solver and approximate spatial integration were 
used in the 3-D case. It was also noticed in [1] that 00 H is very stable with respect to the mesh size H. 
Finally, note that, as the ~" estimate (Y(o "°, t°)), Y(o -°,H, ~0,H) is zero if E and E ° coincide, even though 
numerical errors occur. 

By performing the local analysis, we know from the second result of the HDPM that we obtain a 
perturbation of the homogenized solution, ti °, that is closer to the exact solution than u °. This might 
not hold for the numerical approximation of ti° because it is not an exact solution of the subdomain 
problems. Fortunately, we have the following result: 

0,H 0 H 0,H,h P R O P E R T Y  8. Let u k°'H be the restriction o f u  °,H to S2 k and 0 , H = t ( U  k ). If (Uk' --Uk j E V O  
then 

-0,H,hx 0,H 
Yk~O',% ) < ~ Y k ( o ' , t  k ). 

/-O,H,h -O,H,h,~ and (o', O,H OH ~OHh, P R O O E  We apply Lemma 1 with the pairs tO'k , % ) % ). Since (u k' - u  k' ' )  ¢ V~ the 
orthogonality condition holds. [] 

Finally, we stress that two quantities equivalent when free of numerical errors may become quite 
different in the case of numerical error. For instance, as seen in the previous section, the following two 
expressions of ~ are equivalent: 

~0 = (2 ( J ( t i  °) - J ( u ° ) )  + IIZ0Vu°ll~/,~l) a/2, 
~0 = Y(o -°, ~o). 

If we inject the approximate solution, we get 

1/2 0H 2 ,  ~numl = (2(j-(/~0,H,h) _ , j(u0,H)) + II 0Vu 

~0num2 = y(o.0,H, ~0,H,h). 

gs hum1 and ~num2 no longer coincide since the first one may be the square root of a negative value, 
whereas the second one is always well defined. 
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6. A posteriori error estimation and adaptive strategy 

From (23), we recall that 

Hu - u-°'Hh' ,2E/n) = Ilu -- u- 0.H,,211EU~ + II~ °H -- u-OHh ,2E([2) 

which can be rewritten 
y 2 ( o .  ' ~O,tf,h) = V 2 ( o .  ' ~.o,tt) + y 2 ( O . 0 , H  ' ~.O,H,h). ( 5 8 )  

The Properties 9, 10 and 11 below give upper-bounds for the three terms in (58). The spaces H and S 
describe the regularity imposed to the displacement and stress field, respectively. 

P R O P E R T Y  9. 

V ( o ' ,  ~O,H,I, ) ~ Y ( o ' ,  ~O,H,h ) V O" C Sad 

where 

8 a d :  {O'CL2ym(~Q) " j f  o ' ' V o d x -  f ( o ) : O  V1) c V } ,  ( 5 9 )  

: {" .... , -  : - ' }   60/ 

P R O O E  With the pairs (o', ~) and (&, ~0,U,h), Lemma 1 gives 

y2(&, ~0,H,,~) = y2(o. ' ~0,H,h) + y2(&, e). [] (61) 

P R O P E R T Y  10. 

Y(o', ~o,tf) ~< y(&,  ~O,H) V o" C Sad. 

P R O O E  With the pairs (o', ~) and (&, ~ojt), we get from Lemma 1 

y2(&, ~o,tl) y2(o .  ' ~0,H) + y2(&, ~). [] (62) 

P R O P E R T Y  11. 

y(&O,H, ~O,H,h) ~ y(~.,  ~o,.,h) 

where 

N 

2 L L i ~-~ad = H { ~ E ]L,sym ( n k )  : ~/" : VIY d x  = f g  - l,' d x  + t g .ods ,  
k= I k k d F t P, ank 

Vv C H l ( ~ k ) , v  = 0 on /lint LJ Fu}  

P R O O E  With the pairs (&O,H, ~O,H) and (~', ~O,tt,h), we have by Lemma 1 

y2(~., ~O,H,h) = y2(&0,H, ~O,H.h) + y2(~., ~:0,H). [] 

(63) 

(64) 

Note that this last Property is also valid on each subdomain. Finally, it is worth mentioning that for 
linear elasticity, the relations (61), (62) and (64) may also be obtained using the hyper-circle theorem [5]. 

Let us define the three following effectivity indices, all greater than one: 

0 ~ emod enum 
z --~ 0rood - -  ~ 0nu m - -  

e emo d enum 
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where  

= g(c}', ~O,H,h), emod = y(~r ,  ~O,H), 

e = Y(o ' ,  ~o,H,h), emod = Y(cr,  ~O,H), 

We have  the fol lowing proper ty :  

enum= Y(o ' ,  ~O,H,h), 

enum = y(&0,H, ~O,H,h). 

(65) 

(66) 

P R O P E R T Y  12. If  ~ and emod a re  c o m p u t e d  with the same  stress field O E Sad, w e  have:  0 ~< Omod and 
0 = 1. ¢* Omo d = 1. 

PROOF.  With the pairs  (&, ~0,H,h) and (0  "°'H, ~0,/4), L e m m a  1 gives 

y2 (&,  ~O,H,h) = yZ(&,  ~0,H) + yZ(&0,H, ~O,H,h). 

Dividing (67) by  (58), we get 

0 2 _ y2 (&,  ~0,H,h) __ y2(&,  ~0,H) + y2(o.0,H ' ~0,H,h) 

V2(o. ' ~O,H,h) g2(o .  ' ~0,H) + ye(o.0,H ' ~:O,H,h) 

and clearly 0rood = 1. ¢> 0 = 1. [] 

(67) 

<~ y2(&,  ~0,H) 2 (68) 
- -  Omo d y2(o .  ' ~0,U) 

F r o m  the finite e l emen t  stresses o "°,H, it is possible  to build explicitly a stress field &0,H belonging to 

Sad [3]. Similarly, it is possible  to build f rom the finite e l emen t  stresses &0,H,h stresses ~0,H,h be longing 
to 'Sad. Thus,  the uppe r  bound  ~ and enum can be pract ical ly c o m p u t e d  since ~O,H,h is known.  On  the 

contrary,  ~mod cannot  be  c o m p u t e d  since ~0,H is unknown.  However ,  when  ~2 ~> ^2 enum, we can eva lua te  
emod by  emod: 

O mod = e2  _ en um 

and define the effect ivi ty index 

0mod = emod/emod. 

This la t ter  effect ivi ty is not  necessari ly  g rea te r  than  one.  
Table  5 gives the results for  the es t imated  errors  and the effect ivi ty indices for  the mode l  p rob lem.  

The  relat ive er rors  ~, ~num and ~mod are def ined by 

z (/[1 u liE(g2), Enum z ~num/]l//IIm~), ~:mod = &,od/llu liE(x2). 
One  can see that  the  effect ivi ty indices, 0 and 0,um, are  close to one,  especial ly  for  0. For  the last two 
meshes ,  the mode l ing  e r ror  can be eva lua ted  by the di f ference b e t w e e n  the es t imated  total  e r ror  and 
the  numer ica l  errors  and the mode l ing  effect ivi ty  index is very  good.  

6.1. A simple adaptive strategy 

A n  effect ive adap t ive  s t ra tegy for  the  H D P M  should be  able to (1) select  the best  sui ted h o m o g e n i z e d  
mate r i a l  p r o p e r t y  E °, (2) p a r t i t i o n / 2  into subdomains ,  (3) p roduce  the H - m e s h  and (4) the h -mesh  in 

Table 5 
Estimated errors (%) and effectivity indices with a growing number of elements in the h-mesh. There are 1000 particles, 256 
subdomains and the mismatch is r = 10 
Nb elts ~ 0 ~num 0num Emod 0m°d 

256 137.3 1.0001 213.3 1.66 
1024 92.07 1.0001 111.5 1.41 
4096 57.39 1.0004 34.65 1.07 45.76 0.970 

16384 49.75 1.0005 15.57 1.02 47.27 0.999 
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Table 6 
An example of simple adaptive strategy. 1000 particles, E ° (E- l )  t and ~- = 10. 

N ~ ~mod ~num 
256 49.77 47.27 15.57 
128 32.21 29.16 13.66 
64 21.17 16.94 12.70 

order to minimize the cost of the computation for a prescribed total accuracy The problem of choosing 
E ° and the partition is already a difficult task by itself. Therefore,  we make the following assumptions: 

• The 'best' homogenized material property is known; 
• No numerical errors are introduced by the H-mesh; 
• We consider a uniform subdomain partition and uniform h-meshes; 
• The subdomain analysis is carried out on each subdomain. 

We try to adapt the subdomain size and the h-mesh size to reach a prescribed total accuracy E0%. Instead 
of minimizing the cost of the computation, we impose a given sharing of the modeling and numerical 
errors. This sharing is described by the parameter  c~ (0 < ce < 1): emod = (o~)l/2e0 and E n u m  : (1 - a)a/2e0. 

We propose the following simple strategy: 
• Step 1: Start with a subdomain size which is at least three or four times the size of a particle; 
• Step 2: With this size of subdomain, use standard h-adaptive finite element method to optimize the 

mesh to reach the prescribed numerical accuracy; 
• Step 3: Iteratively reduce the number of subdomains, keeping the h-mesh fixed, until the prescribed 

modeling accuracy is reached. 
As an example, we consider our 1-D problem with 1000 particles and ~-= 10. The homogenized 

modulus E ° is taken as E ° =  (E l)-1 and no errors are introduced by the H-mesh since the exact 
displacements values are obtained at the nodes (cf Section 3.2). We target a 20% error divided into 
14.14% for modeling error  and 14.14% for the numerical error (c~ -- 0.5). We start with 256 subdomains 
and we optimize the mesh. Note that for our 1-D model problem, if we work with meshes matching the 
particles boundaries the numerical error  is quickly very small. In order to get substantial numerical error, 
we choose to work with non matching meshes (our 1-D problem is academic and it is highly advised 
for 2- and 3-D problem to use meshes matching the boundaries of the heterogeneities). With 16,384 
elements, we get ~num = 15.57%. The modeling error is ~mod = 47.27%. The number of subdomains, N, 
is decreased to 128 and then to 64. The final error is 21.17%. Table 6 gives a summary of the adaptive 
process. 

7. Conclusions 

In the Homogenized Dirichlet Projection Method, numerical errors occur when solving the homog- 
enized problem (H-mesh) and when performing the local analysis (h-mesh). The influences of the h- 
and H-mesh on the error are completely different. The influence of the H-mesh is expressed in terms 
of the difference between the numerical and exact homogenized displacement on the boundary of the 
subdomains. As H ---, 0, the total error decreases or increases depending on the choice made for the 
homogenized material property. Conversely, the influence of the h-mesh is expressed as the distance 
in the energy norm between the exact and numerical solution in displacement of the local subdomain 
problems. If the nodes of the h-mesh and the particle boundaries are not matching, the rate of conver- 
gence of the numerical error is very poor, O ( v ~ )  for piecewise linear elements. Moreover, this rate of 
convergence is achieved only if the mesh size is smaller than a critical length being three to four times 
the size of the particles. On the contrary, if the h-mesh matches the particle boundaries, the rate is O(h) 
for piecewise linear elements and the critical mesh size is no longer present. 
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Concerning the modeling error, a critical length also appears,  the same as for the numerical error: the 
subdomain size should be bigger than three to four times the size of the particles to allow an efficient 
decomposit ion into subdomains, for our 1-D model  problem. 

Using the E C L  concept, we are able to give a mechanical interpretation of the main results of the 
H D P M  and to extend them to nonlinear constitutive laws. 

Finally, computable  upper  bounds for the total and numerical error  are obtained and the effectivity 
indices obtained for our 1-D model problem are close to one. A simple adaptive strategy is also proposed 
to choose the size of the subdomain and the h-mesh size. 
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